
Python in 3 parts
A pandemic-adapted professional development workshop

Mark Galassi

Space Science and Applications group
Los Alamos National Laboratory

Part I – 2020-06-23; part II – 2020-06-24; part III – 2020-06-25
Last built 2020-06-24T22:35:44

Outline

Outline

Motivation, Goals, and plan

Elementary python
Tutorial
Our program
Skeletons

Goals and path

In the educational industrial complex we are required to state our goals before we start.
It might even be a good idea.

Goals
I Practical hands-on work in Python.
I A deep awareness of how programming

and Python fit in what we do.

The path
I The “K&R” approach.
I Tutorial and examples followed by insights.

Style
I Slides are placeholders for work in an editor.
I We will have a URL for monitoring my editor.

(dude, we’re not programming yet)

Fear and loathing in programming languages – love
Naturalmente . . . xkcd: https://xkcd.com/353/

I wrote 20 short programs in Python yesterday. It was wonderful. Perl, I’m leaving you.

(dude, we’re not programming yet)

https://xkcd.com/353/

Where does Python fit?

Classifications of programming languages
imperative Lower-level, functions tell computer how to manipulate data.

procedural FORTRAN, Pascal, C
object-oriented Smalltalk
multi-paradigm C++, Python

declarative State relationships, language “makes it happen.”
logical Prolog
functional Lisp, Haskell

In truth most languages are multi-paradigm, these are fanciful classifications, sometimes useful,
sometimes misleading. Think of striking versus grappling in martial arts.

(dude, we’re not programming yet)

Terminology

When talking about computer programming:
Attitude toward terminology Suspend one’s uncertainty.

Complexity Software is enormously more
complex than even the most elaborate
hardware.

Growth of the field The field grows so quickly
that it is daunting to keep up with the
terminology.

Longevity of concepts Need to develop a talent
to latch on to ideas that last (Neil Young’s
“coin that won’t get tossed”.) A tiny bit of the Large Handron Collider (LHC) at CERN: the hardware is complex.

(dude, we’re not programming yet)

Outline

Motivation, Goals, and plan

Elementary python
Tutorial
Our program
Skeletons

Outline

Motivation, Goals, and plan

Elementary python
Tutorial
Our program
Skeletons

Eearly examples – 1
At the interpreter prompt

Hello world
$ python3
>>> print('hello, world')

Python as a calculator
>>> print(7*4)
>>> 7*4
>>> 125 / 13.5
>>> import math
>>> math.sqrt(1.7 + 32/17.1)

introducing variables
>>> x = 7
>>> y = 4
>>> x*y
>>> print(x*y)

pause: are we all here?
I This is the time to make sure that

everyone is helping their neighbor get the
interpreter going on their system.

Eearly examples – 2
At the interpreter prompt

for loop
>>> for i in range(16):
... print(i, ' ', i*i, ' ', i*i*i)

Celsius to Fahrenheit
>>> for degC in range(101):
... degF = 32 + (9.0/5.0) * degC
... print(degC, ' ', degF)

pause and early lessons
I Check on your neighbor again.
I The purpose of computers is to

automate repetitive tasks.
I We use the interpreter for quickies: two or

three lines.

Early examples – 3
Using an editor - Geany is an OK default if you don’t have a favorite

Gaussian sum: file gauss-sum.py
N = 100
sum = 0
for i in range(1, N+1):

sum = sum + i
print('sum was:', sum)
print('gauss says:', N*(N+1) / 2)

for loop with arithmetic: file
for-loop.py
import math
for i in range(16):

print(i, ' ', i*i, ' ', i*i*i, ' ', math.sqrt(i))

To run it
$ python3 gauss-sum.py
$ python3 for-loop.py

Introducing functions – in the interpreter
Functions in the interpreter
>>> def sum_gauss(N):
... return (N*(N+1)) / 2
... ## [hit enter a second time]
>>> sum_gauss(100), sum_gauss(1000)
>>> def factorial(n):
... if n == 0:
... return 1
... else:
... return n*factorial(n-1)
...
>>> for i in range(13):
... print(i, factorial(i))
...
0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880
10 3628800
12 479001600

Terminology related to functions
function block In this case the bock is the body of the

function: that part which depends on
the “def sum_gauss(N):”

general block In general every python construct of which
ends with a colon and start some indented lines of code.

argument Information that you pass to the function so it
knows what to work on.

return value Information passed back to you by the
function.

Functions and program structure

Gaussian sum program with functions
def main():

gsum = sum_gauss(100)
bfsum = sum_brute_force(100)
print('sum was:', bfsum)
print('gauss says:', gsum)
if gsum == bfsum:

print('they were the same')
else:

print('they were different')

def sum_gauss(N):
"""Gauss's sum rule to calculate the sum of the first N numbers."""
return (N*(N+1)) / 2

def sum_brute_force(N):
"""Calculate the sum of the first N numbers with brute force."""
sum = 0
for i in range(1, N+1):

sum = sum + i
return sum

main()

More things to notice
I Documentation blocks using Python’s """.
I We have a main() function!
I Python’s use of indentation instead of

{block} or begin block end can cause
the “return sum” statement to get
mis-indented.

I The function sum_brute_force uses an
“accumulator” paradigm. Let’s remember
that one.

Data types
Exploring data types at the interpreter - gleaning from examples

Numbers
$ python3
>>> a = 27
>>> b = 12
>>> a*b
>>> a/b
>>> a // b
>>> a % b
>>> x = 7.2
>>> a*x
>>> y = 3.141592654
>>> x*y
>>> type(a)
>>> type(a*x)
>>> type(a*b)
>>> type(x*y)

Introducing strings
>>> s = 'hello'
>>> t = 'world'
>>> print(s, t)
>>> s + t
>>> s + ' ' + t
>>> s[0], s[1]
>>> (s + ' ' + t)[8]
>>> (s + ' ' + t)[42]

Function on strings
>>> def prepend_first_letter(s):
... s = s[0] + s[0] + s[0] + s
... return s
>>> my_str = 'dude'
>>> result = prepend_first_letter(my_str)
>>> my_str, result

Introducing lists
$ python3
>>> mylist = [2.5, 17, 'dude']
>>> print(mylist)
>>> mylist
>>> mylist[0]
>>> mylist[1]
>>> mylist[2]

AAAARGHH: repetitive
task alert!!

>>> for i in range(3):
... print(i, mylist[i])
>>> for item in mylist:
... print('item is:', item)
>>> print(len(mylist))
>>> for i in range(len(mylist)):
... print(i, mylist[i])

More play with types
$ python3 # not putting >>> prompt here
type(4)
n = 42
type(n)
type(4.4)
x = 3.141592654
type(x)
type(2.0), type(2)
type('hello world')
s = 'hello world'
type(s)
mylist = [2.5, 17, 'dude']
mylist
type(mylist)
mylist[0]
type(mylist[0])
len(mylist)
type(len(mylist))
mylist
for i, item in enumerate(mylist):

print('ind:', i, 'list-item:', item,
'type:', type(item))

More language features, and converting types

Logic
>>> if 2 > 3:
... print('the impossible just happened')
... else:
... print('phew: 2 is not greater than 3')
>>> x = 7
>>> y = 8
>>> if x*y < (x+1)*(y+1):
... print('that made sense')
>>> x, y
>>> x == y
>>> x, y
>>> x = y
>>> x, y
>>> x == y

Type conversions
>>> ns = '42'
>>> n = 42
>>> print(n)
>>> print(ns)
>>> n == ns
>>> type(n), type(ns)
>>> n, str(n)
>>> str(n) == ns
>>> ns, int(ns)
>>> n == int(ns)
>>> type(str(n)), type(ns)

Taking stock
I Are we comfortable with the syntax? (Commas, indentation, . . .)
I Are we comfortable with the data types we have seen so far? (integers, floats, strings, lists)
I Shall we start writing a program?

Outline

Motivation, Goals, and plan

Elementary python
Tutorial
Our program
Skeletons

Our program
Visualizing cellular automata

Rule 90: the Sierpiński gasket.

Rule 30

Rule 110

(Shift to a window to show an animation of 1D and 2D cellular automata.)

Outline

Motivation, Goals, and plan

Elementary python
Tutorial
Our program
Skeletons

The complexities we handle as beginners

Getting comfortable with syntax
Lots of hello-world-ish examples.

Getting good with tools
Roll up your sleeves and do the lonely work
of the full emacs tutorial (or other
programming editor).

Overcoming the “activation barrier”
Use the skeleton approach.

Start with a skeleton - ca-skel-0.py
#! /usr/bin/env python3
first attempt: just starting
def main():

print('future home of cellular automata code')

main()
Listing 1: ca-skel-0.py

First actions: I want to see some output!
#! /usr/bin/env python3
next attempt: explore the data representation for a CA row
def main():

print('for now just printing out a single row')
n_cells = 79
row = [0]*n_cells # row is a list of 0 or 1 values
row[7] = 1
row[24] = 1
row[50] = 1
row[75] = 1
print(row)
for cell in row:

if cell == 0:
print(' ', end="")

else:
print('x', end="")

print()

main() Listing 2: ca-skel-1.py

The “English language narrative”
Modularize it
#! /usr/bin/env python3
next attempt - make it modular: write some functions
def main():

n_steps = 100
n_cells = 79
row = first_row_empty(n_cells)
set_some_cells(row, [7, 24, 50, 75])
print_row(row)
for i in range(n_steps):

row = take_step(row)

def first_row_empty(n_cells):
"""Make a first row where all cells are 0."""
row = [0]*n_cells # row is a list of 0 or 1 values
return row

def set_some_cells(row, cell_list):
"""Modifies row by setting to 1 all the cells listed in cell_list."""
for cell_no in cell_list:

row[cell_no] = 1

def print_row(row):
"""Prints a cellular automaton row, a blank for 0 and an 'x' for 1."""
for cell in row:

if cell == 0:
print(' ', end="")

else:
print('x', end="")

print_row()

main()
Listing 3: ca-skel-2.py

Our main function
def main():

n_steps = 100
n_cells = 79
row = first_row_empty(n_cells)
set_some_cells(row, [7, 24, 50, 75])
print_row(row)
for i in range(n_steps):

Telling the story
The size of our cellular space is 79. We create
a row of deactivated cells and we activate a few
of those cells. Then we print what that row
looks like.
Every program should look like a main()
function that calls other functions. This is
called a “top-down” view of the program.

Expanding our program to take steps

Updating main()
def main():

n_steps = 100
n_cells = 150
row = first_row_empty(n_cells)
set_some_cells(row, [7, 24, 50, 75]) # initial values
print_row(row)
for i in range(n_steps):

row = take_step_sierpinski(row) # new row from rule 30
print_row(row)

Taking a step
def take_step_sierpinski(row):

"""a single iteration of the cellular automaton"""
n_cells = len(row)
new_row = [0]*n_cells # paradigm: make it blank, then fill it
for i in range(n_cells):

new python ideas: modular arithmetic to wrap around the
ends of the list
neighbors = [row[(i - 1 + n_cells) % n_cells], row[i], row
[(i + 1) % n_cells]]
if neighbors in [[1,1,1], [1,0,1], [0,1,0], [0,0,0]]:

new_cell_value = 1
else:

new_cell_value = 0
new_row[i] = new_cell_value

return new_row

New features
I New way of making a list: [0]*n_cells.
I in operator for lists

What are we unhappy about?
I Hard-coded function to only do the Sierpiński

rule.
I Checking if neighbors is in a hard-coded list

of neighbor triplets is not beautiful
programming.

Run it!
$ python3 ca-first-steps.py

How to encode them
The lonely work of programming: representations

Generalizing
The tables below show how to represent any CA rule (for 2 states and a single neighbor on
each side) as a string of 8 binary digits.

Cellular automata rules: rule 30, i.e. 00011110
current pattern 111 110 101 100 011 010 001 000
new state for center cell 0 0 0 1 1 1 1 0

Cellular automata rules: rule 90, i.e. 01011010, the Sierpiński gasket
current pattern 111 110 101 100 011 010 001 000
new state for center cell 0 1 0 1 1 0 1 0

Cellular automata rules: rule 110, i.e. 01101110
current pattern 111 110 101 100 011 010 001 000
new state for center cell 0 1 1 0 1 1 1 0

How to encode them
Mapping a neighborhood into a digit.

Rule 30: details of the mapping.

Naïve Python code for rule 30
neighbors = [row[(center - 1 + n_cells) % n_cells],

row[center], row[(center + 1) % n_cells]]
if neighbors in [[1,0,0], [0,1,1], [0,1,0]]:

new_cell_value = 1
else:

new_cell_value = 0
new_row[center] = new_cell_value

More general implementation for any rule
def new_cell_with_rule(rule, neighbors):

"""Applies a rule encoded as a binary string -- since a neighborhood
of 3 binary cells can have 8 possible patterns, it's a string of 8
bits. You can modify it to be any of the 256 possible strings of
8 bits. I provide a couple of examples. You can try many others."""
if not rule:

rule = '01101000' # the default rule
rule_index = neighbors[0] + 2*neighbors[1] + 4*neighbors[2]
cell = int(rule[rule_index])
return cell

This is all put together in the file full-ca-program.py

Outline

Dictionaries: Python’s “killer feature”

Basics of object-oriented python
Stories of programming languages
Object Oriented Programming (OOP)

The need for dictionaries

Accessing within aggregate types
I print(my_list[7], my_list[-1])
I print(my_str[2], my_str[7:12])

Structured data with a list
Describe a person as a list of
their characteristics:

def main():
boyd_record = ['Boyd', 1971,

'543-81-5481', '+1-606-555-6173']
print_person(boyd_record)

def print_person(person):
print('==== record for', person[0], '=====')
print('name:', person[0])
print('birth-year:', person[1])
print('SSN:', person[2])
print('phone:', person[3])

main()

Goes south quickly
I You realize you should also have a

surname for your record:
def main():

boyd_record = ['Boyd', 'Crowder', 1971,
'543-81-5481',
'+1-606-555-6173']

print_person(boyd_record)
I Can you just add a

print('surname:', person[1]) to
your print_person() function?

I Requiring fiddly changes in disparate
places - Murphy’s law is lying in wait.

Introducing dictionaries – Python’s “killer feature”
Index by string instead of int
>>> boyd_record = {'name' : 'Boyd',

'birth-year' : 1971}
>>> print(boyd_record)
>>> import pprint
>>> pprint.pprint(boyd_record)
>>> print(boyd_record['name'])
>>> print(boyd_record['birth-year'])
>>> print(boyd_record.keys())
>>> print(boyd_record.values())

Terminology
key The string (or sometimes other object)

you use to access the specific data item.
value The value associated with

(and retrieved by) that key.
key-value pair For example

('name','Boyd')
other names Hash table, associative list.

Pro tips
I Always use dictionaries: find ways to fit them.
I dir(boyd_record)
I help(boyd_record)

Reads better – and try to add a field!
def main():

boyd_record = {'name' : 'Boyd',
'birth-year' : 1971,
'SSN' : '543-81-5481',
'phone' : '+1-606-555-6173'}

print_person(boyd_record)

def print_person(person):
print('==== record for', person['name'], '=====')
print('name:', person['name'])
print('birth-year:', person['birth-year'])
print('SSN:', person['SSN'])
print('phone:', person['phone'])

main()

Dictionaries making a job trivial

A program to analyze text
I Project gutenberg:

https://www.gutenberg.org/
I Remote retrieval.
I Analyzing rank-frequency relations.

wget --continue --output-document swanns-way-english.txt \
http://www.gutenberg.org/cache/epub/1128/pg1128.txt

The use of a dictionary: frequency
counting
read all the words into a list of words
loop through words
if word is *not* in dictionary: freq_map[word] = 1
if word *is* in dictionary: freq_map[word] += 1
[snippet from word-freq-rank.py]

for word in word_list:
if word in word_freq_map.keys():

word_freq_map[word] += 1
else:

word_freq_map[word] = 1

Top-down main()
"""
Reads all the words in a file and prints information about the
rank and frequence of occurrence of words in the file.

The file should be a rather long file with a typical sampling of
words. The ideal file would be a book downloaded from Project
Gutenberg in ascii text format.
"""

def main():
if len(sys.argv) == 1:

f = sys.stdin
elif len(sys.argv) == 2:

fname = sys.argv[1]
f = open(fname, 'r')

else:
sys.stderr.write('error: use 0 or 1 arguments\n')
sys.exit(1)

sorted_words, word_freq_map = read_words_from_file(f)
f.close()
print('## rank word frequency')
for i, word in enumerate(sorted_words):

print('%8d %-16s %8d' % (i+1, word, word_freq_map[word]))

https://www.gutenberg.org/

Carry out the analysis
The full program is in the file word-freq-rank.py
wget --continue --output-document swanns-way-english.txt \

http://www.gutenberg.org/cache/epub/1128/pg1128.txt
python3 word-freq-rank.py swanns-way.txt
other way to run python:
chmod +x word-freq-rank.py swanns-way.txt
./word-freq-rank.py swanns-way.txt

Output
file: swanns-way.txt
rank word frequency

1 the 10051
2 of 7169
3 to 6749
4 and 4631
5 a 4440
6 in 4160
7 that 3632
8 had 2712
9 which 2686

10 he 2648
11 i 2405

12 was 2395
13 her 2288
14 it 2201
15 as 1884
16 she 1830
17 for 1773
18 with 1761
19 would 1554
20 my 1492
21 his 1487
22 not 1434
23 at 1422
24 but 1171

13447 rambling 1
13448 laboured 1
13449 quimperle 1
13450 e-mail 1
13451 deceiving 1
13452 crescendos 1
13453 vercingetorix 1
13454 coils 1
13455 apprehended 1
13456 embed 1
13457 laid-out 1
13458 chartreuse 1
13459 resolute 1

Discussion and take-aways about dictionaries

I Natural fit for this kind of histogram and much more.
I Text files are cool.
I Did Proust really use the word email? How do we improve the program?
I Discussion.

Outline

Dictionaries: Python’s “killer feature”

Basics of object-oriented python
Stories of programming languages
Object Oriented Programming (OOP)

Grand challenges for programming language design

Terminology
Attitude toward terminology Suspend one’s uncertainty.

Interpreter Slow and flexible.
Compiler Fast: compiles to machine code. And what is that machine code,

with its fabled ones and zeros? See Machine language – 6502

Controlling complexity of large programs
Cutoff at about 100 tounsand lines of code.

Performance
Language features are related to how well you can optimize.

Memory safety
Avoiding memory corruption while keeping high performance.

Outline

Dictionaries: Python’s “killer feature”

Basics of object-oriented python
Stories of programming languages
Object Oriented Programming (OOP)

The story of programming languages
From https://www.scriptol.com/programming/chronology.php

Prehistory
1840 Analytical Engine (Charles Babbage and Ada

Lovelace)
1943 ENIAC coding system
1947-1949 Assembly language
1955 FLOW-MATIC (Grace Hopper)

The 1950s
1957 FORTRAN (John Backus)
1958 LISP (John McCarthy)
1959 COBOL (CODASYL group)

The 1960s
1960 ALGOL 60
1962 APL
1964 BASIC
1964 Simula
1969 PL/1, B

The 1970s
1970 Pascal
1972 C
1973 FORTH, ML
1975 Scheme
1977 Bourne shell

The 1980s
1980 Smalltalk
1983 Ada
1985 Postscript, C++
1987 Perl
1988 Tcl

The 1990s
1990 Haskell
1991 Python
1995 Java, javascript, Ruby, PHP

The “aughts”
2000 C#
2004 Scala
2006 Rust
2007 Scratch
2009 Go

The 2010s
2010 Julia
2012 Kotlin
2017 WebAssembly

The future (created by
Santa Fe youngsters)
2027 greenchile
2030 joemama
2032 updog

https://www.scriptol.com/programming/chronology.php

The story of programming languages – timeline

The story of programming languages – influence

Outline

Dictionaries: Python’s “killer feature”

Basics of object-oriented python
Stories of programming languages
Object Oriented Programming (OOP)

What is Object Oriented Programming (OOP)?

Objects vs. messages
I Alan Kay coins the term “object-oriented

programming” and invents the ultra-OOP
language Smalltalk.

I “I’m sorry that I long ago coined the term
"objects" for this topic because it gets many
people to focus on the lesser idea.”

I “The big idea is "messaging" – that is what the
kernal of Smalltalk/Squeak is all about (and it’s
something that was never quite completed in our
Xerox PARC phase). The Japanese have a small
word – ma – for "that which is in between" –
perhaps the nearest English equivalent is
’interstitial’.”

I Inspired by Kay’s previous experience in cell
biology.

Classes
I Python is an object oriented programming

language.
I Almost everything in Python is an object,

with its properties and methods.
I A Class is like an object constructor, or a

“blueprint” for creating objects.
Make a class with:
>>> class MyClass:
>>> x = 5
Then create an object from that class with:
>>> p1 = MyClass()
>>> print(p1.x)

The person description with a class

Defining the class
class Person:

def __init__(self, name, birth_year, SSN, phone):
self.name = name
self.birth_year = birth_year
self.SSN = SSN
self.phone = phone

pb = Person('Boyd', 1971, '543-81-5481',
'+1-606-555-6173')

print(pb.name)
print(pb.birth_year)

Adding methods
class Person:

def __init__(self, name, surname, birth_year, SSN
, phone):

self.name = name
self.surname = surname
self.birth_year = birth_year
self.SSN = SSN
self.phone = phone

def example_function(self):
print('this is an example function for dude',

self.name)

pb = Person('Boyd', 1971, '543-81-5481',
'+1-606-555-6173')

print(pb.name)
print(pb.birth_year)
pb.example_function()

More methods

Represent yourself as a string
Put this code in a person-oop.py file and run it:
class Person:

def __init__(self, name, surname, birth_year, SSN, phone):
self.name = name
self.surname = surname
self.birth_year = birth_year
self.SSN = SSN
self.phone = phone

def __str__(self):
return ('name: %s\nsurname: %s\nborn: %d\nSSN: %s\nphone: %s\n'

% (self.name, self.surname, self.birth_year, self.SSN,
self.phone))

pb = Person('Boyd', 'Crowder', 1971,
'543-81-5481', '+1-606-555-6173')

print(pb) # note the magic of the __str__() method

Check the __str__()
method
$ python3 person-oop.py
name: Boyd
born: 1971
SSN: 543-81-5481
phone: +1-606-555-6173

	Frontmatter
	Part I
	Motivation, Goals, and plan
	Elementary python
	Tutorial
	Our program
	Skeletons

	Part II
	Dictionaries: Python's ``killer feature''
	Basics of object-oriented python
	Stories of programming languages
	Object Oriented Programming (OOP)

	Part III

