
Modern Software Engineering and Research
A professional development workshop

Mark Galassi

Space Science and Applications group
Los Alamos National Laboratory

and
Institute for Computing in Research

2020-05-16, 2021-01-20, 2023-01-24
Last built 2023-02-13T19:07:22

LA-UR-20-24695
(You may redistribute these slides with their LATEX source code under the terms of the

Creative Commons Attribution-ShareAlike 4.0 public license)

Outline

Goals

Curriculum

Goals and path

Goals

▶ Have a broad view of University curriculum,
successes and limitations, state of industry.

▶ Awareness of grand challenges
in software engineering.

▶ Awareness of current approaches
to address those challenges.

▶ Largely historical: my personal inclination
to use history for metaphor and perspective.

The meandering path
▶ Curriculum
▶ Programming languages
▶ Operating systems
▶ Tools and methodologies
▶ Case studies

Style
▶ Slides are placeholders for me to then tell stories.

Please interrupt: I hope you will talk and tell stories too.
▶ Note: I am part of the secret cabal that seeks to give a seminar made entirely of xkcd

slides.

Goals and path

Goals
▶ Have a broad view of University curriculum,

successes and limitations, state of industry.

▶ Awareness of grand challenges
in software engineering.

▶ Awareness of current approaches
to address those challenges.

▶ Largely historical: my personal inclination
to use history for metaphor and perspective.

The meandering path
▶ Curriculum
▶ Programming languages
▶ Operating systems
▶ Tools and methodologies
▶ Case studies

Style
▶ Slides are placeholders for me to then tell stories.

Please interrupt: I hope you will talk and tell stories too.
▶ Note: I am part of the secret cabal that seeks to give a seminar made entirely of xkcd

slides.

Goals and path

Goals
▶ Have a broad view of University curriculum,

successes and limitations, state of industry.
▶ Awareness of grand challenges

in software engineering.

▶ Awareness of current approaches
to address those challenges.

▶ Largely historical: my personal inclination
to use history for metaphor and perspective.

The meandering path
▶ Curriculum
▶ Programming languages
▶ Operating systems
▶ Tools and methodologies
▶ Case studies

Style
▶ Slides are placeholders for me to then tell stories.

Please interrupt: I hope you will talk and tell stories too.
▶ Note: I am part of the secret cabal that seeks to give a seminar made entirely of xkcd

slides.

Goals and path

Goals
▶ Have a broad view of University curriculum,

successes and limitations, state of industry.
▶ Awareness of grand challenges

in software engineering.
▶ Awareness of current approaches

to address those challenges.

▶ Largely historical: my personal inclination
to use history for metaphor and perspective.

The meandering path
▶ Curriculum
▶ Programming languages
▶ Operating systems
▶ Tools and methodologies
▶ Case studies

Style
▶ Slides are placeholders for me to then tell stories.

Please interrupt: I hope you will talk and tell stories too.
▶ Note: I am part of the secret cabal that seeks to give a seminar made entirely of xkcd

slides.

Goals and path

Goals
▶ Have a broad view of University curriculum,

successes and limitations, state of industry.
▶ Awareness of grand challenges

in software engineering.
▶ Awareness of current approaches

to address those challenges.
▶ Largely historical: my personal inclination

to use history for metaphor and perspective.

The meandering path
▶ Curriculum
▶ Programming languages
▶ Operating systems
▶ Tools and methodologies
▶ Case studies

Style
▶ Slides are placeholders for me to then tell stories.

Please interrupt: I hope you will talk and tell stories too.
▶ Note: I am part of the secret cabal that seeks to give a seminar made entirely of xkcd

slides.

Goals and path

Goals
▶ Have a broad view of University curriculum,

successes and limitations, state of industry.
▶ Awareness of grand challenges

in software engineering.
▶ Awareness of current approaches

to address those challenges.
▶ Largely historical: my personal inclination

to use history for metaphor and perspective.

The meandering path

▶ Curriculum
▶ Programming languages
▶ Operating systems
▶ Tools and methodologies
▶ Case studies

Style
▶ Slides are placeholders for me to then tell stories.

Please interrupt: I hope you will talk and tell stories too.
▶ Note: I am part of the secret cabal that seeks to give a seminar made entirely of xkcd

slides.

Goals and path

Goals
▶ Have a broad view of University curriculum,

successes and limitations, state of industry.
▶ Awareness of grand challenges

in software engineering.
▶ Awareness of current approaches

to address those challenges.
▶ Largely historical: my personal inclination

to use history for metaphor and perspective.

The meandering path
▶ Curriculum

▶ Programming languages
▶ Operating systems
▶ Tools and methodologies
▶ Case studies

Style
▶ Slides are placeholders for me to then tell stories.

Please interrupt: I hope you will talk and tell stories too.
▶ Note: I am part of the secret cabal that seeks to give a seminar made entirely of xkcd

slides.

Goals and path

Goals
▶ Have a broad view of University curriculum,

successes and limitations, state of industry.
▶ Awareness of grand challenges

in software engineering.
▶ Awareness of current approaches

to address those challenges.
▶ Largely historical: my personal inclination

to use history for metaphor and perspective.

The meandering path
▶ Curriculum
▶ Programming languages

▶ Operating systems
▶ Tools and methodologies
▶ Case studies

Style
▶ Slides are placeholders for me to then tell stories.

Please interrupt: I hope you will talk and tell stories too.
▶ Note: I am part of the secret cabal that seeks to give a seminar made entirely of xkcd

slides.

Goals and path

Goals
▶ Have a broad view of University curriculum,

successes and limitations, state of industry.
▶ Awareness of grand challenges

in software engineering.
▶ Awareness of current approaches

to address those challenges.
▶ Largely historical: my personal inclination

to use history for metaphor and perspective.

The meandering path
▶ Curriculum
▶ Programming languages
▶ Operating systems

▶ Tools and methodologies
▶ Case studies

Style
▶ Slides are placeholders for me to then tell stories.

Please interrupt: I hope you will talk and tell stories too.
▶ Note: I am part of the secret cabal that seeks to give a seminar made entirely of xkcd

slides.

Goals and path

Goals
▶ Have a broad view of University curriculum,

successes and limitations, state of industry.
▶ Awareness of grand challenges

in software engineering.
▶ Awareness of current approaches

to address those challenges.
▶ Largely historical: my personal inclination

to use history for metaphor and perspective.

The meandering path
▶ Curriculum
▶ Programming languages
▶ Operating systems
▶ Tools and methodologies

▶ Case studies

Style
▶ Slides are placeholders for me to then tell stories.

Please interrupt: I hope you will talk and tell stories too.
▶ Note: I am part of the secret cabal that seeks to give a seminar made entirely of xkcd

slides.

Goals and path

Goals
▶ Have a broad view of University curriculum,

successes and limitations, state of industry.
▶ Awareness of grand challenges

in software engineering.
▶ Awareness of current approaches

to address those challenges.
▶ Largely historical: my personal inclination

to use history for metaphor and perspective.

The meandering path
▶ Curriculum
▶ Programming languages
▶ Operating systems
▶ Tools and methodologies
▶ Case studies

Style
▶ Slides are placeholders for me to then tell stories.

Please interrupt: I hope you will talk and tell stories too.
▶ Note: I am part of the secret cabal that seeks to give a seminar made entirely of xkcd

slides.

Goals and path

Goals
▶ Have a broad view of University curriculum,

successes and limitations, state of industry.
▶ Awareness of grand challenges

in software engineering.
▶ Awareness of current approaches

to address those challenges.
▶ Largely historical: my personal inclination

to use history for metaphor and perspective.

The meandering path
▶ Curriculum
▶ Programming languages
▶ Operating systems
▶ Tools and methodologies
▶ Case studies

Style
▶ Slides are placeholders for me to then tell stories.

Please interrupt: I hope you will talk and tell stories too.
▶ Note: I am part of the secret cabal that seeks to give a seminar made entirely of xkcd

slides.

Goals and path

Goals
▶ Have a broad view of University curriculum,

successes and limitations, state of industry.
▶ Awareness of grand challenges

in software engineering.
▶ Awareness of current approaches

to address those challenges.
▶ Largely historical: my personal inclination

to use history for metaphor and perspective.

The meandering path
▶ Curriculum
▶ Programming languages
▶ Operating systems
▶ Tools and methodologies
▶ Case studies

Style
▶ Slides are placeholders for me to then tell stories.

Please interrupt: I hope you will talk and tell stories too.

▶ Note: I am part of the secret cabal that seeks to give a seminar made entirely of xkcd
slides.

Goals and path

Goals
▶ Have a broad view of University curriculum,

successes and limitations, state of industry.
▶ Awareness of grand challenges

in software engineering.
▶ Awareness of current approaches

to address those challenges.
▶ Largely historical: my personal inclination

to use history for metaphor and perspective.

The meandering path
▶ Curriculum
▶ Programming languages
▶ Operating systems
▶ Tools and methodologies
▶ Case studies

Style
▶ Slides are placeholders for me to then tell stories.

Please interrupt: I hope you will talk and tell stories too.
▶ Note: I am part of the secret cabal that seeks to give a seminar made entirely of xkcd

slides.

Part I – Curriculum

Part I – Curriculum

The Computer Science Curriculum
From https://teachyourselfcs.com/

Computer programming

Computer Architecture
Algorithms and Data Structures

Discrete Math
Operating Systems

Computer securityNetworking
Databases

Compilers and Languages
Artificial Intelligence

Graphics

https://teachyourselfcs.com/

The Computer Science Curriculum
From https://teachyourselfcs.com/

Computer programming
Computer Architecture

Algorithms and Data Structures
Discrete Math

Operating Systems
Computer securityNetworking

Databases
Compilers and Languages

Artificial Intelligence
Graphics

https://teachyourselfcs.com/

The Computer Science Curriculum
From https://teachyourselfcs.com/

Computer programming
Computer Architecture

Algorithms and Data Structures

Discrete Math
Operating Systems

Computer securityNetworking
Databases

Compilers and Languages
Artificial Intelligence

Graphics

https://teachyourselfcs.com/

The Computer Science Curriculum
From https://teachyourselfcs.com/

Computer programming
Computer Architecture

Algorithms and Data Structures
Discrete Math

Operating Systems
Computer securityNetworking

Databases
Compilers and Languages

Artificial Intelligence
Graphics

https://teachyourselfcs.com/

The Computer Science Curriculum
From https://teachyourselfcs.com/

Computer programming
Computer Architecture

Algorithms and Data Structures
Discrete Math

Operating Systems

Computer securityNetworking
Databases

Compilers and Languages
Artificial Intelligence

Graphics

https://teachyourselfcs.com/

The Computer Science Curriculum
From https://teachyourselfcs.com/

Computer programming
Computer Architecture

Algorithms and Data Structures
Discrete Math

Operating Systems
Computer security

Networking
Databases

Compilers and Languages
Artificial Intelligence

Graphics

https://teachyourselfcs.com/

The Computer Science Curriculum
From https://teachyourselfcs.com/

Computer programming
Computer Architecture

Algorithms and Data Structures
Discrete Math

Operating Systems
Computer securityNetworking

Databases
Compilers and Languages

Artificial Intelligence
Graphics

https://teachyourselfcs.com/

The Computer Science Curriculum
From https://teachyourselfcs.com/

Computer programming
Computer Architecture

Algorithms and Data Structures
Discrete Math

Operating Systems
Computer securityNetworking

Databases

Compilers and Languages
Artificial Intelligence

Graphics

https://teachyourselfcs.com/

The Computer Science Curriculum
From https://teachyourselfcs.com/

Computer programming
Computer Architecture

Algorithms and Data Structures
Discrete Math

Operating Systems
Computer securityNetworking

Databases
Compilers and Languages

Artificial Intelligence
Graphics

https://teachyourselfcs.com/

The Computer Science Curriculum
From https://teachyourselfcs.com/

Computer programming
Computer Architecture

Algorithms and Data Structures
Discrete Math

Operating Systems
Computer securityNetworking

Databases
Compilers and Languages

Artificial Intelligence

Graphics

https://teachyourselfcs.com/

The Computer Science Curriculum
From https://teachyourselfcs.com/

Computer programming
Computer Architecture

Algorithms and Data Structures
Discrete Math

Operating Systems
Computer securityNetworking

Databases
Compilers and Languages

Artificial Intelligence
Graphics

https://teachyourselfcs.com/

The Software Engineering curriculum

Margaret Hamilton, who led the MIT team that wrote the Apollo
on-board software in the 1960s, is one of the coiners of the term
“software engineering”.

Most of the computer science department courses.
Less math.
Process and management classes.
ISO’s “Software Engineering Body of Knowledge”
(SWEBOK).

The Software Engineering curriculum

Margaret Hamilton, who led the MIT team that wrote the Apollo
on-board software in the 1960s, is one of the coiners of the term
“software engineering”.

Most of the computer science department courses.
Less math.
Process and management classes.
ISO’s “Software Engineering Body of Knowledge”
(SWEBOK).

The Software Engineering curriculum

Margaret Hamilton, who led the MIT team that wrote the Apollo
on-board software in the 1960s, is one of the coiners of the term
“software engineering”.

Most of the computer science department courses.

Less math.
Process and management classes.
ISO’s “Software Engineering Body of Knowledge”
(SWEBOK).

The Software Engineering curriculum

Margaret Hamilton, who led the MIT team that wrote the Apollo
on-board software in the 1960s, is one of the coiners of the term
“software engineering”.

Most of the computer science department courses.
Less math.

Process and management classes.
ISO’s “Software Engineering Body of Knowledge”
(SWEBOK).

The Software Engineering curriculum

Margaret Hamilton, who led the MIT team that wrote the Apollo
on-board software in the 1960s, is one of the coiners of the term
“software engineering”.

Most of the computer science department courses.
Less math.
Process and management classes.

ISO’s “Software Engineering Body of Knowledge”
(SWEBOK).

The Software Engineering curriculum

Margaret Hamilton, who led the MIT team that wrote the Apollo
on-board software in the 1960s, is one of the coiners of the term
“software engineering”.

Most of the computer science department courses.
Less math.
Process and management classes.
ISO’s “Software Engineering Body of Knowledge”
(SWEBOK).

Part II – Programming languages

Part II – Programming languages

Grand challenges for programming language design

Terminology
Attitude toward terminology Suspend one’s uncertainty.

Interpreter Slow and flexible.
Compiler Fast: compiles to machine code. And what is that machine code,

with its fabled ones and zeros? See Machine language – 6502

Controlling complexity of large programs
Cutoff at about 100 thousand lines of code.

Performance
Language features are related to how well you can optimize.

Memory safety
Avoiding memory corruption while keeping high performance.

The story of programming languages
From https://www.scriptol.com/programming/chronology.php

Prehistory
1840 Analytical Engine (Charles Babbage and Ada

Lovelace)
1943 ENIAC coding system
1947-1949 Assembly language
1955 FLOW-MATIC (Grace Hopper)

The 1950s
1957 FORTRAN (John Backus)
1958 LISP (John McCarthy)
1959 COBOL (CODASYL group)

The 1960s
1960 ALGOL 60
1962 APL
1964 BASIC
1964 Simula
1969 PL/1, B

The 1970s
1970 Pascal
1972 C
1973 FORTH, ML
1975 Scheme
1977 Bourne shell

The 1980s
1980 Smalltalk
1983 Ada
1985 Postscript, C++
1987 Perl
1988 Tcl

The 1990s
1990 Haskell
1991 Python
1995 Java, javascript, Ruby, PHP

The “aughts”
2000 C#
2004 Scala
2006 Rust
2007 Scratch
2009 Go

The 2010s
2010 Julia
2012 Kotlin
2017 WebAssembly

The future (created by
Santa Fe youngsters)
2027 greenchile
2030 joemama
2032 updog

https://www.scriptol.com/programming/chronology.php

The story of programming languages
From https://www.scriptol.com/programming/chronology.php

Prehistory
1840 Analytical Engine (Charles Babbage and Ada

Lovelace)
1943 ENIAC coding system
1947-1949 Assembly language
1955 FLOW-MATIC (Grace Hopper)

The 1950s
1957 FORTRAN (John Backus)
1958 LISP (John McCarthy)
1959 COBOL (CODASYL group)

The 1960s
1960 ALGOL 60
1962 APL
1964 BASIC
1964 Simula
1969 PL/1, B

The 1970s
1970 Pascal
1972 C
1973 FORTH, ML
1975 Scheme
1977 Bourne shell

The 1980s
1980 Smalltalk
1983 Ada
1985 Postscript, C++
1987 Perl
1988 Tcl

The 1990s
1990 Haskell
1991 Python
1995 Java, javascript, Ruby, PHP

The “aughts”
2000 C#
2004 Scala
2006 Rust
2007 Scratch
2009 Go

The 2010s
2010 Julia
2012 Kotlin
2017 WebAssembly

The future (created by
Santa Fe youngsters)
2027 greenchile
2030 joemama
2032 updog

https://www.scriptol.com/programming/chronology.php

The story of programming languages
From https://www.scriptol.com/programming/chronology.php

Prehistory
1840 Analytical Engine (Charles Babbage and Ada

Lovelace)
1943 ENIAC coding system
1947-1949 Assembly language
1955 FLOW-MATIC (Grace Hopper)

The 1950s
1957 FORTRAN (John Backus)
1958 LISP (John McCarthy)
1959 COBOL (CODASYL group)

The 1960s
1960 ALGOL 60
1962 APL
1964 BASIC
1964 Simula
1969 PL/1, B

The 1970s
1970 Pascal
1972 C
1973 FORTH, ML
1975 Scheme
1977 Bourne shell

The 1980s
1980 Smalltalk
1983 Ada
1985 Postscript, C++
1987 Perl
1988 Tcl

The 1990s
1990 Haskell
1991 Python
1995 Java, javascript, Ruby, PHP

The “aughts”
2000 C#
2004 Scala
2006 Rust
2007 Scratch
2009 Go

The 2010s
2010 Julia
2012 Kotlin
2017 WebAssembly

The future (created by
Santa Fe youngsters)
2027 greenchile
2030 joemama
2032 updog

https://www.scriptol.com/programming/chronology.php

The story of programming languages
From https://www.scriptol.com/programming/chronology.php

Prehistory
1840 Analytical Engine (Charles Babbage and Ada

Lovelace)
1943 ENIAC coding system
1947-1949 Assembly language
1955 FLOW-MATIC (Grace Hopper)

The 1950s
1957 FORTRAN (John Backus)
1958 LISP (John McCarthy)
1959 COBOL (CODASYL group)

The 1960s
1960 ALGOL 60
1962 APL
1964 BASIC
1964 Simula
1969 PL/1, B

The 1970s
1970 Pascal
1972 C
1973 FORTH, ML
1975 Scheme
1977 Bourne shell

The 1980s
1980 Smalltalk
1983 Ada
1985 Postscript, C++
1987 Perl
1988 Tcl

The 1990s
1990 Haskell
1991 Python
1995 Java, javascript, Ruby, PHP

The “aughts”
2000 C#
2004 Scala
2006 Rust
2007 Scratch
2009 Go

The 2010s
2010 Julia
2012 Kotlin
2017 WebAssembly

The future (created by
Santa Fe youngsters)
2027 greenchile
2030 joemama
2032 updog

https://www.scriptol.com/programming/chronology.php

The story of programming languages
From https://www.scriptol.com/programming/chronology.php

Prehistory
1840 Analytical Engine (Charles Babbage and Ada

Lovelace)
1943 ENIAC coding system
1947-1949 Assembly language
1955 FLOW-MATIC (Grace Hopper)

The 1950s
1957 FORTRAN (John Backus)
1958 LISP (John McCarthy)
1959 COBOL (CODASYL group)

The 1960s
1960 ALGOL 60
1962 APL
1964 BASIC
1964 Simula
1969 PL/1, B

The 1970s
1970 Pascal
1972 C
1973 FORTH, ML
1975 Scheme
1977 Bourne shell

The 1980s
1980 Smalltalk
1983 Ada
1985 Postscript, C++
1987 Perl
1988 Tcl

The 1990s
1990 Haskell
1991 Python
1995 Java, javascript, Ruby, PHP

The “aughts”
2000 C#
2004 Scala
2006 Rust
2007 Scratch
2009 Go

The 2010s
2010 Julia
2012 Kotlin
2017 WebAssembly

The future (created by
Santa Fe youngsters)
2027 greenchile
2030 joemama
2032 updog

https://www.scriptol.com/programming/chronology.php

The story of programming languages
From https://www.scriptol.com/programming/chronology.php

Prehistory
1840 Analytical Engine (Charles Babbage and Ada

Lovelace)
1943 ENIAC coding system
1947-1949 Assembly language
1955 FLOW-MATIC (Grace Hopper)

The 1950s
1957 FORTRAN (John Backus)
1958 LISP (John McCarthy)
1959 COBOL (CODASYL group)

The 1960s
1960 ALGOL 60
1962 APL
1964 BASIC
1964 Simula
1969 PL/1, B

The 1970s
1970 Pascal
1972 C
1973 FORTH, ML
1975 Scheme
1977 Bourne shell

The 1980s
1980 Smalltalk
1983 Ada
1985 Postscript, C++
1987 Perl
1988 Tcl

The 1990s
1990 Haskell
1991 Python
1995 Java, javascript, Ruby, PHP

The “aughts”
2000 C#
2004 Scala
2006 Rust
2007 Scratch
2009 Go

The 2010s
2010 Julia
2012 Kotlin
2017 WebAssembly

The future (created by
Santa Fe youngsters)
2027 greenchile
2030 joemama
2032 updog

https://www.scriptol.com/programming/chronology.php

The story of programming languages
From https://www.scriptol.com/programming/chronology.php

Prehistory
1840 Analytical Engine (Charles Babbage and Ada

Lovelace)
1943 ENIAC coding system
1947-1949 Assembly language
1955 FLOW-MATIC (Grace Hopper)

The 1950s
1957 FORTRAN (John Backus)
1958 LISP (John McCarthy)
1959 COBOL (CODASYL group)

The 1960s
1960 ALGOL 60
1962 APL
1964 BASIC
1964 Simula
1969 PL/1, B

The 1970s
1970 Pascal
1972 C
1973 FORTH, ML
1975 Scheme
1977 Bourne shell

The 1980s
1980 Smalltalk
1983 Ada
1985 Postscript, C++
1987 Perl
1988 Tcl

The 1990s
1990 Haskell
1991 Python
1995 Java, javascript, Ruby, PHP

The “aughts”
2000 C#
2004 Scala
2006 Rust
2007 Scratch
2009 Go

The 2010s
2010 Julia
2012 Kotlin
2017 WebAssembly

The future (created by
Santa Fe youngsters)
2027 greenchile
2030 joemama
2032 updog

https://www.scriptol.com/programming/chronology.php

The story of programming languages
From https://www.scriptol.com/programming/chronology.php

Prehistory
1840 Analytical Engine (Charles Babbage and Ada

Lovelace)
1943 ENIAC coding system
1947-1949 Assembly language
1955 FLOW-MATIC (Grace Hopper)

The 1950s
1957 FORTRAN (John Backus)
1958 LISP (John McCarthy)
1959 COBOL (CODASYL group)

The 1960s
1960 ALGOL 60
1962 APL
1964 BASIC
1964 Simula
1969 PL/1, B

The 1970s
1970 Pascal
1972 C
1973 FORTH, ML
1975 Scheme
1977 Bourne shell

The 1980s
1980 Smalltalk
1983 Ada
1985 Postscript, C++
1987 Perl
1988 Tcl

The 1990s
1990 Haskell
1991 Python
1995 Java, javascript, Ruby, PHP

The “aughts”
2000 C#
2004 Scala
2006 Rust
2007 Scratch
2009 Go

The 2010s
2010 Julia
2012 Kotlin
2017 WebAssembly

The future (created by
Santa Fe youngsters)
2027 greenchile
2030 joemama
2032 updog

https://www.scriptol.com/programming/chronology.php

The story of programming languages
From https://www.scriptol.com/programming/chronology.php

Prehistory
1840 Analytical Engine (Charles Babbage and Ada

Lovelace)
1943 ENIAC coding system
1947-1949 Assembly language
1955 FLOW-MATIC (Grace Hopper)

The 1950s
1957 FORTRAN (John Backus)
1958 LISP (John McCarthy)
1959 COBOL (CODASYL group)

The 1960s
1960 ALGOL 60
1962 APL
1964 BASIC
1964 Simula
1969 PL/1, B

The 1970s
1970 Pascal
1972 C
1973 FORTH, ML
1975 Scheme
1977 Bourne shell

The 1980s
1980 Smalltalk
1983 Ada
1985 Postscript, C++
1987 Perl
1988 Tcl

The 1990s
1990 Haskell
1991 Python
1995 Java, javascript, Ruby, PHP

The “aughts”
2000 C#
2004 Scala
2006 Rust
2007 Scratch
2009 Go

The 2010s
2010 Julia
2012 Kotlin
2017 WebAssembly

The future (created by
Santa Fe youngsters)
2027 greenchile
2030 joemama
2032 updog

https://www.scriptol.com/programming/chronology.php

The story of programming languages
From https://www.scriptol.com/programming/chronology.php

Prehistory
1840 Analytical Engine (Charles Babbage and Ada

Lovelace)
1943 ENIAC coding system
1947-1949 Assembly language
1955 FLOW-MATIC (Grace Hopper)

The 1950s
1957 FORTRAN (John Backus)
1958 LISP (John McCarthy)
1959 COBOL (CODASYL group)

The 1960s
1960 ALGOL 60
1962 APL
1964 BASIC
1964 Simula
1969 PL/1, B

The 1970s
1970 Pascal
1972 C
1973 FORTH, ML
1975 Scheme
1977 Bourne shell

The 1980s
1980 Smalltalk
1983 Ada
1985 Postscript, C++
1987 Perl
1988 Tcl

The 1990s
1990 Haskell
1991 Python
1995 Java, javascript, Ruby, PHP

The “aughts”
2000 C#
2004 Scala
2006 Rust
2007 Scratch
2009 Go

The 2010s
2010 Julia
2012 Kotlin
2017 WebAssembly

The future (created by
Santa Fe youngsters)
2027 greenchile
2030 joemama
2032 updog

https://www.scriptol.com/programming/chronology.php

The story of programming languages – timeline

The story of programming languages – influence

What do these languages look like?
From http://rosettacode.org/wiki/Loops/For

Rosetta code What we will investigate
We will write the “stars” program which prints
first one, then two, three, four and five stars
on separate lines, so we can discuss the
following about each language: (a) Motivation
and history, (b) Syntax peculiarities and “feel”
archetypes FORTRAN, LISP, COBOL
wide diversity FORTH, Smalltalk, Pascal,

Haskell
currently relevant C, C++, Go, Rust, Python,

R, javascript, sh

http://rosettacode.org/wiki/Loops/For

Machine language – 6502
Hexadecimal opcodes for a program that calculates 2 + 5

From https://www.atariarchives.org/mlb/chapter2.php

Hex:

1000 A9 02 69 05 8D A0 0F 60

Binary:

1000000000000 10101001 00000010 01101001 00000101 10001101 10100000 00001111 01100000

And yes, that’s what they mean when they say “it’s all ones and zeros.”

https://www.atariarchives.org/mlb/chapter2.php

Assembly language – 6502

1000 A9 02 LDA #$02
1002 69 05 ADC #$05
1004 8D A0 0F STA $0FA0
1007 60 RTS

FORTRAN

CC compile with "gfortran stars.for -o stars_fortran"
CC run with "./stars_fortran"

PROGRAM FORLOOP
INTEGER I, J

DO 20 I = 1, 5
DO 10 J = 1, I

C Print the asterisk.
WRITE (∗,5001) '∗'

10 CONTINUE
C Print a newline.

WRITE (∗,5000) ''
20 CONTINUE

STOP

5000 FORMAT (A)

5001 FORMAT (A, $)

C5001 FORMAT (A, ADVANCE='NO')
END

LISP

;; recursive approach; you can run this with "gcl < stars.lisp"
(defun print-stars (number)

"Print a given number of stars, using recursion"
(if (= number 0)

(progn
(write-char #\∗)
(terpri))

(progn
(write-char #\∗)
(print-stars (1- number)))))

(defun print-triangle (n-rows)
(if (= n-rows 0)

(print-stars n-rows)
(progn

(print-stars n-rows)
(print-triangle (1- n-rows)))))

(print-triangle 5)

COBOL

IDENTIFICATION DIVISION.
∗ compile with "cobc stars.cob -o stars_cobol"
PROGRAM-ID. Display-Triangle.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 Outer-Counter PIC 9.
01 Inner-Counter PIC 9.

PROCEDURE DIVISION.
PERFORM VARYING Outer-Counter FROM 1 BY 1 UNTIL 5 < Outer-Counter

PERFORM VARYING Inner-Counter FROM 1 BY 1
UNTIL Outer-Counter < Inner-Counter

DISPLAY "∗" NO ADVANCING
END-PERFORM

DISPLAY "" ∗> Output a newline
END-PERFORM

GOBACK
.

C

/∗ compile with "gcc stars.c -o stars_c" and run with "./stars_c" ∗/
#include <stdio.h>

int main()
{

int i, j;
for (i = 1; i <= 5; i++) {

for (j = 1; j <= i; j++) {
putchar('∗');

}
putchar('\n');

}
}

Interlude: obfuscated C
From https://www.ioccc.org/years.html#1987

#define iv 4
#define v ;(void
#define XI(xi)int xi[iv∗'V'];
#define L(c,l,i)c(){d(l);m(i);}
#include <stdio.h>
int∗cc,c,i,ix='\t',exit(),X='\n'∗'\d';XI(VI)XI(xi)extern(∗vi[])(),(∗
signal())();char∗V,cm,D['x'],M='\n',I,∗gets();L(MV,V,(c+='d',ix))m(x){v)
signal(X/'I',vi[x]);}d(x)char∗x;{v)write(i,x,i);}L(MC,V,M+I)xv(){c>=i?m(
c/M/M+M):(d(&M),m(cm));}L(mi,V+cm,M)L(md,V,M)MM(){c=c∗M%X;V-=cm;m(ix);}
LXX(){gets(D)||(vi[iv])();c=atoi(D);while(c>=X){c-=X;d("m");}V="ivxlcdm"
+iv;m(ix);}LV(){c-=c;while((i=cc[∗D=getchar()])>-I)i?(c?(c<i&&l(-c-c,
"%d"),l(i,"+%d")):l(i,"(%d")):(c&&l(M,")"),l(∗D,"%c")),c=i;c&&l(X,")"),l
(-i,"%c");m(iv-!(i&I));}L(ml,V,'\f')li(){m(cm+!isatty(i=I));}ii(){m(c=cm
= ++I)v)pipe(VI);cc=xi+cm++;for(V="jWYmDEnX";∗V;V++)xi[∗V^' ']=c,xi[∗V++]
=c,c∗=M,xi[∗V^' ']=xi[∗V]=c>>I;cc[-I]-=ix v)close(∗VI);cc[M]-=M;}main(){
(∗vi)();for(;v)write(VI[I],V,M));}l(xl,lx)char∗lx;{v)printf(lx,xl)v)
fflush(stdout);}L(xx,V+I,(c-=X/cm,ix))int(∗vi[])()={ii,li,LXX,LV,exit,l,
d,l,d,xv,MM,md,MC,ml,MV,xx,xx,xx,xx,MV,mi};

https://www.ioccc.org/years.html#1987

Forth

(run this with "gforth < stars.forth"
: triangle (n --)

1+ 1 do
cr i 0 do [char] ∗ emit loop

loop ;
5 triangle

Smalltalk

"run with gst stars.st"
1 to: 5 do: [:aNumber |

aNumber timesRepeat: ['∗' display].
Character nl display.

]

Pascal

(∗ compile with "fpc stars.p -ostars_pascal", run with "./stars_pascal" ∗)
program stars(output);

var
i, j: integer;

begin
for i := 1 to 5 do

begin
for j := 1 to i do

write('∗');
writeln

end
end.

Haskell

-- | compile with "ghc stars.hs -o stars_haskell" and run with "./stars_haskell"
import Control.Monad

main = do
forM_ [1..5] $ \i -> do

forM_ [1..i] $ \j -> do
putChar '∗'

putChar '\n'

Javascript

// run with "node < stars.js", or change console.log(s) to print(s)
// and you can run with "rhino < stars.js"
var i, j;
for (i = 1; i <= 5; i += 1) {

s = '';
for (j = 0; j < i; j += 1)

s += '∗';
console.log(s);

}

Python

#! /usr/bin/env python3

run this with "python3 stars.py"

for i in range(5):
for j in range(i+1):

print('∗', end="")
print()

R

// run with "R -f stars.R"
for(i in 0:4) {

s <- ""
for(j in 0:i) {

s <- paste(s, "∗", sep="")
}
print(s)

}

Java

// compile with "javac stars.java" and run with "java stars"
public class stars {

public static void main(String[] args) {
for (int i = 0; i < 5; i++) {

for (int j = 0; j <= i; j++) {
System.out.print("∗");

}
System.out.println();

}
}

}

Rust

// compile with "rustc stars.rs -o stars_rust", run with "./stars_rust"
fn main() {

for i in 0..5 {
for _ in 0..=i {

print!("∗");
}

println!();
}

}

Go

// compile with "gccgo stars.go -o stars_go", run with "./stars_go"
package main

import "fmt"

func main() {
for i := 1; i <= 5; i++ {

for j := 1; j <= i; j++ {
fmt.Printf("∗")

}
fmt.Printf("\n")

}
}

sh

to run it just paste it into the shell or type "/bin/sh stars.sh" or
make it executable with "chmod +x stars.sh" and then run it with
"./stars.sh"
for i in `seq 1 5`
do

for j in `seq 1 $i`
do

echo -n "∗"
done
echo

done

Distilling insight from the tour

Compiled versus interpreted
. . . (discussion) . . .

Broad classes of language syntax styles
. . . (discussion) . . .

Broad classes of language semantic styles
. . . (discussion) . . .

Evolution
Who influences whom? (Frame 11)

Bearing upon the grand challenge problems
. . . (discussion) . . . more in the discussion of methodologies

Distilling insight from the tour
Compiled versus interpreted
. . . (discussion) . . .

Broad classes of language syntax styles
. . . (discussion) . . .

Broad classes of language semantic styles
. . . (discussion) . . .

Evolution
Who influences whom? (Frame 11)

Bearing upon the grand challenge problems
. . . (discussion) . . . more in the discussion of methodologies

Distilling insight from the tour
Compiled versus interpreted
. . . (discussion) . . .

Broad classes of language syntax styles
. . . (discussion) . . .

Broad classes of language semantic styles
. . . (discussion) . . .

Evolution
Who influences whom? (Frame 11)

Bearing upon the grand challenge problems
. . . (discussion) . . . more in the discussion of methodologies

Distilling insight from the tour
Compiled versus interpreted
. . . (discussion) . . .

Broad classes of language syntax styles
. . . (discussion) . . .

Broad classes of language semantic styles
. . . (discussion) . . .

Evolution
Who influences whom? (Frame 11)

Bearing upon the grand challenge problems
. . . (discussion) . . . more in the discussion of methodologies

Distilling insight from the tour
Compiled versus interpreted
. . . (discussion) . . .

Broad classes of language syntax styles
. . . (discussion) . . .

Broad classes of language semantic styles
. . . (discussion) . . .

Evolution
Who influences whom? (Frame 11)

Bearing upon the grand challenge problems
. . . (discussion) . . . more in the discussion of methodologies

Distilling insight from the tour
Compiled versus interpreted
. . . (discussion) . . .

Broad classes of language syntax styles
. . . (discussion) . . .

Broad classes of language semantic styles
. . . (discussion) . . .

Evolution
Who influences whom? (Frame 11)

Bearing upon the grand challenge problems
. . . (discussion) . . . more in the discussion of methodologies

Fear and loathing of programming languages – indifference
Brian Kernighan: Why Pascal is Not My Favorite Programming Language

From http://www.lysator.liu.se/c/bwk-on-pascal.html

Early comment
Comparing C and Pascal is rather like comparing a Learjet to a Piper Cub - one is meant for
getting something done while the other is meant for learning - so such comparisons tend to be
somewhat farfetched. . . .

Conclusion, stated in intro
. . . To state my conclusions at the outset: Pascal may be an admirable language for teaching
beginners how to program; I have no first-hand experience with that. It was a considerable
achievement for 1968. It has certainly influenced the design of recent languages, of which Ada
is likely to be the most important. But in its standard form (both current and proposed),
Pascal is not adequate for writing real programs. It is suitable only for small, self-contained
programs that have only trivial interactions with their environment and that make no use of
any software written by anyone else. . . .

http://www.lysator.liu.se/c/bwk-on-pascal.html

Fear and loathing of programming languages – admiration
Naturalmente . . . xkcd: https://xkcd.com/297/

I’ve just received word that the Emperor has dissolved the MIT computer science program permanently.

https://xkcd.com/297/

Fear and loathing of programming languages – admiration
Naturalmente . . . xkcd: https://xkcd.com/297/

I’ve just received word that the Emperor has dissolved the MIT computer science program permanently.

https://xkcd.com/297/

Fear and loathing in programming languages – love
Naturalmente . . . xkcd: https://xkcd.com/353/

I wrote 20 short programs in Python yesterday. It was wonderful. Perl, I’m leaving you.

https://xkcd.com/353/

Fear and loathing in programming languages – love
Naturalmente . . . xkcd: https://xkcd.com/353/

I wrote 20 short programs in Python yesterday. It was wonderful. Perl, I’m leaving you.

https://xkcd.com/353/

Fear and loathing of programming languages – disillusionment
Naturalmente . . . xkcd: https://xkcd.com/1987/

The Python environmental protection agency wants to seal it in a cement chamber, with pictorial messages to
future civilizations warning them about the danger of using sudo to install random Python packages.

https://xkcd.com/1987/

Fear and loathing of programming languages – disillusionment
Naturalmente . . . xkcd: https://xkcd.com/1987/

The Python environmental protection agency wants to seal it in a cement chamber, with pictorial messages to
future civilizations warning them about the danger of using sudo to install random Python packages.

https://xkcd.com/1987/

Links - the story of programming languages – visualizations

https://github.com/stereobooster/programming-languages-genealogical-tree
http://svalver.github.io/Proglang/
http://svalver.github.io/Proglang/paradigms.html
https://www.youtube.com/watch?v=ZkP4sv3H6g8
https://www.youtube.com/watch?v=Og847HVwRSI
https://vole.wtf/coder-serial-killer-quiz/
The “extra slides” area has two of those videos embedded.

https://github.com/stereobooster/programming-languages-genealogical-tree
http://svalver.github.io/Proglang/
http://svalver.github.io/Proglang/paradigms.html
https://www.youtube.com/watch?v=ZkP4sv3H6g8
https://www.youtube.com/watch?v=Og847HVwRSI
https://vole.wtf/coder-serial-killer-quiz/

Part III – Operating systems

Part III – Operating systems

Operating system: what is it?

Keith Packard, 1986

protected
(kernel)
space

user space programs
(the bozos)

stylized knives

system call
("trap")

boundary

Hardware abstraction layer
Imagine in your head the fine-grained operations involved
in reading a file from a disk. Compare it to getting milk
from the refrigerator.

Protection
This started out as avoiding stomping on memory and
device read/write. Today also relevant to cybersecurity.

Grand challenges for operating system design
Loading huge
programs
FORTRAN multi-pass
compiler on one tape:
FMS.

Proto-time-sharing
SHARE and SHARE-OS,
BBNMON.

Project
MAC:
McCarthy’s
discussion of interrupts
versus polling and hardware
support.

▶ Hierarchical filesystem, virtual memory,
symmetric multiprocessing, multiple
languages, a ton more.

▶ Security by design (B2) - mandatory
access control, no buffer overflows
(PL/I), runtime call sanity checks.

▶ Spiral model of s/w development.
▶ One of the obvious things that went

wrong with Multics as a commercial
success was just that it was sort of
over-engineered in a sense. There was
just too much in it.
Dennis Ritchie

Original article by Ken
Thompson and Dennis

Ritchie.

Grand challenges for operating system design
Loading huge
programs
FORTRAN multi-pass
compiler on one tape:
FMS.

Proto-time-sharing
SHARE and SHARE-OS,
BBNMON.

Project
MAC:
McCarthy’s
discussion of interrupts
versus polling and hardware
support.

▶ Hierarchical filesystem, virtual memory,
symmetric multiprocessing, multiple
languages, a ton more.

▶ Security by design (B2) - mandatory
access control, no buffer overflows
(PL/I), runtime call sanity checks.

▶ Spiral model of s/w development.
▶ One of the obvious things that went

wrong with Multics as a commercial
success was just that it was sort of
over-engineered in a sense. There was
just too much in it.
Dennis Ritchie

Original article by Ken
Thompson and Dennis

Ritchie.

Grand challenges for operating system design
Loading huge
programs
FORTRAN multi-pass
compiler on one tape:
FMS.

Proto-time-sharing
SHARE and SHARE-OS,
BBNMON.

Project
MAC:
McCarthy’s
discussion of interrupts
versus polling and hardware
support.

▶ Hierarchical filesystem, virtual memory,
symmetric multiprocessing, multiple
languages, a ton more.

▶ Security by design (B2) - mandatory
access control, no buffer overflows
(PL/I), runtime call sanity checks.

▶ Spiral model of s/w development.
▶ One of the obvious things that went

wrong with Multics as a commercial
success was just that it was sort of
over-engineered in a sense. There was
just too much in it.
Dennis Ritchie

Original article by Ken
Thompson and Dennis

Ritchie.

Key innovations

Early days

▶ Grace Hopper’s linker with tape operations.

▶ Time sharing: CTSS and ITS → Multics → UNIX
- slice from 140ms to [0.75,6]ms.

▶ OS/360 portable OS.
▶ Multics and UNIX innovations - abstraction.
▶ Sockets, multiple sources of input, and select().

21st century
▶ Advanced file systems.
▶ Modern security issues.
▶ Multicore and energy savings.
▶ Distributed computing (reprised).
▶ . . .

Key innovations

Early days
▶ Grace Hopper’s linker with tape operations.

▶ Time sharing: CTSS and ITS → Multics → UNIX
- slice from 140ms to [0.75,6]ms.

▶ OS/360 portable OS.
▶ Multics and UNIX innovations - abstraction.
▶ Sockets, multiple sources of input, and select().

21st century
▶ Advanced file systems.
▶ Modern security issues.
▶ Multicore and energy savings.
▶ Distributed computing (reprised).
▶ . . .

Key innovations

Early days
▶ Grace Hopper’s linker with tape operations.

▶ Time sharing: CTSS and ITS → Multics → UNIX
- slice from 140ms to [0.75,6]ms.

▶ OS/360 portable OS.
▶ Multics and UNIX innovations - abstraction.
▶ Sockets, multiple sources of input, and select().

21st century
▶ Advanced file systems.
▶ Modern security issues.
▶ Multicore and energy savings.
▶ Distributed computing (reprised).
▶ . . .

Key innovations

Early days
▶ Grace Hopper’s linker with tape operations.

▶ Time sharing: CTSS and ITS → Multics → UNIX
- slice from 140ms to [0.75,6]ms.

▶ OS/360 portable OS.

▶ Multics and UNIX innovations - abstraction.
▶ Sockets, multiple sources of input, and select().

21st century
▶ Advanced file systems.
▶ Modern security issues.
▶ Multicore and energy savings.
▶ Distributed computing (reprised).
▶ . . .

Key innovations

Early days
▶ Grace Hopper’s linker with tape operations.

▶ Time sharing: CTSS and ITS → Multics → UNIX
- slice from 140ms to [0.75,6]ms.

▶ OS/360 portable OS.
▶ Multics and UNIX innovations - abstraction.

▶ Sockets, multiple sources of input, and select().

21st century
▶ Advanced file systems.
▶ Modern security issues.
▶ Multicore and energy savings.
▶ Distributed computing (reprised).
▶ . . .

Key innovations

Early days
▶ Grace Hopper’s linker with tape operations.

▶ Time sharing: CTSS and ITS → Multics → UNIX
- slice from 140ms to [0.75,6]ms.

▶ OS/360 portable OS.
▶ Multics and UNIX innovations - abstraction.
▶ Sockets, multiple sources of input, and select().

21st century

▶ Advanced file systems.
▶ Modern security issues.
▶ Multicore and energy savings.
▶ Distributed computing (reprised).
▶ . . .

Key innovations

Early days
▶ Grace Hopper’s linker with tape operations.

▶ Time sharing: CTSS and ITS → Multics → UNIX
- slice from 140ms to [0.75,6]ms.

▶ OS/360 portable OS.
▶ Multics and UNIX innovations - abstraction.
▶ Sockets, multiple sources of input, and select().

21st century
▶ Advanced file systems.

▶ Modern security issues.
▶ Multicore and energy savings.
▶ Distributed computing (reprised).
▶ . . .

Key innovations

Early days
▶ Grace Hopper’s linker with tape operations.

▶ Time sharing: CTSS and ITS → Multics → UNIX
- slice from 140ms to [0.75,6]ms.

▶ OS/360 portable OS.
▶ Multics and UNIX innovations - abstraction.
▶ Sockets, multiple sources of input, and select().

21st century
▶ Advanced file systems.
▶ Modern security issues.

▶ Multicore and energy savings.
▶ Distributed computing (reprised).
▶ . . .

Key innovations

Early days
▶ Grace Hopper’s linker with tape operations.

▶ Time sharing: CTSS and ITS → Multics → UNIX
- slice from 140ms to [0.75,6]ms.

▶ OS/360 portable OS.
▶ Multics and UNIX innovations - abstraction.
▶ Sockets, multiple sources of input, and select().

21st century
▶ Advanced file systems.
▶ Modern security issues.
▶ Multicore and energy savings.

▶ Distributed computing (reprised).
▶ . . .

Key innovations

Early days
▶ Grace Hopper’s linker with tape operations.

▶ Time sharing: CTSS and ITS → Multics → UNIX
- slice from 140ms to [0.75,6]ms.

▶ OS/360 portable OS.
▶ Multics and UNIX innovations - abstraction.
▶ Sockets, multiple sources of input, and select().

21st century
▶ Advanced file systems.
▶ Modern security issues.
▶ Multicore and energy savings.
▶ Distributed computing (reprised).
▶ . . .

The story of operating systems - part 1

Prehistory
pre-1955 Plugboards (no OS)

1955-1960
Single batch - perforated paper paper tape, IBM, and

punchcards.
Single batch - tape Unisys and magnetic tape, 128

char/inch, eventually 800 char/inch.
1956 General Motors GM-NAA for IBM 701 and then

704.
1957 Start of Compatible TimeSharing System

(CTSS) development at MIT.

The 1960s
1960 SHARE Operating System (SOS), later

renamed IBSYS.
1960 FORTRAN Monitor System (FMS): OS and

FORTRAN compiler on same tape!
1960 Bell Monitor (BELLMON or BESYS),

University of Michgan Executive System
(UMES).

1961 CTSS demonstrated at MIT on IBM 709.
1963 SHARE OS taken by IBM and renamed

IBSYS.
1963 DTSS (Dartmouth).
1965-2023 IBM OS/360.
1967 Incompatible Timesharing System (ITS) at

MIT, PDP-6, PDP-10.
1967 Multics (Multiplexed Information and

Computer Services) (Bell Labs, GE, MIT), GE
645.

The 1970s
1970 Unix, PDP-7.
1970 TOPS-10, PDP-7 and PDP-11 - DECWAR

and MUD!!
1972 RSTS, PDP-11.
1972 RT-11, PDP-11 - real-time!
1972 RSX-11, PDP-11.
1972 VM/370 (also VM/CMS).
1973 Unix v.4, rewritten in C, PDP-11.
1974 CP/M, Motorola 8080.
1975 UNIX v.6.
1975 Ken Thompson sabbatical at Berkeley.
1977 1BSD UNIX released, 30 copies sent out.
1978 Unix ported to the Interdata 8/32.
1978 VMS, VAX, virtual memory and virtual

machine support.
1978 UCSD p-System, PDP-11, IBM PC, Apple II,

III, Lisa.
1978 Apple DOS, 6502.

1979 2BSD UNIX released.
1979 3BSD UNIX (also called VMUNIX) released,

VAX.

The story of operating systems - part 1
Prehistory
pre-1955 Plugboards (no OS)

1955-1960
Single batch - perforated paper paper tape, IBM, and

punchcards.
Single batch - tape Unisys and magnetic tape, 128

char/inch, eventually 800 char/inch.
1956 General Motors GM-NAA for IBM 701 and then

704.
1957 Start of Compatible TimeSharing System

(CTSS) development at MIT.

The 1960s
1960 SHARE Operating System (SOS), later

renamed IBSYS.
1960 FORTRAN Monitor System (FMS): OS and

FORTRAN compiler on same tape!
1960 Bell Monitor (BELLMON or BESYS),

University of Michgan Executive System
(UMES).

1961 CTSS demonstrated at MIT on IBM 709.
1963 SHARE OS taken by IBM and renamed

IBSYS.
1963 DTSS (Dartmouth).
1965-2023 IBM OS/360.
1967 Incompatible Timesharing System (ITS) at

MIT, PDP-6, PDP-10.
1967 Multics (Multiplexed Information and

Computer Services) (Bell Labs, GE, MIT), GE
645.

The 1970s
1970 Unix, PDP-7.
1970 TOPS-10, PDP-7 and PDP-11 - DECWAR

and MUD!!
1972 RSTS, PDP-11.
1972 RT-11, PDP-11 - real-time!
1972 RSX-11, PDP-11.
1972 VM/370 (also VM/CMS).
1973 Unix v.4, rewritten in C, PDP-11.
1974 CP/M, Motorola 8080.
1975 UNIX v.6.
1975 Ken Thompson sabbatical at Berkeley.
1977 1BSD UNIX released, 30 copies sent out.
1978 Unix ported to the Interdata 8/32.
1978 VMS, VAX, virtual memory and virtual

machine support.
1978 UCSD p-System, PDP-11, IBM PC, Apple II,

III, Lisa.
1978 Apple DOS, 6502.

1979 2BSD UNIX released.
1979 3BSD UNIX (also called VMUNIX) released,

VAX.

The story of operating systems - part 1
Prehistory
pre-1955 Plugboards (no OS)

1955-1960
Single batch - perforated paper paper tape, IBM, and

punchcards.
Single batch - tape Unisys and magnetic tape, 128

char/inch, eventually 800 char/inch.
1956 General Motors GM-NAA for IBM 701 and then

704.
1957 Start of Compatible TimeSharing System

(CTSS) development at MIT.

The 1960s
1960 SHARE Operating System (SOS), later

renamed IBSYS.
1960 FORTRAN Monitor System (FMS): OS and

FORTRAN compiler on same tape!
1960 Bell Monitor (BELLMON or BESYS),

University of Michgan Executive System
(UMES).

1961 CTSS demonstrated at MIT on IBM 709.
1963 SHARE OS taken by IBM and renamed

IBSYS.
1963 DTSS (Dartmouth).
1965-2023 IBM OS/360.
1967 Incompatible Timesharing System (ITS) at

MIT, PDP-6, PDP-10.
1967 Multics (Multiplexed Information and

Computer Services) (Bell Labs, GE, MIT), GE
645.

The 1970s
1970 Unix, PDP-7.
1970 TOPS-10, PDP-7 and PDP-11 - DECWAR

and MUD!!
1972 RSTS, PDP-11.
1972 RT-11, PDP-11 - real-time!
1972 RSX-11, PDP-11.
1972 VM/370 (also VM/CMS).
1973 Unix v.4, rewritten in C, PDP-11.
1974 CP/M, Motorola 8080.
1975 UNIX v.6.
1975 Ken Thompson sabbatical at Berkeley.
1977 1BSD UNIX released, 30 copies sent out.
1978 Unix ported to the Interdata 8/32.
1978 VMS, VAX, virtual memory and virtual

machine support.
1978 UCSD p-System, PDP-11, IBM PC, Apple II,

III, Lisa.
1978 Apple DOS, 6502.

1979 2BSD UNIX released.
1979 3BSD UNIX (also called VMUNIX) released,

VAX.

The story of operating systems - part 1
Prehistory
pre-1955 Plugboards (no OS)

1955-1960
Single batch - perforated paper paper tape, IBM, and

punchcards.
Single batch - tape Unisys and magnetic tape, 128

char/inch, eventually 800 char/inch.
1956 General Motors GM-NAA for IBM 701 and then

704.
1957 Start of Compatible TimeSharing System

(CTSS) development at MIT.

The 1960s
1960 SHARE Operating System (SOS), later

renamed IBSYS.
1960 FORTRAN Monitor System (FMS): OS and

FORTRAN compiler on same tape!
1960 Bell Monitor (BELLMON or BESYS),

University of Michgan Executive System
(UMES).

1961 CTSS demonstrated at MIT on IBM 709.
1963 SHARE OS taken by IBM and renamed

IBSYS.
1963 DTSS (Dartmouth).
1965-2023 IBM OS/360.
1967 Incompatible Timesharing System (ITS) at

MIT, PDP-6, PDP-10.
1967 Multics (Multiplexed Information and

Computer Services) (Bell Labs, GE, MIT), GE
645.

The 1970s
1970 Unix, PDP-7.
1970 TOPS-10, PDP-7 and PDP-11 - DECWAR

and MUD!!
1972 RSTS, PDP-11.
1972 RT-11, PDP-11 - real-time!
1972 RSX-11, PDP-11.
1972 VM/370 (also VM/CMS).
1973 Unix v.4, rewritten in C, PDP-11.
1974 CP/M, Motorola 8080.
1975 UNIX v.6.
1975 Ken Thompson sabbatical at Berkeley.
1977 1BSD UNIX released, 30 copies sent out.
1978 Unix ported to the Interdata 8/32.
1978 VMS, VAX, virtual memory and virtual

machine support.
1978 UCSD p-System, PDP-11, IBM PC, Apple II,

III, Lisa.
1978 Apple DOS, 6502.

1979 2BSD UNIX released.
1979 3BSD UNIX (also called VMUNIX) released,

VAX.

The story of operating systems - part 1
Prehistory
pre-1955 Plugboards (no OS)

1955-1960
Single batch - perforated paper paper tape, IBM, and

punchcards.
Single batch - tape Unisys and magnetic tape, 128

char/inch, eventually 800 char/inch.
1956 General Motors GM-NAA for IBM 701 and then

704.
1957 Start of Compatible TimeSharing System

(CTSS) development at MIT.

The 1960s
1960 SHARE Operating System (SOS), later

renamed IBSYS.
1960 FORTRAN Monitor System (FMS): OS and

FORTRAN compiler on same tape!
1960 Bell Monitor (BELLMON or BESYS),

University of Michgan Executive System
(UMES).

1961 CTSS demonstrated at MIT on IBM 709.
1963 SHARE OS taken by IBM and renamed

IBSYS.
1963 DTSS (Dartmouth).
1965-2023 IBM OS/360.
1967 Incompatible Timesharing System (ITS) at

MIT, PDP-6, PDP-10.
1967 Multics (Multiplexed Information and

Computer Services) (Bell Labs, GE, MIT), GE
645.

The 1970s
1970 Unix, PDP-7.
1970 TOPS-10, PDP-7 and PDP-11 - DECWAR

and MUD!!
1972 RSTS, PDP-11.
1972 RT-11, PDP-11 - real-time!
1972 RSX-11, PDP-11.
1972 VM/370 (also VM/CMS).
1973 Unix v.4, rewritten in C, PDP-11.
1974 CP/M, Motorola 8080.
1975 UNIX v.6.
1975 Ken Thompson sabbatical at Berkeley.
1977 1BSD UNIX released, 30 copies sent out.
1978 Unix ported to the Interdata 8/32.
1978 VMS, VAX, virtual memory and virtual

machine support.
1978 UCSD p-System, PDP-11, IBM PC, Apple II,

III, Lisa.
1978 Apple DOS, 6502.

1979 2BSD UNIX released.
1979 3BSD UNIX (also called VMUNIX) released,

VAX.

The story of operating systems - part deux

The 1980s
1980 Xenix, x86.
1981 MS-DOS 1.x
1981 XINU.
1982 Commodore DOS, 6502.
1983 Project GNU announced.
1983 Berkeley 4.2BSD UNIX: introduces sockets.
1983 AT&T System V UNIX.
1983 SunOS 1.0, 4.2BSD, 68010.
1984 Macos 1.0, 68000.
1985 SunOS 2.0, 4.2BSD, introduces NFS, YP,

RPC, . . .
1985 AmigaOS, AtariOS, MS-Windows 1.0.
1986 AIX, HP-UX, SunOS 3: UNIX wars begin!!
1987 IRIX, MIPS.
1987 OS/2.
1989 RiscOS, MIPS.

The 1990s
1991 Linux 0.1, x86.
1992 Linux 0.12, x86 - kernel now under the GPL!
1992 SunOS 5.x (Solaris), SPARC.
1992 MS-Windows 3.1.
1992 Novell NetWare 3, has TCP/IP.
1992 Plan 9.
1993 Slackware 1.0 (first linux distribution).
1993 MS-Windows NT.
1994 Red Hat.
1994 NetBSD 1.0, first of the FOSS BSDs.
1995 MS-Windows 95.
1995 Debian 1.1.
1996 PalmOS.
1998 eCos.

The 2000s
2001 MS-Windows XP.
2001 MacOS X 10.0, PowerPC.
2003 Fedora Core 1.
2004 Ubuntu 4.10..
2004 Reactos.
2007 iOS, ARM.
2008 Android, ARM.

The story of operating systems – UNIX timeline

System III & V family

BSD (Berkeley Software Distribution)

FreeBSD

NetBSD

OpenBSD

SunOS

Solaris

NextStep

Xenix OS

GNU

Linux

Commercial UNIX

HP-UX

AIX

UnixWare

IRIX

BSD family

1970 1980 1990 2000 Time

Microsoft/SCO

Richard Stallman

Darwin

GNU/Hurd

Linus Torvalds

Andrew S. Tanenbaum

Minix

3.3

6.5.30

4.1.4

Research UNIX 10.5

Bell Labs: Ken Thompson,
Dennis Ritchie, et al.

Bill Joy

AT&T

IBM

SGI

Univel/SCO/Xinuos

2010

4.4

7.0

12.2

macOS 11.6

9.2

11.4

7.2

11i v3

5.15

3.4

21.0

Sun/Oracle

Apple

Theo de Raadt

0.9

Matthew Dillon

DragonFly BSD 6.0

2020

7

The story of operating systems – UNIX timeline (zoom on UNIX wars)

System III & V family

BSD (Berkeley Software Distribution)

FreeBSD

NetBSD

OpenBSD

SunOS

Solaris

NextStep

Xenix OS

GNU

Linux

Commercial UNIX

HP-UX

AIX

UnixWare

IRIX

BSD family

1970 1980 1990 2000 Time

Microsoft/SCO

Richard Stallman

Darwin

GNU/Hurd

Linus Torvalds

Andrew S. Tanenbaum

Minix

3.3

6.5.30

4.1.4

Research UNIX 10.5

Bell Labs: Ken Thompson,
Dennis Ritchie, et al.

Bill Joy

AT&T

IBM

SGI

Univel/SCO/Xinuos

2010

4.4

7.0

12.2

macOS 11.6

9.2

11.4

7.2

11i v3

5.15

3.4

21.0

Sun/Oracle

Apple

Theo de Raadt

0.9

Matthew Dillon

DragonFly BSD 6.0

2020

7

UNIX wars
From Keith Packard “A Political History of X”

talk at LinuxConf Australia, 2020

A Political History of X
or

How I Stopped Worrying and Learned to Love the GPL

Keith Packard
SiFive

keithp@keithp.com

X and UNIX show parallel dysfunction
Sun, HP, Digital, Apollo, Tektronix, IBM,
MIPS, Silicon Graphics: all had their own
UNIX and their own X.

Collapse of Unix
● App market failed to thrive

– So many Unix versions
– So many UI wants
– So much gratuitous re-engineering

● Windows happened
– Stupid cheap hardware
– Completely standard ABI
– “good enough is good enough”

how it played out - and lessons
First: Windows eats the lunch of the UNIX
distributions where it can.
Then: Linux took away the rest of UNIX’s
market share, and X.org of X’s. Anecdote of
Stallman and the X project.

https://keithp.com/documents/lca2020-x-history.pdf

UNIX wars
From Keith Packard “A Political History of X”

talk at LinuxConf Australia, 2020

A Political History of X
or

How I Stopped Worrying and Learned to Love the GPL

Keith Packard
SiFive

keithp@keithp.com

X and UNIX show parallel dysfunction
Sun, HP, Digital, Apollo, Tektronix, IBM,
MIPS, Silicon Graphics: all had their own
UNIX and their own X.

Collapse of Unix
● App market failed to thrive

– So many Unix versions
– So many UI wants
– So much gratuitous re-engineering

● Windows happened
– Stupid cheap hardware
– Completely standard ABI
– “good enough is good enough”

how it played out - and lessons
First: Windows eats the lunch of the UNIX
distributions where it can.
Then: Linux took away the rest of UNIX’s
market share, and X.org of X’s. Anecdote of
Stallman and the X project.

https://keithp.com/documents/lca2020-x-history.pdf

UNIX wars
From Keith Packard “A Political History of X”

talk at LinuxConf Australia, 2020

A Political History of X
or

How I Stopped Worrying and Learned to Love the GPL

Keith Packard
SiFive

keithp@keithp.com

X and UNIX show parallel dysfunction
Sun, HP, Digital, Apollo, Tektronix, IBM,
MIPS, Silicon Graphics: all had their own
UNIX and their own X.

Collapse of Unix
● App market failed to thrive

– So many Unix versions
– So many UI wants
– So much gratuitous re-engineering

● Windows happened
– Stupid cheap hardware
– Completely standard ABI
– “good enough is good enough”

how it played out - and lessons
First: Windows eats the lunch of the UNIX
distributions where it can.

Then: Linux took away the rest of UNIX’s
market share, and X.org of X’s. Anecdote of
Stallman and the X project.

https://keithp.com/documents/lca2020-x-history.pdf

UNIX wars
From Keith Packard “A Political History of X”

talk at LinuxConf Australia, 2020

A Political History of X
or

How I Stopped Worrying and Learned to Love the GPL

Keith Packard
SiFive

keithp@keithp.com

X and UNIX show parallel dysfunction
Sun, HP, Digital, Apollo, Tektronix, IBM,
MIPS, Silicon Graphics: all had their own
UNIX and their own X.

Collapse of Unix
● App market failed to thrive

– So many Unix versions
– So many UI wants
– So much gratuitous re-engineering

● Windows happened
– Stupid cheap hardware
– Completely standard ABI
– “good enough is good enough”

how it played out - and lessons
First: Windows eats the lunch of the UNIX
distributions where it can.
Then: Linux took away the rest of UNIX’s
market share, and X.org of X’s.

Anecdote of
Stallman and the X project.

https://keithp.com/documents/lca2020-x-history.pdf

UNIX wars
From Keith Packard “A Political History of X”

talk at LinuxConf Australia, 2020

A Political History of X
or

How I Stopped Worrying and Learned to Love the GPL

Keith Packard
SiFive

keithp@keithp.com

X and UNIX show parallel dysfunction
Sun, HP, Digital, Apollo, Tektronix, IBM,
MIPS, Silicon Graphics: all had their own
UNIX and their own X.

Collapse of Unix
● App market failed to thrive

– So many Unix versions
– So many UI wants
– So much gratuitous re-engineering

● Windows happened
– Stupid cheap hardware
– Completely standard ABI
– “good enough is good enough”

how it played out - and lessons
First: Windows eats the lunch of the UNIX
distributions where it can.
Then: Linux took away the rest of UNIX’s
market share, and X.org of X’s. Anecdote of
Stallman and the X project.

https://keithp.com/documents/lca2020-x-history.pdf

Distilling insight from the tour

Devices and abstraction
. . . (discussion) . . .

Lockstep with hardware generations
. . . (discussion) . . .

Corporate control and licensing
. . . (discussion) . . .

Evolution
Who influences whom?

Distilling insight from the tour

Devices and abstraction
. . . (discussion) . . .

Lockstep with hardware generations
. . . (discussion) . . .

Corporate control and licensing
. . . (discussion) . . .

Evolution
Who influences whom?

Distilling insight from the tour

Devices and abstraction
. . . (discussion) . . .

Lockstep with hardware generations
. . . (discussion) . . .

Corporate control and licensing
. . . (discussion) . . .

Evolution
Who influences whom?

Distilling insight from the tour

Devices and abstraction
. . . (discussion) . . .

Lockstep with hardware generations
. . . (discussion) . . .

Corporate control and licensing
. . . (discussion) . . .

Evolution
Who influences whom?

Distilling insight from the tour

Devices and abstraction
. . . (discussion) . . .

Lockstep with hardware generations
. . . (discussion) . . .

Corporate control and licensing
. . . (discussion) . . .

Evolution
Who influences whom?

Part IV – Methodologies

Part IV – Methodologies

Is there a path to good code?
Naturalmente . . . xkcd: https://xkcd.com/1597/

You can either hang out in the Android Loop or the HURD loop.

https://xkcd.com/1597/

Is there a path to good code?
Naturalmente . . . xkcd: https://xkcd.com/1597/

You can either hang out in the Android Loop or the HURD loop.

https://xkcd.com/1597/

So, then, uhmm, what is the path to good code?
After all we have discussed:

Could it be. . .
▶ Is it a good editor?
▶ Is it version control?
▶ Is it continuous integration?
▶ Is it ninja debugging?
▶ Is it principled testing?
▶ Is it the Silicon Valley “ABC principle”?
▶ Is it recognition that one good programmer is worth 10 average programmers?
▶ Good management? No management?
▶ A big team? A small team? Just one hacker?
▶ Is it a good collaboration server?
▶ Is it another software engineering fad?
▶ Is it all or most of these, plus some other undiscovered ones?

The rhythm

who’se to blame?
Maybe it’s the movies, maybe it’s the books
Maybe it’s the government and all the other crooks
Maybe it’s the drugs, maybe it’s the parents
Maybe it’s the gangs, or the colors that we’re wearin’
Maybe it’s the high schools, maybe it’s the teachers
Tattoos, pipe bombs underneath the bleachers
Maybe it’s the music, maybe it’s the crack

The rhythm

who’se to blame?
Maybe it’s the movies, maybe it’s the books
Maybe it’s the government and all the other crooks
Maybe it’s the drugs, maybe it’s the parents
Maybe it’s the gangs, or the colors that we’re wearin’
Maybe it’s the high schools, maybe it’s the teachers
Tattoos, pipe bombs underneath the bleachers
Maybe it’s the music, maybe it’s the crack

Modern buzzword-rich methodologies: Agile

The Agile “12 principles”
Principles behind the Agile Manifesto

We follow these principles:

Our highest priority is to satisfy the customer
through early and continuous delivery

of valuable software.

Welcome changing requirements, even late in
development. Agile processes harness change for

the customer’s competitive advantage.

Deliver working software frequently, from a
couple of weeks to a couple of months, with a

preference to the shorter timescale.

Business people and developers must work
together daily throughout the project.

Build projects around motivated individuals.
Give them the environment and support they need,

and trust them to get the job done.

The most efficient and effective method of
conveying information to and within a development

team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development.
The sponsors, developers, and users should be able

to maintain a constant pace indefinitely.

Continuous attention to technical excellence
and good design enhances agility.

Simplicity–the art of maximizing the amount
of work not done–is essential.

The best architectures, requirements, and designs
emerge from self-organizing teams.

At regular intervals, the team reflects on how
to become more effective, then tunes and adjusts

its behavior accordingly.

But OOP is still so. . .

OOP is still cool

Learning C++

««	First				«	Previous				|			Random			|			Next	»				Current	»»

How	to	Teach	Yourself	Programming

Seriously,	why	is	everyone	in	such	a	rush?

««	First				«	Previous				|			Random			|			Next	»				Current	»»

HOME										ARCHIVE										FEED	THE	GOOSE										STORE

melikes

Brown	Sharpie			Cy&H			EXTRAORDINARY			PBF			popstrip			spiked	math			xkcd

	 	
This	work	is	licensed	under	a	Creative	Commons	Attribution-Noncommercial	3.0	United	States	License.

A	webcomic.........	that	is	all.

about							faq							privacy

Nuance in OOP from Mathew Heaney
From http://www.adapower.com/adapower1/articles/popularity.html

Of course we know now that dynamic binding is nearly as efficient as static binding. The
Smalltalk legacy lives on, however, and reuse via inheritance came to be seen as the Measure
Of All Good Things.

But there is a dark side to this, called the "fragile base class" problem. Deep inheritance
hierarchies create a lot of coupling between abstractions, creating a tension between reuse and
information hiding. An abstraction is basically exposing its representation by announcing that it
inherits from another abstraction, and we should all know the kind of maintenance headaches
you have when you don’t practice information hiding.

Thankfully, the tide seems to be turning, and people are beginning to realize that type
extension is not so great after all, and that "mere" aggregation is often preferable. Deep
inheritance hierarchies as a re-use mechanism may be fine for by-reference languages like
Smalltalk and Eiffel, but leaf-classes in a by-value language like Ada95 or C++ become VERY
SENSITIVE to the representation of the ancestor classes, which means massive re-compilations
are often required any time you touch a base class. (This is the sort of problem we had for
other reasons in Ada83, which motivated the inclusion of child packages in Ada95.)

If you are an Ada95 or C++ programmer who programs "the pure object-oriented way" by
creating deep inheritance hierarchies, then YOU ARE MAKING A HUGE MISTAKE. You’re
going to spend all your time just compiling.

http://www.adapower.com/adapower1/articles/popularity.html

Some of my opinions on project management
People matter.

But why?
▶ Cargo cult programming.
▶ Lack of nuance.
▶ Order of magnitude faster implementation.
▶ The silicon valley ABC principle.

Write a lot - Michael Connelly’s “murder book”.
▶ Design documents.
▶ Comments in code (but not as a replacement

for clean thinking).
▶ Emails.
▶ Lessons learned.
▶ Case studies.

Modern approaches to well-tooled chat
interaction are enormously better than
traditional meetings.

Management has to exist – you need both
Oppenheimer and Groves, as Jeff Bloch
would say – but they have to be deeply
self-aware and industry-aware.

Manager should have the attitude of “the
coach has to do the full warm-up run with
the team.” Technically they should always
know when they have understood things
and when they have not.

This means you cannot have a manager who is managing
because they hit a technical ceiling.

Some of my opinions on project management
People matter. But why?

▶ Cargo cult programming.
▶ Lack of nuance.
▶ Order of magnitude faster implementation.
▶ The silicon valley ABC principle.

Write a lot - Michael Connelly’s “murder book”.
▶ Design documents.
▶ Comments in code (but not as a replacement

for clean thinking).
▶ Emails.
▶ Lessons learned.
▶ Case studies.

Modern approaches to well-tooled chat
interaction are enormously better than
traditional meetings.

Management has to exist – you need both
Oppenheimer and Groves, as Jeff Bloch
would say – but they have to be deeply
self-aware and industry-aware.

Manager should have the attitude of “the
coach has to do the full warm-up run with
the team.” Technically they should always
know when they have understood things
and when they have not.

This means you cannot have a manager who is managing
because they hit a technical ceiling.

Some of my opinions on project management
People matter. But why?
▶ Cargo cult programming.
▶ Lack of nuance.
▶ Order of magnitude faster implementation.
▶ The silicon valley ABC principle.

Write a lot - Michael Connelly’s “murder book”.
▶ Design documents.
▶ Comments in code (but not as a replacement

for clean thinking).
▶ Emails.
▶ Lessons learned.
▶ Case studies.

Modern approaches to well-tooled chat
interaction are enormously better than
traditional meetings.

Management has to exist – you need both
Oppenheimer and Groves, as Jeff Bloch
would say – but they have to be deeply
self-aware and industry-aware.

Manager should have the attitude of “the
coach has to do the full warm-up run with
the team.” Technically they should always
know when they have understood things
and when they have not.

This means you cannot have a manager who is managing
because they hit a technical ceiling.

Some of my opinions on project management
People matter. But why?
▶ Cargo cult programming.
▶ Lack of nuance.
▶ Order of magnitude faster implementation.
▶ The silicon valley ABC principle.

Write a lot - Michael Connelly’s “murder book”.
▶ Design documents.
▶ Comments in code (but not as a replacement

for clean thinking).
▶ Emails.
▶ Lessons learned.
▶ Case studies.

Modern approaches to well-tooled chat
interaction are enormously better than
traditional meetings.

Management has to exist – you need both
Oppenheimer and Groves, as Jeff Bloch
would say – but they have to be deeply
self-aware and industry-aware.

Manager should have the attitude of “the
coach has to do the full warm-up run with
the team.” Technically they should always
know when they have understood things
and when they have not.

This means you cannot have a manager who is managing
because they hit a technical ceiling.

Part IV – Workflow and tools

Part IV – Workflow and tools

Automation and efficiency
Dave Barry, 1994-02-06

[. . .] How am I able to produce columns with such a high degree of accuracy, day in and day
out, 54 weeks per year?
The answer is: I use a computer. This enables me to be highly efficient. Suppose, for example,
that I need to fill up column space by writing BOOGER BOOGER BOOGER BOOGER
BOOGER. To accomplish this in the old precomputer days, I would have had to type
“BOOGER” five times manually. But now all I have to do is type it once, then simply hold the
left-hand “mouse” button down while “dragging” the “mouse” so that the “cursor” moves over
the text that I wish to “select”; then release the left-hand “mouse” [. . .]

Automation and efficiency
Dave Barry, 1994-02-06

[. . .] How am I able to produce columns with such a high degree of accuracy, day in and day
out, 54 weeks per year?

The answer is: I use a computer. This enables me to be highly efficient. Suppose, for example,
that I need to fill up column space by writing BOOGER BOOGER BOOGER BOOGER
BOOGER. To accomplish this in the old precomputer days, I would have had to type
“BOOGER” five times manually. But now all I have to do is type it once, then simply hold the
left-hand “mouse” button down while “dragging” the “mouse” so that the “cursor” moves over
the text that I wish to “select”; then release the left-hand “mouse” [. . .]

Automation and efficiency
Dave Barry, 1994-02-06

[. . .] How am I able to produce columns with such a high degree of accuracy, day in and day
out, 54 weeks per year?
The answer is: I use a computer. This enables me to be highly efficient. Suppose, for example,
that I need to fill up column space by writing BOOGER BOOGER BOOGER BOOGER
BOOGER. To accomplish this in the old precomputer days, I would have had to type
“BOOGER” five times manually. But now all I have to do is type it once, then simply hold the
left-hand “mouse” button down while “dragging” the “mouse” so that the “cursor” moves over
the text that I wish to “select”; then release the left-hand “mouse” [. . .]

Automation and efficiency .. 2

[. . .] button and position the “cursor” over the “Edit” heading on the “menu bar”; then click
the left-hand “mouse” button to reveal the “edit menu”; then position the “cursor” over the
“Copy” command; then click the left-hand “mouse” button; then move the “cursor” to the
point where I wish to insert the “selected” text, then click the left-hand “mouse” button; then
position the “cursor” over the “Edit” heading on the “menu bar” again; then click the left-hand
“mouse” button to reveal the “edit menu”; then position the “cursor” over the “Paste”
command; then click the left-hand “mouse” button four times; and then, as the French say,
“voila!” (Literally,“My hand hurts!”)

Automation and efficiency - what is the purpose of computers?

My take on the purpose of
computers

The purpose of computers is to
automate repetitive tasks.
The purpose of computers is to automate
repetitive tasks.
The purpose of computers is to automate
repetitive tasks.

The ballad of Jack Thompson
▶ The magna charta.
▶ The Idaho retreat.
▶ Workshop skills.

The maxim, and how to apply it
▶ Maxim: You should have a running thread in your

mind that is always saying “dude, should you be
automating that?”

▶ When that bell goes off, have your hacker friend on
speed dial. The way to “make their day” is to ask
their help in automating a task.

▶ Little by little you become the hacker on other
people’s speed dial, then you have a running thread
in your mind saying “why do I feel so good at this
validation of people asking me for help? Kind of
embarrassing. . . ”

Automation and efficiency - what is the purpose of computers?

My take on the purpose of
computers
The purpose of computers is to
automate repetitive tasks.

The purpose of computers is to automate
repetitive tasks.
The purpose of computers is to automate
repetitive tasks.

The ballad of Jack Thompson
▶ The magna charta.
▶ The Idaho retreat.
▶ Workshop skills.

The maxim, and how to apply it
▶ Maxim: You should have a running thread in your

mind that is always saying “dude, should you be
automating that?”

▶ When that bell goes off, have your hacker friend on
speed dial. The way to “make their day” is to ask
their help in automating a task.

▶ Little by little you become the hacker on other
people’s speed dial, then you have a running thread
in your mind saying “why do I feel so good at this
validation of people asking me for help? Kind of
embarrassing. . . ”

Automation and efficiency - what is the purpose of computers?

My take on the purpose of
computers
The purpose of computers is to
automate repetitive tasks.
The purpose of computers is to automate
repetitive tasks.

The purpose of computers is to automate
repetitive tasks.

The ballad of Jack Thompson
▶ The magna charta.
▶ The Idaho retreat.
▶ Workshop skills.

The maxim, and how to apply it
▶ Maxim: You should have a running thread in your

mind that is always saying “dude, should you be
automating that?”

▶ When that bell goes off, have your hacker friend on
speed dial. The way to “make their day” is to ask
their help in automating a task.

▶ Little by little you become the hacker on other
people’s speed dial, then you have a running thread
in your mind saying “why do I feel so good at this
validation of people asking me for help? Kind of
embarrassing. . . ”

Automation and efficiency - what is the purpose of computers?

My take on the purpose of
computers
The purpose of computers is to
automate repetitive tasks.
The purpose of computers is to automate
repetitive tasks.
The purpose of computers is to automate
repetitive tasks.

The ballad of Jack Thompson
▶ The magna charta.
▶ The Idaho retreat.
▶ Workshop skills.

The maxim, and how to apply it
▶ Maxim: You should have a running thread in your

mind that is always saying “dude, should you be
automating that?”

▶ When that bell goes off, have your hacker friend on
speed dial. The way to “make their day” is to ask
their help in automating a task.

▶ Little by little you become the hacker on other
people’s speed dial, then you have a running thread
in your mind saying “why do I feel so good at this
validation of people asking me for help? Kind of
embarrassing. . . ”

Automation and efficiency - what is the purpose of computers?

My take on the purpose of
computers
The purpose of computers is to
automate repetitive tasks.
The purpose of computers is to automate
repetitive tasks.
The purpose of computers is to automate
repetitive tasks.

The ballad of Jack Thompson
▶ The magna charta.
▶ The Idaho retreat.
▶ Workshop skills.

The maxim, and how to apply it
▶ Maxim: You should have a running thread in your

mind that is always saying “dude, should you be
automating that?”

▶ When that bell goes off, have your hacker friend on
speed dial. The way to “make their day” is to ask
their help in automating a task.

▶ Little by little you become the hacker on other
people’s speed dial, then you have a running thread
in your mind saying “why do I feel so good at this
validation of people asking me for help? Kind of
embarrassing. . . ”

Automation and efficiency - what is the purpose of computers?

My take on the purpose of
computers
The purpose of computers is to
automate repetitive tasks.
The purpose of computers is to automate
repetitive tasks.
The purpose of computers is to automate
repetitive tasks.

The ballad of Jack Thompson
▶ The magna charta.
▶ The Idaho retreat.
▶ Workshop skills.

The maxim, and how to apply it
▶ Maxim: You should have a running thread in your

mind that is always saying “dude, should you be
automating that?”

▶ When that bell goes off, have your hacker friend on
speed dial. The way to “make their day” is to ask
their help in automating a task.

▶ Little by little you become the hacker on other
people’s speed dial, then you have a running thread
in your mind saying “why do I feel so good at this
validation of people asking me for help? Kind of
embarrassing. . . ”

Automation and efficiency - what is the purpose of computers?

My take on the purpose of
computers
The purpose of computers is to
automate repetitive tasks.
The purpose of computers is to automate
repetitive tasks.
The purpose of computers is to automate
repetitive tasks.

The ballad of Jack Thompson
▶ The magna charta.
▶ The Idaho retreat.
▶ Workshop skills.

The maxim, and how to apply it
▶ Maxim: You should have a running thread in your

mind that is always saying “dude, should you be
automating that?”

▶ When that bell goes off, have your hacker friend on
speed dial. The way to “make their day” is to ask
their help in automating a task.

▶ Little by little you become the hacker on other
people’s speed dial, then you have a running thread
in your mind saying “why do I feel so good at this
validation of people asking me for help? Kind of
embarrassing. . . ”

Automation and efficiency - what is the purpose of computers?

My take on the purpose of
computers
The purpose of computers is to
automate repetitive tasks.
The purpose of computers is to automate
repetitive tasks.
The purpose of computers is to automate
repetitive tasks.

The ballad of Jack Thompson
▶ The magna charta.
▶ The Idaho retreat.
▶ Workshop skills.

The maxim, and how to apply it
▶ Maxim: You should have a running thread in your

mind that is always saying “dude, should you be
automating that?”

▶ When that bell goes off, have your hacker friend on
speed dial. The way to “make their day” is to ask
their help in automating a task.

▶ Little by little you become the hacker on other
people’s speed dial, then you have a running thread
in your mind saying “why do I feel so good at this
validation of people asking me for help? Kind of
embarrassing. . . ”

The UNIX way – an example
The !Kung of the Kalahari desert

Getting data
Download the Howell file with data from the bushmen:
wget https://raw.githubusercontent.com/rmcelreath/rethinking/master/data/Howell1.csv

the top of the file looks like:

$ head Howell1.csv
"height";"weight";"age";"male"
151.765;47.8256065;63;1
139.7;36.4858065;63;0
136.525;31.864838;65;0
156.845;53.0419145;41;1
145.415;41.276872;51;0
163.83;62.992589;35;1
149.225;38.2434755;32;0
168.91;55.4799715;27;1
147.955;34.869885;19;0

The UNIX way – asking questions about a text file
Can I look at that file a bit better?

cat Howell1.csv | sed 's/;/ /g'
cat Howell1.csv | sed 's/;/ /g' | less

How many lines?
cat Howell1.csv | wc -l

How many people?
cat Howell1.csv | grep -v height | wc -l

Who are the tallest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 1 | tail -5

Who are the oldest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 3 | tail -5

How many men?
cat Howell1.csv | grep '1$' | wc -l

How many women?
cat Howell1.csv | grep '0$' | wc -l

What is the average age?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | awk '{sum+=$3} END {print "AVG =",sum/NR}'

The UNIX way – asking questions about a text file
Can I look at that file a bit better?

cat Howell1.csv | sed 's/;/ /g'
cat Howell1.csv | sed 's/;/ /g' | less

How many lines?
cat Howell1.csv | wc -l

How many people?
cat Howell1.csv | grep -v height | wc -l

Who are the tallest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 1 | tail -5

Who are the oldest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 3 | tail -5

How many men?
cat Howell1.csv | grep '1$' | wc -l

How many women?
cat Howell1.csv | grep '0$' | wc -l

What is the average age?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | awk '{sum+=$3} END {print "AVG =",sum/NR}'

The UNIX way – asking questions about a text file
Can I look at that file a bit better?

cat Howell1.csv | sed 's/;/ /g'
cat Howell1.csv | sed 's/;/ /g' | less

How many lines?

cat Howell1.csv | wc -l
How many people?

cat Howell1.csv | grep -v height | wc -l
Who are the tallest 5 people?

cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 1 | tail -5
Who are the oldest 5 people?

cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 3 | tail -5
How many men?

cat Howell1.csv | grep '1$' | wc -l
How many women?

cat Howell1.csv | grep '0$' | wc -l
What is the average age?

cat Howell1.csv | grep -v height | sed 's/;/ /g' | awk '{sum+=$3} END {print "AVG =",sum/NR}'

The UNIX way – asking questions about a text file
Can I look at that file a bit better?

cat Howell1.csv | sed 's/;/ /g'
cat Howell1.csv | sed 's/;/ /g' | less

How many lines?
cat Howell1.csv | wc -l

How many people?
cat Howell1.csv | grep -v height | wc -l

Who are the tallest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 1 | tail -5

Who are the oldest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 3 | tail -5

How many men?
cat Howell1.csv | grep '1$' | wc -l

How many women?
cat Howell1.csv | grep '0$' | wc -l

What is the average age?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | awk '{sum+=$3} END {print "AVG =",sum/NR}'

The UNIX way – asking questions about a text file
Can I look at that file a bit better?

cat Howell1.csv | sed 's/;/ /g'
cat Howell1.csv | sed 's/;/ /g' | less

How many lines?
cat Howell1.csv | wc -l

How many people?

cat Howell1.csv | grep -v height | wc -l
Who are the tallest 5 people?

cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 1 | tail -5
Who are the oldest 5 people?

cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 3 | tail -5
How many men?

cat Howell1.csv | grep '1$' | wc -l
How many women?

cat Howell1.csv | grep '0$' | wc -l
What is the average age?

cat Howell1.csv | grep -v height | sed 's/;/ /g' | awk '{sum+=$3} END {print "AVG =",sum/NR}'

The UNIX way – asking questions about a text file
Can I look at that file a bit better?

cat Howell1.csv | sed 's/;/ /g'
cat Howell1.csv | sed 's/;/ /g' | less

How many lines?
cat Howell1.csv | wc -l

How many people?
cat Howell1.csv | grep -v height | wc -l

Who are the tallest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 1 | tail -5

Who are the oldest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 3 | tail -5

How many men?
cat Howell1.csv | grep '1$' | wc -l

How many women?
cat Howell1.csv | grep '0$' | wc -l

What is the average age?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | awk '{sum+=$3} END {print "AVG =",sum/NR}'

The UNIX way – asking questions about a text file
Can I look at that file a bit better?

cat Howell1.csv | sed 's/;/ /g'
cat Howell1.csv | sed 's/;/ /g' | less

How many lines?
cat Howell1.csv | wc -l

How many people?
cat Howell1.csv | grep -v height | wc -l

Who are the tallest 5 people?

cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 1 | tail -5
Who are the oldest 5 people?

cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 3 | tail -5
How many men?

cat Howell1.csv | grep '1$' | wc -l
How many women?

cat Howell1.csv | grep '0$' | wc -l
What is the average age?

cat Howell1.csv | grep -v height | sed 's/;/ /g' | awk '{sum+=$3} END {print "AVG =",sum/NR}'

The UNIX way – asking questions about a text file
Can I look at that file a bit better?

cat Howell1.csv | sed 's/;/ /g'
cat Howell1.csv | sed 's/;/ /g' | less

How many lines?
cat Howell1.csv | wc -l

How many people?
cat Howell1.csv | grep -v height | wc -l

Who are the tallest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 1 | tail -5

Who are the oldest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 3 | tail -5

How many men?
cat Howell1.csv | grep '1$' | wc -l

How many women?
cat Howell1.csv | grep '0$' | wc -l

What is the average age?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | awk '{sum+=$3} END {print "AVG =",sum/NR}'

The UNIX way – asking questions about a text file
Can I look at that file a bit better?

cat Howell1.csv | sed 's/;/ /g'
cat Howell1.csv | sed 's/;/ /g' | less

How many lines?
cat Howell1.csv | wc -l

How many people?
cat Howell1.csv | grep -v height | wc -l

Who are the tallest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 1 | tail -5

Who are the oldest 5 people?

cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 3 | tail -5
How many men?

cat Howell1.csv | grep '1$' | wc -l
How many women?

cat Howell1.csv | grep '0$' | wc -l
What is the average age?

cat Howell1.csv | grep -v height | sed 's/;/ /g' | awk '{sum+=$3} END {print "AVG =",sum/NR}'

The UNIX way – asking questions about a text file
Can I look at that file a bit better?

cat Howell1.csv | sed 's/;/ /g'
cat Howell1.csv | sed 's/;/ /g' | less

How many lines?
cat Howell1.csv | wc -l

How many people?
cat Howell1.csv | grep -v height | wc -l

Who are the tallest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 1 | tail -5

Who are the oldest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 3 | tail -5

How many men?
cat Howell1.csv | grep '1$' | wc -l

How many women?
cat Howell1.csv | grep '0$' | wc -l

What is the average age?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | awk '{sum+=$3} END {print "AVG =",sum/NR}'

The UNIX way – asking questions about a text file
Can I look at that file a bit better?

cat Howell1.csv | sed 's/;/ /g'
cat Howell1.csv | sed 's/;/ /g' | less

How many lines?
cat Howell1.csv | wc -l

How many people?
cat Howell1.csv | grep -v height | wc -l

Who are the tallest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 1 | tail -5

Who are the oldest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 3 | tail -5

How many men?

cat Howell1.csv | grep '1$' | wc -l
How many women?

cat Howell1.csv | grep '0$' | wc -l
What is the average age?

cat Howell1.csv | grep -v height | sed 's/;/ /g' | awk '{sum+=$3} END {print "AVG =",sum/NR}'

The UNIX way – asking questions about a text file
Can I look at that file a bit better?

cat Howell1.csv | sed 's/;/ /g'
cat Howell1.csv | sed 's/;/ /g' | less

How many lines?
cat Howell1.csv | wc -l

How many people?
cat Howell1.csv | grep -v height | wc -l

Who are the tallest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 1 | tail -5

Who are the oldest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 3 | tail -5

How many men?
cat Howell1.csv | grep '1$' | wc -l

How many women?
cat Howell1.csv | grep '0$' | wc -l

What is the average age?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | awk '{sum+=$3} END {print "AVG =",sum/NR}'

The UNIX way – asking questions about a text file
Can I look at that file a bit better?

cat Howell1.csv | sed 's/;/ /g'
cat Howell1.csv | sed 's/;/ /g' | less

How many lines?
cat Howell1.csv | wc -l

How many people?
cat Howell1.csv | grep -v height | wc -l

Who are the tallest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 1 | tail -5

Who are the oldest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 3 | tail -5

How many men?
cat Howell1.csv | grep '1$' | wc -l

How many women?

cat Howell1.csv | grep '0$' | wc -l
What is the average age?

cat Howell1.csv | grep -v height | sed 's/;/ /g' | awk '{sum+=$3} END {print "AVG =",sum/NR}'

The UNIX way – asking questions about a text file
Can I look at that file a bit better?

cat Howell1.csv | sed 's/;/ /g'
cat Howell1.csv | sed 's/;/ /g' | less

How many lines?
cat Howell1.csv | wc -l

How many people?
cat Howell1.csv | grep -v height | wc -l

Who are the tallest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 1 | tail -5

Who are the oldest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 3 | tail -5

How many men?
cat Howell1.csv | grep '1$' | wc -l

How many women?
cat Howell1.csv | grep '0$' | wc -l

What is the average age?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | awk '{sum+=$3} END {print "AVG =",sum/NR}'

The UNIX way – asking questions about a text file
Can I look at that file a bit better?

cat Howell1.csv | sed 's/;/ /g'
cat Howell1.csv | sed 's/;/ /g' | less

How many lines?
cat Howell1.csv | wc -l

How many people?
cat Howell1.csv | grep -v height | wc -l

Who are the tallest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 1 | tail -5

Who are the oldest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 3 | tail -5

How many men?
cat Howell1.csv | grep '1$' | wc -l

How many women?
cat Howell1.csv | grep '0$' | wc -l

What is the average age?

cat Howell1.csv | grep -v height | sed 's/;/ /g' | awk '{sum+=$3} END {print "AVG =",sum/NR}'

The UNIX way – asking questions about a text file
Can I look at that file a bit better?

cat Howell1.csv | sed 's/;/ /g'
cat Howell1.csv | sed 's/;/ /g' | less

How many lines?
cat Howell1.csv | wc -l

How many people?
cat Howell1.csv | grep -v height | wc -l

Who are the tallest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 1 | tail -5

Who are the oldest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 3 | tail -5

How many men?
cat Howell1.csv | grep '1$' | wc -l

How many women?
cat Howell1.csv | grep '0$' | wc -l

What is the average age?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | awk '{sum+=$3} END {print "AVG =",sum/NR}'

The UNIX way – example of web scraping

Build up a web scraping filter

Listing 1: Anatomy of a web scraping pipeline
wget -O - https://www.verywellfamily.com/top-1000-baby-girl-names-2757832 | lynx -stdin --dump
wget -O - https://www.verywellfamily.com/top-1000-baby-girl-names-2757832 | lynx -stdin --dump | less
wget -O - https://www.verywellfamily.com/top-1000-baby-girl-names-2757832 | lynx -stdin --dump | grep '. ' |

grep '^ ∗[0-9]'
wget -O - https://www.verywellfamily.com/top-1000-baby-girl-names-2757832 | lynx -stdin --dump | grep '. ' |

grep '^ ∗[0-9]' | grep -v http
wget -O - https://www.verywellfamily.com/top-1000-baby-girl-names-2757832 | lynx -stdin --dump | grep '. ' |

grep '^ ∗[0-9]' | grep -v http | grep -v file: | grep -v about:
wget -O - https://www.verywellfamily.com/top-1000-baby-girl-names-2757832 | lynx -stdin --dump | grep '. ' |

grep '^ ∗[0-9]' | grep -v http | grep -v file: | grep -v about: | grep '[0-9]\.'
NAMES=`wget -O - https://www.verywellfamily.com/top-1000-baby-girl-names-2757832 | lynx -stdin --dump |

grep '. ' | grep '^ ∗[0-9]' | grep -v http | grep -v file: | grep -v about: | grep '[0-9]\.'`
echo $NAMES
now you can go to town on this

The UNIX way – what is it?

Philosophy at the user level
▶ Your rightful place is in the command line.
▶ Redirection (< and >) and pipes (|) are wonderful.
▶ Use many small programs which interact together to form pipelines.
▶ People breezily say “just use sed and awk” – thanks to the examples above we now know

what they mean.
▶ Use graphical and integrated utilities with suspicion.
▶ grep, sed, awk, wc, wget, youtube-dl, . . .

Philosophy at the programmer level
▶ Don’t write huge programs: write small programs that can be put together as a pipeline.
▶ Use scripting languages like Python to glue together compiled programs.

The UNIX way – what is it?

Philosophy at the user level
▶ Your rightful place is in the command line.
▶ Redirection (< and >) and pipes (|) are wonderful.
▶ Use many small programs which interact together to form pipelines.
▶ People breezily say “just use sed and awk” – thanks to the examples above we now know

what they mean.
▶ Use graphical and integrated utilities with suspicion.
▶ grep, sed, awk, wc, wget, youtube-dl, . . .

Philosophy at the programmer level
▶ Don’t write huge programs: write small programs that can be put together as a pipeline.
▶ Use scripting languages like Python to glue together compiled programs.

Perils of a nerd automating a task
Naturalmente . . . xkcd: https://xkcd.com/1319/

’Automating’ comes from the roots ’auto-’ meaning ’self-’, and ’******, meaning ********.

Perils of a nerd automating a task
Naturalmente . . . xkcd: https://xkcd.com/1319/

’Automating’ comes from the roots ’auto-’ meaning ’self-’, and ’******, meaning ********.

Command line diversions
Partially from https://www.binarytides.com/linux-fun-commands/

One-line ascii art
echo an example of figlet | figlet
banner "have a nice day"
cowsay hey dude
cowsay -f dragon "Run for cover, I feel a sneeze coming on."
cowsay -l
cowsay -f ghostbusters Who you Gonna Call
sl
fortune
factor 12103 # factoring numbers? can we use this to search for Mersenne primes?
factor `echo "2^7-1" | bc` ; factor `echo "2^11-1" | bc` ; factor `echo "2^13-1" | bc`
pi 50
espeak "Hello Linux, where are the penguins"
telnet towel.blinkenlights.nl

jpeg to ascii
wget https://upload.wikimedia.org/wikipedia/commons/2/23/Dennis_Ritchie_2011.jpg
make your terminal very big and try
jp2a -f Dennis_Ritchie_2011.jpg
jp2a -f --color Dennis_Ritchie_2011.jpg

Dennis Ritchie

Dennis Ritchie who created the
C programming language and
co-created UNIX. Let’s make
ascii art of him.

https://www.binarytides.com/linux-fun-commands/

Editor wars
Naturalmente . . . xkcd: https://xkcd.com/378/

Real programmers set the universal constants at the start such that the universe evolves to contain the disk with the data they want.

Editor wars
Naturalmente . . . xkcd: https://xkcd.com/378/

Real programmers set the universal constants at the start such that the universe evolves to contain the disk with the data they want.

Emacs vs. vi

Two guys are sitting in a bar, and get talking.
“What’s you IQ?” one asks.
“169” is the reply.
“Wow, amazing — my IQ’s 172. What’re your ideas on Hawking’s latest work on black hole
evaporation?”
And the two get chatting and become lifelong friends.

Further down the bar, two other guys are comparing IQs.
“Mine’s 104”
“Gosh, mine’s 102. What do you think about the latest Cubs game?” And the two become
lifelong friends.

Even further down the bar, two other guys are also comparing IQs.
“Mine’s 53.”
“Wow! Mine’s 54. Do you use emacs or vi?”

Emacs vs. vi

Two guys are sitting in a bar, and get talking.
“What’s you IQ?” one asks.
“169” is the reply.
“Wow, amazing — my IQ’s 172. What’re your ideas on Hawking’s latest work on black hole
evaporation?”
And the two get chatting and become lifelong friends.

Further down the bar, two other guys are comparing IQs.
“Mine’s 104”
“Gosh, mine’s 102. What do you think about the latest Cubs game?” And the two become
lifelong friends.

Even further down the bar, two other guys are also comparing IQs.
“Mine’s 53.”
“Wow! Mine’s 54. Do you use emacs or vi?”

Emacs vs. vi

Two guys are sitting in a bar, and get talking.
“What’s you IQ?” one asks.
“169” is the reply.
“Wow, amazing — my IQ’s 172. What’re your ideas on Hawking’s latest work on black hole
evaporation?”
And the two get chatting and become lifelong friends.

Further down the bar, two other guys are comparing IQs.
“Mine’s 104”
“Gosh, mine’s 102. What do you think about the latest Cubs game?” And the two become
lifelong friends.

Even further down the bar, two other guys are also comparing IQs.
“Mine’s 53.”
“Wow! Mine’s 54. Do you use emacs or vi?”

emacs vs. vi in the age of ChatGPT

emacs vs. vi – productivity

Tour of programming editors
. . . and integrated development environments (IDEs)

Editors
▶ Personal preference: emacs
▶ Personal preference: vi for quickies.
▶ Truth is: vim is full-featured and even getting slow!

IDEs
▶ Eclipse.
▶ VSCode.
▶ Smaller ones, like kdevelop.

Version control (VC) – generalities

Motivation and history

Importance of tracking changes and
reproducing old versions.

Technical coordination of contributions from
other programmers.

1972 SCCS, Marc Rochkind, Bell Labs
1982 RCS
1990 CVS
2000 Subversion
2005 mercurial
2005 git, Linus Torvalds

“Social networking” VC sites
Web sites that add wikis, bug tracking, other
collaboration features.
1998 sourceware.cygnus.com
1999 sourceforge.net
2008 github
2011 gitlab
2012 bitbucket

Version control (VC) – generalities

Motivation and history

Importance of tracking changes and
reproducing old versions.

Technical coordination of contributions from
other programmers.

1972 SCCS, Marc Rochkind, Bell Labs
1982 RCS
1990 CVS
2000 Subversion
2005 mercurial
2005 git, Linus Torvalds

“Social networking” VC sites
Web sites that add wikis, bug tracking, other
collaboration features.
1998 sourceware.cygnus.com
1999 sourceforge.net
2008 github
2011 gitlab
2012 bitbucket

Version control (VC) – generalities

Motivation and history

Importance of tracking changes and
reproducing old versions.

Technical coordination of contributions from
other programmers.

1972 SCCS, Marc Rochkind, Bell Labs
1982 RCS
1990 CVS
2000 Subversion
2005 mercurial
2005 git, Linus Torvalds

“Social networking” VC sites
Web sites that add wikis, bug tracking, other
collaboration features.
1998 sourceware.cygnus.com
1999 sourceforge.net
2008 github
2011 gitlab
2012 bitbucket

Version control (VC) – generalities

Motivation and history

Importance of tracking changes and
reproducing old versions.

Technical coordination of contributions from
other programmers.

1972 SCCS, Marc Rochkind, Bell Labs
1982 RCS
1990 CVS
2000 Subversion
2005 mercurial
2005 git, Linus Torvalds

“Social networking” VC sites
Web sites that add wikis, bug tracking, other
collaboration features.
1998 sourceware.cygnus.com
1999 sourceforge.net
2008 github
2011 gitlab
2012 bitbucket

Version control (VC) – generalities

Motivation and history

Importance of tracking changes and
reproducing old versions.

Technical coordination of contributions from
other programmers.

1972 SCCS, Marc Rochkind, Bell Labs
1982 RCS
1990 CVS
2000 Subversion
2005 mercurial
2005 git, Linus Torvalds

“Social networking” VC sites
Web sites that add wikis, bug tracking, other
collaboration features.

1998 sourceware.cygnus.com
1999 sourceforge.net
2008 github
2011 gitlab
2012 bitbucket

Version control (VC) – generalities

Motivation and history

Importance of tracking changes and
reproducing old versions.

Technical coordination of contributions from
other programmers.

1972 SCCS, Marc Rochkind, Bell Labs
1982 RCS
1990 CVS
2000 Subversion
2005 mercurial
2005 git, Linus Torvalds

“Social networking” VC sites
Web sites that add wikis, bug tracking, other
collaboration features.
1998 sourceware.cygnus.com
1999 sourceforge.net
2008 github
2011 gitlab
2012 bitbucket

Version control – git workflow
From https://docs.gitlab.com/ee/gitlab-basics/start-using-git.html

One time setup
git config --global user.name "FirstName LastName"
git config --global user.email "user@domain.tld"
git config --global --list

One time per project
If you are creating a new project:
git init .
If you are cloning an existing project from somwhere:
git clone git@someplace.tld:/path/to/master/reponame
cd reponame

One time when you add new files
echo "int main() { return 0; }" > trivial.c
git add trivial.c

https://docs.gitlab.com/ee/gitlab-basics/start-using-git.html

Version control – git workflow (continued)
From https://docs.gitlab.com/ee/gitlab-basics/start-using-git.html

Daily work flow
1. git pull ## pulls in what other people have been doing
2. Edit code and save.
3. git commit -a
4. git push ## synchronize out to other people's code

Taking stock
1. git log ## detailed information on what's been happening
2. git tag release-1.5 ## reproducibly define a release

But. . .
Git was created by Linus Torvalds to develop the Linux kernel. It is poorly suited to most
people’s work flows. Still, it is the most used.
Only (and very good) alternative: Mercurial, but much less used.

https://docs.gitlab.com/ee/gitlab-basics/start-using-git.html

Version control – git - be skeptical
Naturalmente . . . xkcd: https://xkcd.com/1597/

If that doesn’t fix it, git.txt contains the phone number of a friend of mine who understands git. Just wait through a few minutes of ’It’s really pretty

simple, just think of branches as...’ and eventually you’ll learn the commands that will fix everything.

https://xkcd.com/1597/

Version control – git - be skeptical
Naturalmente . . . xkcd: https://xkcd.com/1597/

If that doesn’t fix it, git.txt contains the phone number of a friend of mine who understands git. Just wait through a few minutes of ’It’s really pretty

simple, just think of branches as...’ and eventually you’ll learn the commands that will fix everything.

https://xkcd.com/1597/

The need for debugging
A memory error
Worked example of simple program that blows past the limits on an array.

/∗ compile with "gcc -g -fno-stack-protector mem-trash.c -o mem-trash", run with "./mem-trash" ∗/
#include <stdio.h>
#include <string.h>

int main()
{

char my_string[9];
int important_array[8];
int crucial_value;
int i;

crucial_value = 42;
printf("just set crucial_value to: %d\n", crucial_value);
strcpy(my_string, "this is a string that is longer than what I have allocated for it");
printf("Just set my_string to be <%s>\n", my_string);
printf("After setting my_string, crucial_value is: %d\n", crucial_value);
for (i = 0; i < 8; ++i) {

important_array[i] = i∗i; /∗ fill this important array with the squares of numbers ∗/
}
printf("After setting the array, my_string is <%s>\n", my_string);

}

The need for debugging
A memory error
Worked example of simple program that blows past the limits on an array.

/∗ compile with "gcc -g -fno-stack-protector mem-trash.c -o mem-trash", run with "./mem-trash" ∗/
#include <stdio.h>
#include <string.h>

int main()
{

char my_string[9];
int important_array[8];
int crucial_value;
int i;

crucial_value = 42;
printf("just set crucial_value to: %d\n", crucial_value);
strcpy(my_string, "this is a string that is longer than what I have allocated for it");
printf("Just set my_string to be <%s>\n", my_string);
printf("After setting my_string, crucial_value is: %d\n", crucial_value);
for (i = 0; i < 8; ++i) {

important_array[i] = i∗i; /∗ fill this important array with the squares of numbers ∗/
}
printf("After setting the array, my_string is <%s>\n", my_string);

}

Output

$./mem-trash
just set crucial_value to: 42
Just set my_string to be <this is a string that is longer than what I have allocated for it>
After setting my_string, crucial_value is: 1920234272
After setting the array, my_string is <this is a st>
Segmentation fault (core dumped)

Source level debugging
gdb for C
Share a terminal session to run this gdb example:
$ gdb mem-trash
(gdb) break main
Breakpoint 1 at 0x652: file mem-trash.c, line 12.
(gdb) run
Starting program: /home/markgalassi/repo/talks/2020-05-sfps-professional-development/mem-trash
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

Breakpoint 1, main () at mem-trash.c:12
12 crucial_value = 42;
(gdb) next
13 printf("just set crucial_value to: %d\n", crucial_value);
(gdb) next
just set crucial_value to: 42
14 strcpy(my_string, "this is a string that is longer than what I have allocated for it");
(gdb) next
15 printf("Just set my_string to be <%s>\n", my_string);
(gdb) next
Just set my_string to be <this is a string that is longer than what I have allocated for it>
16 printf("After setting my_string, crucial_value is: %d\n", crucial_value);
(gdb) print crucial_value
$1 = 1920234272
(gdb) next
After setting my_string, crucial_value is: 1920234272
17 for (i = 0; i < 8; ++i) {
and so forth

The MIT “missing semester”

Schedule
1/13/20: Course overview + the shell
1/14/20: Shell Tools and Scripting
1/15/20: Editors (Vim)
1/16/20: Data Wrangling
1/21/20: Command-line Environment
1/22/20: Version Control (Git)
1/23/20: Debugging and Profiling
1/27/20: Metaprogramming
1/28/20: Security and Cryptography
1/29/20: Potpourri
1/30/20: Q&A

Classes teach [. . .] but there’s one critical subject that’s
rarely covered [. . .]: proficiency with their tools. We’ll
teach you how to master the command-line, use a
powerful text editor, use fancy features of version control
systems, and much more!

Mastering these tools not only enables you to spend less
time on figuring out how to bend your tools to your will,
but it also lets you solve problems that would previously
seem impossibly complex.

Computers were built to automate manual tasks, yet
students often perform repetitive tasks by hand or fail to
take full advantage of powerful tools such as version
control and text editors. In the best case, this results in
inefficiencies and wasted time; in the worst case, it
results in issues like data loss or inability to complete
certain tasks.

The MIT “missing semester”

Schedule
1/13/20: Course overview + the shell
1/14/20: Shell Tools and Scripting
1/15/20: Editors (Vim)
1/16/20: Data Wrangling
1/21/20: Command-line Environment
1/22/20: Version Control (Git)
1/23/20: Debugging and Profiling
1/27/20: Metaprogramming
1/28/20: Security and Cryptography
1/29/20: Potpourri
1/30/20: Q&A

Classes teach [. . .] but there’s one critical subject that’s
rarely covered [. . .]: proficiency with their tools. We’ll
teach you how to master the command-line, use a
powerful text editor, use fancy features of version control
systems, and much more!

Mastering these tools not only enables you to spend less
time on figuring out how to bend your tools to your will,
but it also lets you solve problems that would previously
seem impossibly complex.

Computers were built to automate manual tasks, yet
students often perform repetitive tasks by hand or fail to
take full advantage of powerful tools such as version
control and text editors. In the best case, this results in
inefficiencies and wasted time; in the worst case, it
results in issues like data loss or inability to complete
certain tasks.

The MIT “missing semester”

Schedule
1/13/20: Course overview + the shell
1/14/20: Shell Tools and Scripting
1/15/20: Editors (Vim)
1/16/20: Data Wrangling
1/21/20: Command-line Environment
1/22/20: Version Control (Git)
1/23/20: Debugging and Profiling
1/27/20: Metaprogramming
1/28/20: Security and Cryptography
1/29/20: Potpourri
1/30/20: Q&A

Classes teach [. . .] but there’s one critical subject that’s
rarely covered [. . .]: proficiency with their tools. We’ll
teach you how to master the command-line, use a
powerful text editor, use fancy features of version control
systems, and much more!

Mastering these tools not only enables you to spend less
time on figuring out how to bend your tools to your will,
but it also lets you solve problems that would previously
seem impossibly complex.

Computers were built to automate manual tasks, yet
students often perform repetitive tasks by hand or fail to
take full advantage of powerful tools such as version
control and text editors. In the best case, this results in
inefficiencies and wasted time; in the worst case, it
results in issues like data loss or inability to complete
certain tasks.

What does the world do with computers
The picture is different from what you might think

By number of units: embedded
The data in 2000 CE was that less than 1% of computing power was on desktop/laptop
computers.

By computing power: server farms
Numbers hard to get: cagey cloud computing vendors.
Amazon, Microsoft, Google “bet the farm” on cloud platform - 90% of Microsoft R&D was for
its cloud.

The bones of the world
What do computers actually do in the world? – possible categorization

agricultural machinery

civil infrastructure

personal desktop

factory automation

vehicle control

personal laptop

office desktop

home automation

very small embedded

web server

supercomputers

personal mobile

engineering workstation

networking infrastructure

The bones of the world
What do computers actually do in the world? – home user awareness

agricultural machinery

civil infrastructure

personal desktop

factory automation

vehicle control

personal laptop

office desktop

home automation

very small embedded

web server

supercomputers

personal mobile

engineering workstation

networking infrastructure

The bones of the world
What do computers actually do in the world? – mechanical engineer awareness

agricultural machinery

civil infrastructure

personal desktop

factory automation

vehicle control

personal laptop

office desktop

home automation

very small embedded

web server

supercomputers

personal mobile

engineering workstation

networking infrastructure

The bones of the world
What do computers actually do in the world? – electrical engineer awareness

agricultural machinery

civil infrastructure

personal desktop

factory automation

vehicle control

personal laptop

office desktop

home automation

very small embedded

web server

supercomputers

personal mobile

engineering workstation

networking infrastructure

The bones of the world
What do computers actually do in the world? – scientist awareness

agricultural machinery

civil infrastructure

personal desktop

factory automation

vehicle control

personal laptop

office desktop

home automation

very small embedded

web server

supercomputers

personal mobile

engineering workstation

networking infrastructure

The bones of the world
What do computers actually do in the world? – software engineer awareness

agricultural machinery

civil infrastructure

personal desktop

factory automation

vehicle control

personal laptop

office desktop

home automation

very small embedded

web server

supercomputers

personal mobile

engineering workstation

networking infrastructure

Supercomputer hardware type evolution
From https://en.wikipedia.org/wiki/TOP500#/media/File:Processor_families_in_TOP500_supercomputers.svg

https://en.wikipedia.org/wiki/TOP500#/media/File:Processor_families_in_TOP500_supercomputers.svg

Case study: The Roots of Beowulf
From https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

The Roots of Beowulf
James R. Fischer

NASA Goddard Space Flight Center
Code 606

Greenbelt, MD 20771 USA
1-301-286-3465

james.r.fischer@nasa.gov

ABSTRACT
The first Beowulf Linux commodity cluster was constructed at
NASA’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
conditions within Goddard that brought the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This multifaceted story is told here for the first
time from the point of view of NASA project management.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures ---
distributed architectures; C.5.0 [Computer System
Implementation]: General; K.2 [Computing Milieux]: History of
Computing

General Terms
Management

Keywords
Beowulf, cluster, HPCC, NASA, Goddard, Sterling, Becker,
Dorband, Nickolls, Massively Parallel Processor, MPP, MasPar,
SIMD, Blitzen

1. INTRODUCTION
Looking back to the origins of the Beowulf cluster computing
movement in 1993, it is well known that the driving force was
NASA’s stated need for a gigaflops workstation costing less than
$50,000. That is true, but the creative conversations that brought
the necessary ideas together were precipitated by a more basic
need—to share software.

2. THE PRE-BEOWULF COMPUTING
WORLD
A flashback to the pre-Beowulf computing world paints a picture
of limitations. The perspective is NASA centric, Goddard Space

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems
Every system that we could buy ran proprietary system software
on proprietary hardware.
Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.
A facility’s only recourse for software enhancement and problem
resolution was through the original vendor.

2.2 Poor Price/Performance
In 1990, “a high-end workstation can be purchased for the
equivalent of a full-time employee.” [1]
In 1992, some facilities used clusters of workstations to offload
supercomputers and harvest wasted cycles; at Goddard we
salivated at this idea but had few high-end workstations to use.
The very high and rising cost of each new generation of
supercomputer development forced vendors to pass along those
costs to customers. The vendors could inflate their prices because
they were only competing with other vendors doing the same
thing.

2.3 Numerous Performance Choke Points
In 1991, the Intel Touchstone Delta at Caltech was the top
machine in the world, but compilation had to be done on Sun
workstations using proprietary system software that only ran on
Suns.
In 1993, Connection Machine Fortran compile and link
performance averaged about 10 lines per second on the host;
performance was similar for the MasPar used at Goddard. All
development had to be done on the host machine; vendors were
not really solving this problem (maybe they could sell you two
host machines).

2.4 Instability
In 1993, operational metrics recorded by NASA Ames Research
Center for their Intel Paragon reported “Reboots Weekly
Average” (typically 15–30) and “Mean Time to Incidents”
(typically 4–10 hours). Each reboot forced all running jobs to be
restarted, and the reboot for some systems might take 30 minutes.
Since the bigger MIMD machines were usually one-off’s, the OS
developers had to take the entire system away from users into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

20 Years of Beowulf: Workshop in Honor of Thomas Sterling’s 65th

Birthday, October 13–14, 2014, Annapolis, Maryland, USA.
Copyright 2014 ACM [NEED NEW NUMBER] …$15.00.

https://ntrs.nasa.gov/search.jsp?R=20150001285 2020-05-21T09:05:18+00:00Z

. . .

The Roots of Beowulf
James R. Fischer

NASA Goddard Space Flight Center
Code 606

Greenbelt, MD 20771 USA
1-301-286-3465

james.r.fischer@nasa.gov

ABSTRACT
The first Beowulf Linux commodity cluster was constructed at
NASA’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
conditions within Goddard that brought the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This multifaceted story is told here for the first
time from the point of view of NASA project management.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures ---
distributed architectures; C.5.0 [Computer System
Implementation]: General; K.2 [Computing Milieux]: History of
Computing

General Terms
Management

Keywords
Beowulf, cluster, HPCC, NASA, Goddard, Sterling, Becker,
Dorband, Nickolls, Massively Parallel Processor, MPP, MasPar,
SIMD, Blitzen

1. INTRODUCTION
Looking back to the origins of the Beowulf cluster computing
movement in 1993, it is well known that the driving force was
NASA’s stated need for a gigaflops workstation costing less than
$50,000. That is true, but the creative conversations that brought
the necessary ideas together were precipitated by a more basic
need—to share software.

2. THE PRE-BEOWULF COMPUTING
WORLD
A flashback to the pre-Beowulf computing world paints a picture
of limitations. The perspective is NASA centric, Goddard Space

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems
Every system that we could buy ran proprietary system software
on proprietary hardware.
Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.
A facility’s only recourse for software enhancement and problem
resolution was through the original vendor.

2.2 Poor Price/Performance
In 1990, “a high-end workstation can be purchased for the
equivalent of a full-time employee.” [1]
In 1992, some facilities used clusters of workstations to offload
supercomputers and harvest wasted cycles; at Goddard we
salivated at this idea but had few high-end workstations to use.
The very high and rising cost of each new generation of
supercomputer development forced vendors to pass along those
costs to customers. The vendors could inflate their prices because
they were only competing with other vendors doing the same
thing.

2.3 Numerous Performance Choke Points
In 1991, the Intel Touchstone Delta at Caltech was the top
machine in the world, but compilation had to be done on Sun
workstations using proprietary system software that only ran on
Suns.
In 1993, Connection Machine Fortran compile and link
performance averaged about 10 lines per second on the host;
performance was similar for the MasPar used at Goddard. All
development had to be done on the host machine; vendors were
not really solving this problem (maybe they could sell you two
host machines).

2.4 Instability
In 1993, operational metrics recorded by NASA Ames Research
Center for their Intel Paragon reported “Reboots Weekly
Average” (typically 15–30) and “Mean Time to Incidents”
(typically 4–10 hours). Each reboot forced all running jobs to be
restarted, and the reboot for some systems might take 30 minutes.
Since the bigger MIMD machines were usually one-off’s, the OS
developers had to take the entire system away from users into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

20 Years of Beowulf: Workshop in Honor of Thomas Sterling’s 65th

Birthday, October 13–14, 2014, Annapolis, Maryland, USA.
Copyright 2014 ACM [NEED NEW NUMBER] …$15.00.

https://ntrs.nasa.gov/search.jsp?R=20150001285 2020-05-21T09:05:18+00:00Z

Discussion points
▶ What were the problems in supercomputing, and how did Beowulf and Beowulf Blade clusters address

them?
▶ How does Beowulf’s arrival fit into the plot in (Frame 87)
▶ Taking a long view, should you wait for prices to reach a commodity level, or should you work with the

earlier more expensive generations?

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

Case study: The Roots of Beowulf
From https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

The Roots of Beowulf
James R. Fischer

NASA Goddard Space Flight Center
Code 606

Greenbelt, MD 20771 USA
1-301-286-3465

james.r.fischer@nasa.gov

ABSTRACT
The first Beowulf Linux commodity cluster was constructed at
NASA’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
conditions within Goddard that brought the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This multifaceted story is told here for the first
time from the point of view of NASA project management.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures ---
distributed architectures; C.5.0 [Computer System
Implementation]: General; K.2 [Computing Milieux]: History of
Computing

General Terms
Management

Keywords
Beowulf, cluster, HPCC, NASA, Goddard, Sterling, Becker,
Dorband, Nickolls, Massively Parallel Processor, MPP, MasPar,
SIMD, Blitzen

1. INTRODUCTION
Looking back to the origins of the Beowulf cluster computing
movement in 1993, it is well known that the driving force was
NASA’s stated need for a gigaflops workstation costing less than
$50,000. That is true, but the creative conversations that brought
the necessary ideas together were precipitated by a more basic
need—to share software.

2. THE PRE-BEOWULF COMPUTING
WORLD
A flashback to the pre-Beowulf computing world paints a picture
of limitations. The perspective is NASA centric, Goddard Space

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems
Every system that we could buy ran proprietary system software
on proprietary hardware.
Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.
A facility’s only recourse for software enhancement and problem
resolution was through the original vendor.

2.2 Poor Price/Performance
In 1990, “a high-end workstation can be purchased for the
equivalent of a full-time employee.” [1]
In 1992, some facilities used clusters of workstations to offload
supercomputers and harvest wasted cycles; at Goddard we
salivated at this idea but had few high-end workstations to use.
The very high and rising cost of each new generation of
supercomputer development forced vendors to pass along those
costs to customers. The vendors could inflate their prices because
they were only competing with other vendors doing the same
thing.

2.3 Numerous Performance Choke Points
In 1991, the Intel Touchstone Delta at Caltech was the top
machine in the world, but compilation had to be done on Sun
workstations using proprietary system software that only ran on
Suns.
In 1993, Connection Machine Fortran compile and link
performance averaged about 10 lines per second on the host;
performance was similar for the MasPar used at Goddard. All
development had to be done on the host machine; vendors were
not really solving this problem (maybe they could sell you two
host machines).

2.4 Instability
In 1993, operational metrics recorded by NASA Ames Research
Center for their Intel Paragon reported “Reboots Weekly
Average” (typically 15–30) and “Mean Time to Incidents”
(typically 4–10 hours). Each reboot forced all running jobs to be
restarted, and the reboot for some systems might take 30 minutes.
Since the bigger MIMD machines were usually one-off’s, the OS
developers had to take the entire system away from users into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

20 Years of Beowulf: Workshop in Honor of Thomas Sterling’s 65th

Birthday, October 13–14, 2014, Annapolis, Maryland, USA.
Copyright 2014 ACM [NEED NEW NUMBER] …$15.00.

https://ntrs.nasa.gov/search.jsp?R=20150001285 2020-05-21T09:05:18+00:00Z

. . .

The Roots of Beowulf
James R. Fischer

NASA Goddard Space Flight Center
Code 606

Greenbelt, MD 20771 USA
1-301-286-3465

james.r.fischer@nasa.gov

ABSTRACT
The first Beowulf Linux commodity cluster was constructed at
NASA’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
conditions within Goddard that brought the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This multifaceted story is told here for the first
time from the point of view of NASA project management.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures ---
distributed architectures; C.5.0 [Computer System
Implementation]: General; K.2 [Computing Milieux]: History of
Computing

General Terms
Management

Keywords
Beowulf, cluster, HPCC, NASA, Goddard, Sterling, Becker,
Dorband, Nickolls, Massively Parallel Processor, MPP, MasPar,
SIMD, Blitzen

1. INTRODUCTION
Looking back to the origins of the Beowulf cluster computing
movement in 1993, it is well known that the driving force was
NASA’s stated need for a gigaflops workstation costing less than
$50,000. That is true, but the creative conversations that brought
the necessary ideas together were precipitated by a more basic
need—to share software.

2. THE PRE-BEOWULF COMPUTING
WORLD
A flashback to the pre-Beowulf computing world paints a picture
of limitations. The perspective is NASA centric, Goddard Space

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems
Every system that we could buy ran proprietary system software
on proprietary hardware.
Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.
A facility’s only recourse for software enhancement and problem
resolution was through the original vendor.

2.2 Poor Price/Performance
In 1990, “a high-end workstation can be purchased for the
equivalent of a full-time employee.” [1]
In 1992, some facilities used clusters of workstations to offload
supercomputers and harvest wasted cycles; at Goddard we
salivated at this idea but had few high-end workstations to use.
The very high and rising cost of each new generation of
supercomputer development forced vendors to pass along those
costs to customers. The vendors could inflate their prices because
they were only competing with other vendors doing the same
thing.

2.3 Numerous Performance Choke Points
In 1991, the Intel Touchstone Delta at Caltech was the top
machine in the world, but compilation had to be done on Sun
workstations using proprietary system software that only ran on
Suns.
In 1993, Connection Machine Fortran compile and link
performance averaged about 10 lines per second on the host;
performance was similar for the MasPar used at Goddard. All
development had to be done on the host machine; vendors were
not really solving this problem (maybe they could sell you two
host machines).

2.4 Instability
In 1993, operational metrics recorded by NASA Ames Research
Center for their Intel Paragon reported “Reboots Weekly
Average” (typically 15–30) and “Mean Time to Incidents”
(typically 4–10 hours). Each reboot forced all running jobs to be
restarted, and the reboot for some systems might take 30 minutes.
Since the bigger MIMD machines were usually one-off’s, the OS
developers had to take the entire system away from users into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

20 Years of Beowulf: Workshop in Honor of Thomas Sterling’s 65th

Birthday, October 13–14, 2014, Annapolis, Maryland, USA.
Copyright 2014 ACM [NEED NEW NUMBER] …$15.00.

https://ntrs.nasa.gov/search.jsp?R=20150001285 2020-05-21T09:05:18+00:00Z

Discussion points
▶ What were the problems in supercomputing, and how did Beowulf and Beowulf Blade clusters address

them?
▶ How does Beowulf’s arrival fit into the plot in (Frame 87)
▶ Taking a long view, should you wait for prices to reach a commodity level, or should you work with the

earlier more expensive generations?

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

Case study: The Roots of Beowulf
From https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

The Roots of Beowulf
James R. Fischer

NASA Goddard Space Flight Center
Code 606

Greenbelt, MD 20771 USA
1-301-286-3465

james.r.fischer@nasa.gov

ABSTRACT
The first Beowulf Linux commodity cluster was constructed at
NASA’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
conditions within Goddard that brought the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This multifaceted story is told here for the first
time from the point of view of NASA project management.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures ---
distributed architectures; C.5.0 [Computer System
Implementation]: General; K.2 [Computing Milieux]: History of
Computing

General Terms
Management

Keywords
Beowulf, cluster, HPCC, NASA, Goddard, Sterling, Becker,
Dorband, Nickolls, Massively Parallel Processor, MPP, MasPar,
SIMD, Blitzen

1. INTRODUCTION
Looking back to the origins of the Beowulf cluster computing
movement in 1993, it is well known that the driving force was
NASA’s stated need for a gigaflops workstation costing less than
$50,000. That is true, but the creative conversations that brought
the necessary ideas together were precipitated by a more basic
need—to share software.

2. THE PRE-BEOWULF COMPUTING
WORLD
A flashback to the pre-Beowulf computing world paints a picture
of limitations. The perspective is NASA centric, Goddard Space

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems
Every system that we could buy ran proprietary system software
on proprietary hardware.
Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.
A facility’s only recourse for software enhancement and problem
resolution was through the original vendor.

2.2 Poor Price/Performance
In 1990, “a high-end workstation can be purchased for the
equivalent of a full-time employee.” [1]
In 1992, some facilities used clusters of workstations to offload
supercomputers and harvest wasted cycles; at Goddard we
salivated at this idea but had few high-end workstations to use.
The very high and rising cost of each new generation of
supercomputer development forced vendors to pass along those
costs to customers. The vendors could inflate their prices because
they were only competing with other vendors doing the same
thing.

2.3 Numerous Performance Choke Points
In 1991, the Intel Touchstone Delta at Caltech was the top
machine in the world, but compilation had to be done on Sun
workstations using proprietary system software that only ran on
Suns.
In 1993, Connection Machine Fortran compile and link
performance averaged about 10 lines per second on the host;
performance was similar for the MasPar used at Goddard. All
development had to be done on the host machine; vendors were
not really solving this problem (maybe they could sell you two
host machines).

2.4 Instability
In 1993, operational metrics recorded by NASA Ames Research
Center for their Intel Paragon reported “Reboots Weekly
Average” (typically 15–30) and “Mean Time to Incidents”
(typically 4–10 hours). Each reboot forced all running jobs to be
restarted, and the reboot for some systems might take 30 minutes.
Since the bigger MIMD machines were usually one-off’s, the OS
developers had to take the entire system away from users into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

20 Years of Beowulf: Workshop in Honor of Thomas Sterling’s 65th

Birthday, October 13–14, 2014, Annapolis, Maryland, USA.
Copyright 2014 ACM [NEED NEW NUMBER] …$15.00.

https://ntrs.nasa.gov/search.jsp?R=20150001285 2020-05-21T09:05:18+00:00Z

. . .

The Roots of Beowulf
James R. Fischer

NASA Goddard Space Flight Center
Code 606

Greenbelt, MD 20771 USA
1-301-286-3465

james.r.fischer@nasa.gov

ABSTRACT
The first Beowulf Linux commodity cluster was constructed at
NASA’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
conditions within Goddard that brought the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This multifaceted story is told here for the first
time from the point of view of NASA project management.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures ---
distributed architectures; C.5.0 [Computer System
Implementation]: General; K.2 [Computing Milieux]: History of
Computing

General Terms
Management

Keywords
Beowulf, cluster, HPCC, NASA, Goddard, Sterling, Becker,
Dorband, Nickolls, Massively Parallel Processor, MPP, MasPar,
SIMD, Blitzen

1. INTRODUCTION
Looking back to the origins of the Beowulf cluster computing
movement in 1993, it is well known that the driving force was
NASA’s stated need for a gigaflops workstation costing less than
$50,000. That is true, but the creative conversations that brought
the necessary ideas together were precipitated by a more basic
need—to share software.

2. THE PRE-BEOWULF COMPUTING
WORLD
A flashback to the pre-Beowulf computing world paints a picture
of limitations. The perspective is NASA centric, Goddard Space

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems
Every system that we could buy ran proprietary system software
on proprietary hardware.
Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.
A facility’s only recourse for software enhancement and problem
resolution was through the original vendor.

2.2 Poor Price/Performance
In 1990, “a high-end workstation can be purchased for the
equivalent of a full-time employee.” [1]
In 1992, some facilities used clusters of workstations to offload
supercomputers and harvest wasted cycles; at Goddard we
salivated at this idea but had few high-end workstations to use.
The very high and rising cost of each new generation of
supercomputer development forced vendors to pass along those
costs to customers. The vendors could inflate their prices because
they were only competing with other vendors doing the same
thing.

2.3 Numerous Performance Choke Points
In 1991, the Intel Touchstone Delta at Caltech was the top
machine in the world, but compilation had to be done on Sun
workstations using proprietary system software that only ran on
Suns.
In 1993, Connection Machine Fortran compile and link
performance averaged about 10 lines per second on the host;
performance was similar for the MasPar used at Goddard. All
development had to be done on the host machine; vendors were
not really solving this problem (maybe they could sell you two
host machines).

2.4 Instability
In 1993, operational metrics recorded by NASA Ames Research
Center for their Intel Paragon reported “Reboots Weekly
Average” (typically 15–30) and “Mean Time to Incidents”
(typically 4–10 hours). Each reboot forced all running jobs to be
restarted, and the reboot for some systems might take 30 minutes.
Since the bigger MIMD machines were usually one-off’s, the OS
developers had to take the entire system away from users into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

20 Years of Beowulf: Workshop in Honor of Thomas Sterling’s 65th

Birthday, October 13–14, 2014, Annapolis, Maryland, USA.
Copyright 2014 ACM [NEED NEW NUMBER] …$15.00.

https://ntrs.nasa.gov/search.jsp?R=20150001285 2020-05-21T09:05:18+00:00Z

Discussion points
▶ What were the problems in supercomputing, and how did Beowulf and Beowulf Blade clusters address

them?
▶ How does Beowulf’s arrival fit into the plot in (Frame 87)
▶ Taking a long view, should you wait for prices to reach a commodity level, or should you work with the

earlier more expensive generations?

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

Case study: The Roots of Beowulf
From https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

The Roots of Beowulf
James R. Fischer

NASA Goddard Space Flight Center
Code 606

Greenbelt, MD 20771 USA
1-301-286-3465

james.r.fischer@nasa.gov

ABSTRACT
The first Beowulf Linux commodity cluster was constructed at
NASA’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
conditions within Goddard that brought the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This multifaceted story is told here for the first
time from the point of view of NASA project management.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures ---
distributed architectures; C.5.0 [Computer System
Implementation]: General; K.2 [Computing Milieux]: History of
Computing

General Terms
Management

Keywords
Beowulf, cluster, HPCC, NASA, Goddard, Sterling, Becker,
Dorband, Nickolls, Massively Parallel Processor, MPP, MasPar,
SIMD, Blitzen

1. INTRODUCTION
Looking back to the origins of the Beowulf cluster computing
movement in 1993, it is well known that the driving force was
NASA’s stated need for a gigaflops workstation costing less than
$50,000. That is true, but the creative conversations that brought
the necessary ideas together were precipitated by a more basic
need—to share software.

2. THE PRE-BEOWULF COMPUTING
WORLD
A flashback to the pre-Beowulf computing world paints a picture
of limitations. The perspective is NASA centric, Goddard Space

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems
Every system that we could buy ran proprietary system software
on proprietary hardware.
Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.
A facility’s only recourse for software enhancement and problem
resolution was through the original vendor.

2.2 Poor Price/Performance
In 1990, “a high-end workstation can be purchased for the
equivalent of a full-time employee.” [1]
In 1992, some facilities used clusters of workstations to offload
supercomputers and harvest wasted cycles; at Goddard we
salivated at this idea but had few high-end workstations to use.
The very high and rising cost of each new generation of
supercomputer development forced vendors to pass along those
costs to customers. The vendors could inflate their prices because
they were only competing with other vendors doing the same
thing.

2.3 Numerous Performance Choke Points
In 1991, the Intel Touchstone Delta at Caltech was the top
machine in the world, but compilation had to be done on Sun
workstations using proprietary system software that only ran on
Suns.
In 1993, Connection Machine Fortran compile and link
performance averaged about 10 lines per second on the host;
performance was similar for the MasPar used at Goddard. All
development had to be done on the host machine; vendors were
not really solving this problem (maybe they could sell you two
host machines).

2.4 Instability
In 1993, operational metrics recorded by NASA Ames Research
Center for their Intel Paragon reported “Reboots Weekly
Average” (typically 15–30) and “Mean Time to Incidents”
(typically 4–10 hours). Each reboot forced all running jobs to be
restarted, and the reboot for some systems might take 30 minutes.
Since the bigger MIMD machines were usually one-off’s, the OS
developers had to take the entire system away from users into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

20 Years of Beowulf: Workshop in Honor of Thomas Sterling’s 65th

Birthday, October 13–14, 2014, Annapolis, Maryland, USA.
Copyright 2014 ACM [NEED NEW NUMBER] …$15.00.

https://ntrs.nasa.gov/search.jsp?R=20150001285 2020-05-21T09:05:18+00:00Z

. . .

The Roots of Beowulf
James R. Fischer

NASA Goddard Space Flight Center
Code 606

Greenbelt, MD 20771 USA
1-301-286-3465

james.r.fischer@nasa.gov

ABSTRACT
The first Beowulf Linux commodity cluster was constructed at
NASA’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
conditions within Goddard that brought the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This multifaceted story is told here for the first
time from the point of view of NASA project management.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures ---
distributed architectures; C.5.0 [Computer System
Implementation]: General; K.2 [Computing Milieux]: History of
Computing

General Terms
Management

Keywords
Beowulf, cluster, HPCC, NASA, Goddard, Sterling, Becker,
Dorband, Nickolls, Massively Parallel Processor, MPP, MasPar,
SIMD, Blitzen

1. INTRODUCTION
Looking back to the origins of the Beowulf cluster computing
movement in 1993, it is well known that the driving force was
NASA’s stated need for a gigaflops workstation costing less than
$50,000. That is true, but the creative conversations that brought
the necessary ideas together were precipitated by a more basic
need—to share software.

2. THE PRE-BEOWULF COMPUTING
WORLD
A flashback to the pre-Beowulf computing world paints a picture
of limitations. The perspective is NASA centric, Goddard Space

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems
Every system that we could buy ran proprietary system software
on proprietary hardware.
Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.
A facility’s only recourse for software enhancement and problem
resolution was through the original vendor.

2.2 Poor Price/Performance
In 1990, “a high-end workstation can be purchased for the
equivalent of a full-time employee.” [1]
In 1992, some facilities used clusters of workstations to offload
supercomputers and harvest wasted cycles; at Goddard we
salivated at this idea but had few high-end workstations to use.
The very high and rising cost of each new generation of
supercomputer development forced vendors to pass along those
costs to customers. The vendors could inflate their prices because
they were only competing with other vendors doing the same
thing.

2.3 Numerous Performance Choke Points
In 1991, the Intel Touchstone Delta at Caltech was the top
machine in the world, but compilation had to be done on Sun
workstations using proprietary system software that only ran on
Suns.
In 1993, Connection Machine Fortran compile and link
performance averaged about 10 lines per second on the host;
performance was similar for the MasPar used at Goddard. All
development had to be done on the host machine; vendors were
not really solving this problem (maybe they could sell you two
host machines).

2.4 Instability
In 1993, operational metrics recorded by NASA Ames Research
Center for their Intel Paragon reported “Reboots Weekly
Average” (typically 15–30) and “Mean Time to Incidents”
(typically 4–10 hours). Each reboot forced all running jobs to be
restarted, and the reboot for some systems might take 30 minutes.
Since the bigger MIMD machines were usually one-off’s, the OS
developers had to take the entire system away from users into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

20 Years of Beowulf: Workshop in Honor of Thomas Sterling’s 65th

Birthday, October 13–14, 2014, Annapolis, Maryland, USA.
Copyright 2014 ACM [NEED NEW NUMBER] …$15.00.

https://ntrs.nasa.gov/search.jsp?R=20150001285 2020-05-21T09:05:18+00:00Z

Discussion points

▶ What were the problems in supercomputing, and how did Beowulf and Beowulf Blade clusters address
them?

▶ How does Beowulf’s arrival fit into the plot in (Frame 87)
▶ Taking a long view, should you wait for prices to reach a commodity level, or should you work with the

earlier more expensive generations?

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

Case study: The Roots of Beowulf
From https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

The Roots of Beowulf
James R. Fischer

NASA Goddard Space Flight Center
Code 606

Greenbelt, MD 20771 USA
1-301-286-3465

james.r.fischer@nasa.gov

ABSTRACT
The first Beowulf Linux commodity cluster was constructed at
NASA’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
conditions within Goddard that brought the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This multifaceted story is told here for the first
time from the point of view of NASA project management.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures ---
distributed architectures; C.5.0 [Computer System
Implementation]: General; K.2 [Computing Milieux]: History of
Computing

General Terms
Management

Keywords
Beowulf, cluster, HPCC, NASA, Goddard, Sterling, Becker,
Dorband, Nickolls, Massively Parallel Processor, MPP, MasPar,
SIMD, Blitzen

1. INTRODUCTION
Looking back to the origins of the Beowulf cluster computing
movement in 1993, it is well known that the driving force was
NASA’s stated need for a gigaflops workstation costing less than
$50,000. That is true, but the creative conversations that brought
the necessary ideas together were precipitated by a more basic
need—to share software.

2. THE PRE-BEOWULF COMPUTING
WORLD
A flashback to the pre-Beowulf computing world paints a picture
of limitations. The perspective is NASA centric, Goddard Space

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems
Every system that we could buy ran proprietary system software
on proprietary hardware.
Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.
A facility’s only recourse for software enhancement and problem
resolution was through the original vendor.

2.2 Poor Price/Performance
In 1990, “a high-end workstation can be purchased for the
equivalent of a full-time employee.” [1]
In 1992, some facilities used clusters of workstations to offload
supercomputers and harvest wasted cycles; at Goddard we
salivated at this idea but had few high-end workstations to use.
The very high and rising cost of each new generation of
supercomputer development forced vendors to pass along those
costs to customers. The vendors could inflate their prices because
they were only competing with other vendors doing the same
thing.

2.3 Numerous Performance Choke Points
In 1991, the Intel Touchstone Delta at Caltech was the top
machine in the world, but compilation had to be done on Sun
workstations using proprietary system software that only ran on
Suns.
In 1993, Connection Machine Fortran compile and link
performance averaged about 10 lines per second on the host;
performance was similar for the MasPar used at Goddard. All
development had to be done on the host machine; vendors were
not really solving this problem (maybe they could sell you two
host machines).

2.4 Instability
In 1993, operational metrics recorded by NASA Ames Research
Center for their Intel Paragon reported “Reboots Weekly
Average” (typically 15–30) and “Mean Time to Incidents”
(typically 4–10 hours). Each reboot forced all running jobs to be
restarted, and the reboot for some systems might take 30 minutes.
Since the bigger MIMD machines were usually one-off’s, the OS
developers had to take the entire system away from users into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

20 Years of Beowulf: Workshop in Honor of Thomas Sterling’s 65th

Birthday, October 13–14, 2014, Annapolis, Maryland, USA.
Copyright 2014 ACM [NEED NEW NUMBER] …$15.00.

https://ntrs.nasa.gov/search.jsp?R=20150001285 2020-05-21T09:05:18+00:00Z

. . .

The Roots of Beowulf
James R. Fischer

NASA Goddard Space Flight Center
Code 606

Greenbelt, MD 20771 USA
1-301-286-3465

james.r.fischer@nasa.gov

ABSTRACT
The first Beowulf Linux commodity cluster was constructed at
NASA’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
conditions within Goddard that brought the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This multifaceted story is told here for the first
time from the point of view of NASA project management.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures ---
distributed architectures; C.5.0 [Computer System
Implementation]: General; K.2 [Computing Milieux]: History of
Computing

General Terms
Management

Keywords
Beowulf, cluster, HPCC, NASA, Goddard, Sterling, Becker,
Dorband, Nickolls, Massively Parallel Processor, MPP, MasPar,
SIMD, Blitzen

1. INTRODUCTION
Looking back to the origins of the Beowulf cluster computing
movement in 1993, it is well known that the driving force was
NASA’s stated need for a gigaflops workstation costing less than
$50,000. That is true, but the creative conversations that brought
the necessary ideas together were precipitated by a more basic
need—to share software.

2. THE PRE-BEOWULF COMPUTING
WORLD
A flashback to the pre-Beowulf computing world paints a picture
of limitations. The perspective is NASA centric, Goddard Space

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems
Every system that we could buy ran proprietary system software
on proprietary hardware.
Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.
A facility’s only recourse for software enhancement and problem
resolution was through the original vendor.

2.2 Poor Price/Performance
In 1990, “a high-end workstation can be purchased for the
equivalent of a full-time employee.” [1]
In 1992, some facilities used clusters of workstations to offload
supercomputers and harvest wasted cycles; at Goddard we
salivated at this idea but had few high-end workstations to use.
The very high and rising cost of each new generation of
supercomputer development forced vendors to pass along those
costs to customers. The vendors could inflate their prices because
they were only competing with other vendors doing the same
thing.

2.3 Numerous Performance Choke Points
In 1991, the Intel Touchstone Delta at Caltech was the top
machine in the world, but compilation had to be done on Sun
workstations using proprietary system software that only ran on
Suns.
In 1993, Connection Machine Fortran compile and link
performance averaged about 10 lines per second on the host;
performance was similar for the MasPar used at Goddard. All
development had to be done on the host machine; vendors were
not really solving this problem (maybe they could sell you two
host machines).

2.4 Instability
In 1993, operational metrics recorded by NASA Ames Research
Center for their Intel Paragon reported “Reboots Weekly
Average” (typically 15–30) and “Mean Time to Incidents”
(typically 4–10 hours). Each reboot forced all running jobs to be
restarted, and the reboot for some systems might take 30 minutes.
Since the bigger MIMD machines were usually one-off’s, the OS
developers had to take the entire system away from users into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

20 Years of Beowulf: Workshop in Honor of Thomas Sterling’s 65th

Birthday, October 13–14, 2014, Annapolis, Maryland, USA.
Copyright 2014 ACM [NEED NEW NUMBER] …$15.00.

https://ntrs.nasa.gov/search.jsp?R=20150001285 2020-05-21T09:05:18+00:00Z

Discussion points
▶ What were the problems in supercomputing, and how did Beowulf and Beowulf Blade clusters address

them?

▶ How does Beowulf’s arrival fit into the plot in (Frame 87)
▶ Taking a long view, should you wait for prices to reach a commodity level, or should you work with the

earlier more expensive generations?

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

Case study: The Roots of Beowulf
From https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

The Roots of Beowulf
James R. Fischer

NASA Goddard Space Flight Center
Code 606

Greenbelt, MD 20771 USA
1-301-286-3465

james.r.fischer@nasa.gov

ABSTRACT
The first Beowulf Linux commodity cluster was constructed at
NASA’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
conditions within Goddard that brought the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This multifaceted story is told here for the first
time from the point of view of NASA project management.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures ---
distributed architectures; C.5.0 [Computer System
Implementation]: General; K.2 [Computing Milieux]: History of
Computing

General Terms
Management

Keywords
Beowulf, cluster, HPCC, NASA, Goddard, Sterling, Becker,
Dorband, Nickolls, Massively Parallel Processor, MPP, MasPar,
SIMD, Blitzen

1. INTRODUCTION
Looking back to the origins of the Beowulf cluster computing
movement in 1993, it is well known that the driving force was
NASA’s stated need for a gigaflops workstation costing less than
$50,000. That is true, but the creative conversations that brought
the necessary ideas together were precipitated by a more basic
need—to share software.

2. THE PRE-BEOWULF COMPUTING
WORLD
A flashback to the pre-Beowulf computing world paints a picture
of limitations. The perspective is NASA centric, Goddard Space

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems
Every system that we could buy ran proprietary system software
on proprietary hardware.
Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.
A facility’s only recourse for software enhancement and problem
resolution was through the original vendor.

2.2 Poor Price/Performance
In 1990, “a high-end workstation can be purchased for the
equivalent of a full-time employee.” [1]
In 1992, some facilities used clusters of workstations to offload
supercomputers and harvest wasted cycles; at Goddard we
salivated at this idea but had few high-end workstations to use.
The very high and rising cost of each new generation of
supercomputer development forced vendors to pass along those
costs to customers. The vendors could inflate their prices because
they were only competing with other vendors doing the same
thing.

2.3 Numerous Performance Choke Points
In 1991, the Intel Touchstone Delta at Caltech was the top
machine in the world, but compilation had to be done on Sun
workstations using proprietary system software that only ran on
Suns.
In 1993, Connection Machine Fortran compile and link
performance averaged about 10 lines per second on the host;
performance was similar for the MasPar used at Goddard. All
development had to be done on the host machine; vendors were
not really solving this problem (maybe they could sell you two
host machines).

2.4 Instability
In 1993, operational metrics recorded by NASA Ames Research
Center for their Intel Paragon reported “Reboots Weekly
Average” (typically 15–30) and “Mean Time to Incidents”
(typically 4–10 hours). Each reboot forced all running jobs to be
restarted, and the reboot for some systems might take 30 minutes.
Since the bigger MIMD machines were usually one-off’s, the OS
developers had to take the entire system away from users into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

20 Years of Beowulf: Workshop in Honor of Thomas Sterling’s 65th

Birthday, October 13–14, 2014, Annapolis, Maryland, USA.
Copyright 2014 ACM [NEED NEW NUMBER] …$15.00.

https://ntrs.nasa.gov/search.jsp?R=20150001285 2020-05-21T09:05:18+00:00Z

. . .

The Roots of Beowulf
James R. Fischer

NASA Goddard Space Flight Center
Code 606

Greenbelt, MD 20771 USA
1-301-286-3465

james.r.fischer@nasa.gov

ABSTRACT
The first Beowulf Linux commodity cluster was constructed at
NASA’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
conditions within Goddard that brought the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This multifaceted story is told here for the first
time from the point of view of NASA project management.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures ---
distributed architectures; C.5.0 [Computer System
Implementation]: General; K.2 [Computing Milieux]: History of
Computing

General Terms
Management

Keywords
Beowulf, cluster, HPCC, NASA, Goddard, Sterling, Becker,
Dorband, Nickolls, Massively Parallel Processor, MPP, MasPar,
SIMD, Blitzen

1. INTRODUCTION
Looking back to the origins of the Beowulf cluster computing
movement in 1993, it is well known that the driving force was
NASA’s stated need for a gigaflops workstation costing less than
$50,000. That is true, but the creative conversations that brought
the necessary ideas together were precipitated by a more basic
need—to share software.

2. THE PRE-BEOWULF COMPUTING
WORLD
A flashback to the pre-Beowulf computing world paints a picture
of limitations. The perspective is NASA centric, Goddard Space

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems
Every system that we could buy ran proprietary system software
on proprietary hardware.
Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.
A facility’s only recourse for software enhancement and problem
resolution was through the original vendor.

2.2 Poor Price/Performance
In 1990, “a high-end workstation can be purchased for the
equivalent of a full-time employee.” [1]
In 1992, some facilities used clusters of workstations to offload
supercomputers and harvest wasted cycles; at Goddard we
salivated at this idea but had few high-end workstations to use.
The very high and rising cost of each new generation of
supercomputer development forced vendors to pass along those
costs to customers. The vendors could inflate their prices because
they were only competing with other vendors doing the same
thing.

2.3 Numerous Performance Choke Points
In 1991, the Intel Touchstone Delta at Caltech was the top
machine in the world, but compilation had to be done on Sun
workstations using proprietary system software that only ran on
Suns.
In 1993, Connection Machine Fortran compile and link
performance averaged about 10 lines per second on the host;
performance was similar for the MasPar used at Goddard. All
development had to be done on the host machine; vendors were
not really solving this problem (maybe they could sell you two
host machines).

2.4 Instability
In 1993, operational metrics recorded by NASA Ames Research
Center for their Intel Paragon reported “Reboots Weekly
Average” (typically 15–30) and “Mean Time to Incidents”
(typically 4–10 hours). Each reboot forced all running jobs to be
restarted, and the reboot for some systems might take 30 minutes.
Since the bigger MIMD machines were usually one-off’s, the OS
developers had to take the entire system away from users into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

20 Years of Beowulf: Workshop in Honor of Thomas Sterling’s 65th

Birthday, October 13–14, 2014, Annapolis, Maryland, USA.
Copyright 2014 ACM [NEED NEW NUMBER] …$15.00.

https://ntrs.nasa.gov/search.jsp?R=20150001285 2020-05-21T09:05:18+00:00Z

Discussion points
▶ What were the problems in supercomputing, and how did Beowulf and Beowulf Blade clusters address

them?
▶ How does Beowulf’s arrival fit into the plot in (Frame 87)

▶ Taking a long view, should you wait for prices to reach a commodity level, or should you work with the
earlier more expensive generations?

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

Case study: The Roots of Beowulf
From https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

The Roots of Beowulf
James R. Fischer

NASA Goddard Space Flight Center
Code 606

Greenbelt, MD 20771 USA
1-301-286-3465

james.r.fischer@nasa.gov

ABSTRACT
The first Beowulf Linux commodity cluster was constructed at
NASA’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
conditions within Goddard that brought the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This multifaceted story is told here for the first
time from the point of view of NASA project management.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures ---
distributed architectures; C.5.0 [Computer System
Implementation]: General; K.2 [Computing Milieux]: History of
Computing

General Terms
Management

Keywords
Beowulf, cluster, HPCC, NASA, Goddard, Sterling, Becker,
Dorband, Nickolls, Massively Parallel Processor, MPP, MasPar,
SIMD, Blitzen

1. INTRODUCTION
Looking back to the origins of the Beowulf cluster computing
movement in 1993, it is well known that the driving force was
NASA’s stated need for a gigaflops workstation costing less than
$50,000. That is true, but the creative conversations that brought
the necessary ideas together were precipitated by a more basic
need—to share software.

2. THE PRE-BEOWULF COMPUTING
WORLD
A flashback to the pre-Beowulf computing world paints a picture
of limitations. The perspective is NASA centric, Goddard Space

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems
Every system that we could buy ran proprietary system software
on proprietary hardware.
Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.
A facility’s only recourse for software enhancement and problem
resolution was through the original vendor.

2.2 Poor Price/Performance
In 1990, “a high-end workstation can be purchased for the
equivalent of a full-time employee.” [1]
In 1992, some facilities used clusters of workstations to offload
supercomputers and harvest wasted cycles; at Goddard we
salivated at this idea but had few high-end workstations to use.
The very high and rising cost of each new generation of
supercomputer development forced vendors to pass along those
costs to customers. The vendors could inflate their prices because
they were only competing with other vendors doing the same
thing.

2.3 Numerous Performance Choke Points
In 1991, the Intel Touchstone Delta at Caltech was the top
machine in the world, but compilation had to be done on Sun
workstations using proprietary system software that only ran on
Suns.
In 1993, Connection Machine Fortran compile and link
performance averaged about 10 lines per second on the host;
performance was similar for the MasPar used at Goddard. All
development had to be done on the host machine; vendors were
not really solving this problem (maybe they could sell you two
host machines).

2.4 Instability
In 1993, operational metrics recorded by NASA Ames Research
Center for their Intel Paragon reported “Reboots Weekly
Average” (typically 15–30) and “Mean Time to Incidents”
(typically 4–10 hours). Each reboot forced all running jobs to be
restarted, and the reboot for some systems might take 30 minutes.
Since the bigger MIMD machines were usually one-off’s, the OS
developers had to take the entire system away from users into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

20 Years of Beowulf: Workshop in Honor of Thomas Sterling’s 65th

Birthday, October 13–14, 2014, Annapolis, Maryland, USA.
Copyright 2014 ACM [NEED NEW NUMBER] …$15.00.

https://ntrs.nasa.gov/search.jsp?R=20150001285 2020-05-21T09:05:18+00:00Z

. . .

The Roots of Beowulf
James R. Fischer

NASA Goddard Space Flight Center
Code 606

Greenbelt, MD 20771 USA
1-301-286-3465

james.r.fischer@nasa.gov

ABSTRACT
The first Beowulf Linux commodity cluster was constructed at
NASA’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
conditions within Goddard that brought the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This multifaceted story is told here for the first
time from the point of view of NASA project management.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures ---
distributed architectures; C.5.0 [Computer System
Implementation]: General; K.2 [Computing Milieux]: History of
Computing

General Terms
Management

Keywords
Beowulf, cluster, HPCC, NASA, Goddard, Sterling, Becker,
Dorband, Nickolls, Massively Parallel Processor, MPP, MasPar,
SIMD, Blitzen

1. INTRODUCTION
Looking back to the origins of the Beowulf cluster computing
movement in 1993, it is well known that the driving force was
NASA’s stated need for a gigaflops workstation costing less than
$50,000. That is true, but the creative conversations that brought
the necessary ideas together were precipitated by a more basic
need—to share software.

2. THE PRE-BEOWULF COMPUTING
WORLD
A flashback to the pre-Beowulf computing world paints a picture
of limitations. The perspective is NASA centric, Goddard Space

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems
Every system that we could buy ran proprietary system software
on proprietary hardware.
Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.
A facility’s only recourse for software enhancement and problem
resolution was through the original vendor.

2.2 Poor Price/Performance
In 1990, “a high-end workstation can be purchased for the
equivalent of a full-time employee.” [1]
In 1992, some facilities used clusters of workstations to offload
supercomputers and harvest wasted cycles; at Goddard we
salivated at this idea but had few high-end workstations to use.
The very high and rising cost of each new generation of
supercomputer development forced vendors to pass along those
costs to customers. The vendors could inflate their prices because
they were only competing with other vendors doing the same
thing.

2.3 Numerous Performance Choke Points
In 1991, the Intel Touchstone Delta at Caltech was the top
machine in the world, but compilation had to be done on Sun
workstations using proprietary system software that only ran on
Suns.
In 1993, Connection Machine Fortran compile and link
performance averaged about 10 lines per second on the host;
performance was similar for the MasPar used at Goddard. All
development had to be done on the host machine; vendors were
not really solving this problem (maybe they could sell you two
host machines).

2.4 Instability
In 1993, operational metrics recorded by NASA Ames Research
Center for their Intel Paragon reported “Reboots Weekly
Average” (typically 15–30) and “Mean Time to Incidents”
(typically 4–10 hours). Each reboot forced all running jobs to be
restarted, and the reboot for some systems might take 30 minutes.
Since the bigger MIMD machines were usually one-off’s, the OS
developers had to take the entire system away from users into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

20 Years of Beowulf: Workshop in Honor of Thomas Sterling’s 65th

Birthday, October 13–14, 2014, Annapolis, Maryland, USA.
Copyright 2014 ACM [NEED NEW NUMBER] …$15.00.

https://ntrs.nasa.gov/search.jsp?R=20150001285 2020-05-21T09:05:18+00:00Z

Discussion points
▶ What were the problems in supercomputing, and how did Beowulf and Beowulf Blade clusters address

them?
▶ How does Beowulf’s arrival fit into the plot in (Frame 87)
▶ Taking a long view, should you wait for prices to reach a commodity level, or should you work with the

earlier more expensive generations?

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

Software freedom
The crisis
▶ The arcadian state: SHARE (1950s), DECUS (1960s), it was obvious!
▶ The CMU printer driver, Symbolics, Lisp Machines Inc., and the raiding of the MIT AI lab.

GNU Manifesto, 1983
What’s GNU? Gnu’s Not UNIX!

GNU, which stands for Gnu’s Not Unix, is the name for the complete Unix-compatible software
system which I am writing so that I can give it away free to everyone who can use it. Several
other volunteers are helping me. Contributions of time, money, programs and equipment are
greatly needed.
So far we have an Emacs text editor with Lisp for writing editor commands, a source level
debugger, a yacc-compatible parser generator, a linker, and around 35 utilities. A shell
(command interpreter) is nearly completed. A new portable optimizing C compiler has compiled
itself and may be released this year. An initial kernel exists but many more features are needed
to emulate Unix. When the kernel and compiler are finished, it will be possible to distribute a
GNU system suitable for program development. We will use TeX as our text formatter, . . .

Licensing, copyright, copyleft, and MIT puns
Free as in freedom - cost is the minor issue here.

Licensing concepts

▶ Difference between copyright and license.
▶ What if you do not specify a license?
▶ Amazing the kind of people who get this wrong.
▶ The four freedoms of free software.
▶ Licensing of derivative products.
▶ Copyleft juxtaposed to permissive licensing.
▶ Historical background for US copyright and patent laws.
▶ The correct juxtaposition: “free vs. proprietary”, not

“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
▶ Public domain.
▶ GNU General Public License

(GPL).
▶ GNU Lesser General Public

License (LGPL).
▶ Berkeley Software

Distribution (BSD) license.
▶ MIT X11 license.
▶ Pointless proliferation of

licenses.
▶ The Creative Commons

milieu.

Licensing, copyright, copyleft, and MIT puns
Free as in freedom - cost is the minor issue here.

Licensing concepts
▶ Difference between copyright and license.

▶ What if you do not specify a license?
▶ Amazing the kind of people who get this wrong.
▶ The four freedoms of free software.
▶ Licensing of derivative products.
▶ Copyleft juxtaposed to permissive licensing.
▶ Historical background for US copyright and patent laws.
▶ The correct juxtaposition: “free vs. proprietary”, not

“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
▶ Public domain.
▶ GNU General Public License

(GPL).
▶ GNU Lesser General Public

License (LGPL).
▶ Berkeley Software

Distribution (BSD) license.
▶ MIT X11 license.
▶ Pointless proliferation of

licenses.
▶ The Creative Commons

milieu.

Licensing, copyright, copyleft, and MIT puns
Free as in freedom - cost is the minor issue here.

Licensing concepts
▶ Difference between copyright and license.
▶ What if you do not specify a license?

▶ Amazing the kind of people who get this wrong.
▶ The four freedoms of free software.
▶ Licensing of derivative products.
▶ Copyleft juxtaposed to permissive licensing.
▶ Historical background for US copyright and patent laws.
▶ The correct juxtaposition: “free vs. proprietary”, not

“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
▶ Public domain.
▶ GNU General Public License

(GPL).
▶ GNU Lesser General Public

License (LGPL).
▶ Berkeley Software

Distribution (BSD) license.
▶ MIT X11 license.
▶ Pointless proliferation of

licenses.
▶ The Creative Commons

milieu.

Licensing, copyright, copyleft, and MIT puns
Free as in freedom - cost is the minor issue here.

Licensing concepts
▶ Difference between copyright and license.
▶ What if you do not specify a license?
▶ Amazing the kind of people who get this wrong.

▶ The four freedoms of free software.
▶ Licensing of derivative products.
▶ Copyleft juxtaposed to permissive licensing.
▶ Historical background for US copyright and patent laws.
▶ The correct juxtaposition: “free vs. proprietary”, not

“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
▶ Public domain.
▶ GNU General Public License

(GPL).
▶ GNU Lesser General Public

License (LGPL).
▶ Berkeley Software

Distribution (BSD) license.
▶ MIT X11 license.
▶ Pointless proliferation of

licenses.
▶ The Creative Commons

milieu.

Licensing, copyright, copyleft, and MIT puns
Free as in freedom - cost is the minor issue here.

Licensing concepts
▶ Difference between copyright and license.
▶ What if you do not specify a license?
▶ Amazing the kind of people who get this wrong.
▶ The four freedoms of free software.

▶ Licensing of derivative products.
▶ Copyleft juxtaposed to permissive licensing.
▶ Historical background for US copyright and patent laws.
▶ The correct juxtaposition: “free vs. proprietary”, not

“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
▶ Public domain.
▶ GNU General Public License

(GPL).
▶ GNU Lesser General Public

License (LGPL).
▶ Berkeley Software

Distribution (BSD) license.
▶ MIT X11 license.
▶ Pointless proliferation of

licenses.
▶ The Creative Commons

milieu.

Licensing, copyright, copyleft, and MIT puns
Free as in freedom - cost is the minor issue here.

Licensing concepts
▶ Difference between copyright and license.
▶ What if you do not specify a license?
▶ Amazing the kind of people who get this wrong.
▶ The four freedoms of free software.
▶ Licensing of derivative products.

▶ Copyleft juxtaposed to permissive licensing.
▶ Historical background for US copyright and patent laws.
▶ The correct juxtaposition: “free vs. proprietary”, not

“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
▶ Public domain.
▶ GNU General Public License

(GPL).
▶ GNU Lesser General Public

License (LGPL).
▶ Berkeley Software

Distribution (BSD) license.
▶ MIT X11 license.
▶ Pointless proliferation of

licenses.
▶ The Creative Commons

milieu.

Licensing, copyright, copyleft, and MIT puns
Free as in freedom - cost is the minor issue here.

Licensing concepts
▶ Difference between copyright and license.
▶ What if you do not specify a license?
▶ Amazing the kind of people who get this wrong.
▶ The four freedoms of free software.
▶ Licensing of derivative products.
▶ Copyleft juxtaposed to permissive licensing.

▶ Historical background for US copyright and patent laws.
▶ The correct juxtaposition: “free vs. proprietary”, not

“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
▶ Public domain.
▶ GNU General Public License

(GPL).
▶ GNU Lesser General Public

License (LGPL).
▶ Berkeley Software

Distribution (BSD) license.
▶ MIT X11 license.
▶ Pointless proliferation of

licenses.
▶ The Creative Commons

milieu.

Licensing, copyright, copyleft, and MIT puns
Free as in freedom - cost is the minor issue here.

Licensing concepts
▶ Difference between copyright and license.
▶ What if you do not specify a license?
▶ Amazing the kind of people who get this wrong.
▶ The four freedoms of free software.
▶ Licensing of derivative products.
▶ Copyleft juxtaposed to permissive licensing.
▶ Historical background for US copyright and patent laws.

▶ The correct juxtaposition: “free vs. proprietary”, not
“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
▶ Public domain.
▶ GNU General Public License

(GPL).
▶ GNU Lesser General Public

License (LGPL).
▶ Berkeley Software

Distribution (BSD) license.
▶ MIT X11 license.
▶ Pointless proliferation of

licenses.
▶ The Creative Commons

milieu.

Licensing, copyright, copyleft, and MIT puns
Free as in freedom - cost is the minor issue here.

Licensing concepts
▶ Difference between copyright and license.
▶ What if you do not specify a license?
▶ Amazing the kind of people who get this wrong.
▶ The four freedoms of free software.
▶ Licensing of derivative products.
▶ Copyleft juxtaposed to permissive licensing.
▶ Historical background for US copyright and patent laws.
▶ The correct juxtaposition: “free vs. proprietary”, not

“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
▶ Public domain.
▶ GNU General Public License

(GPL).
▶ GNU Lesser General Public

License (LGPL).
▶ Berkeley Software

Distribution (BSD) license.
▶ MIT X11 license.
▶ Pointless proliferation of

licenses.
▶ The Creative Commons

milieu.

Licensing, copyright, copyleft, and MIT puns
Free as in freedom - cost is the minor issue here.

Licensing concepts
▶ Difference between copyright and license.
▶ What if you do not specify a license?
▶ Amazing the kind of people who get this wrong.
▶ The four freedoms of free software.
▶ Licensing of derivative products.
▶ Copyleft juxtaposed to permissive licensing.
▶ Historical background for US copyright and patent laws.
▶ The correct juxtaposition: “free vs. proprietary”, not

“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses

▶ Public domain.
▶ GNU General Public License

(GPL).
▶ GNU Lesser General Public

License (LGPL).
▶ Berkeley Software

Distribution (BSD) license.
▶ MIT X11 license.
▶ Pointless proliferation of

licenses.
▶ The Creative Commons

milieu.

Licensing, copyright, copyleft, and MIT puns
Free as in freedom - cost is the minor issue here.

Licensing concepts
▶ Difference between copyright and license.
▶ What if you do not specify a license?
▶ Amazing the kind of people who get this wrong.
▶ The four freedoms of free software.
▶ Licensing of derivative products.
▶ Copyleft juxtaposed to permissive licensing.
▶ Historical background for US copyright and patent laws.
▶ The correct juxtaposition: “free vs. proprietary”, not

“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
▶ Public domain.

▶ GNU General Public License
(GPL).

▶ GNU Lesser General Public
License (LGPL).

▶ Berkeley Software
Distribution (BSD) license.

▶ MIT X11 license.
▶ Pointless proliferation of

licenses.
▶ The Creative Commons

milieu.

Licensing, copyright, copyleft, and MIT puns
Free as in freedom - cost is the minor issue here.

Licensing concepts
▶ Difference between copyright and license.
▶ What if you do not specify a license?
▶ Amazing the kind of people who get this wrong.
▶ The four freedoms of free software.
▶ Licensing of derivative products.
▶ Copyleft juxtaposed to permissive licensing.
▶ Historical background for US copyright and patent laws.
▶ The correct juxtaposition: “free vs. proprietary”, not

“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
▶ Public domain.
▶ GNU General Public License

(GPL).

▶ GNU Lesser General Public
License (LGPL).

▶ Berkeley Software
Distribution (BSD) license.

▶ MIT X11 license.
▶ Pointless proliferation of

licenses.
▶ The Creative Commons

milieu.

Licensing, copyright, copyleft, and MIT puns
Free as in freedom - cost is the minor issue here.

Licensing concepts
▶ Difference between copyright and license.
▶ What if you do not specify a license?
▶ Amazing the kind of people who get this wrong.
▶ The four freedoms of free software.
▶ Licensing of derivative products.
▶ Copyleft juxtaposed to permissive licensing.
▶ Historical background for US copyright and patent laws.
▶ The correct juxtaposition: “free vs. proprietary”, not

“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
▶ Public domain.
▶ GNU General Public License

(GPL).
▶ GNU Lesser General Public

License (LGPL).

▶ Berkeley Software
Distribution (BSD) license.

▶ MIT X11 license.
▶ Pointless proliferation of

licenses.
▶ The Creative Commons

milieu.

Licensing, copyright, copyleft, and MIT puns
Free as in freedom - cost is the minor issue here.

Licensing concepts
▶ Difference between copyright and license.
▶ What if you do not specify a license?
▶ Amazing the kind of people who get this wrong.
▶ The four freedoms of free software.
▶ Licensing of derivative products.
▶ Copyleft juxtaposed to permissive licensing.
▶ Historical background for US copyright and patent laws.
▶ The correct juxtaposition: “free vs. proprietary”, not

“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
▶ Public domain.
▶ GNU General Public License

(GPL).
▶ GNU Lesser General Public

License (LGPL).
▶ Berkeley Software

Distribution (BSD) license.

▶ MIT X11 license.
▶ Pointless proliferation of

licenses.
▶ The Creative Commons

milieu.

Licensing, copyright, copyleft, and MIT puns
Free as in freedom - cost is the minor issue here.

Licensing concepts
▶ Difference between copyright and license.
▶ What if you do not specify a license?
▶ Amazing the kind of people who get this wrong.
▶ The four freedoms of free software.
▶ Licensing of derivative products.
▶ Copyleft juxtaposed to permissive licensing.
▶ Historical background for US copyright and patent laws.
▶ The correct juxtaposition: “free vs. proprietary”, not

“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
▶ Public domain.
▶ GNU General Public License

(GPL).
▶ GNU Lesser General Public

License (LGPL).
▶ Berkeley Software

Distribution (BSD) license.
▶ MIT X11 license.

▶ Pointless proliferation of
licenses.

▶ The Creative Commons
milieu.

Licensing, copyright, copyleft, and MIT puns
Free as in freedom - cost is the minor issue here.

Licensing concepts
▶ Difference between copyright and license.
▶ What if you do not specify a license?
▶ Amazing the kind of people who get this wrong.
▶ The four freedoms of free software.
▶ Licensing of derivative products.
▶ Copyleft juxtaposed to permissive licensing.
▶ Historical background for US copyright and patent laws.
▶ The correct juxtaposition: “free vs. proprietary”, not

“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
▶ Public domain.
▶ GNU General Public License

(GPL).
▶ GNU Lesser General Public

License (LGPL).
▶ Berkeley Software

Distribution (BSD) license.
▶ MIT X11 license.
▶ Pointless proliferation of

licenses.

▶ The Creative Commons
milieu.

Licensing, copyright, copyleft, and MIT puns
Free as in freedom - cost is the minor issue here.

Licensing concepts
▶ Difference between copyright and license.
▶ What if you do not specify a license?
▶ Amazing the kind of people who get this wrong.
▶ The four freedoms of free software.
▶ Licensing of derivative products.
▶ Copyleft juxtaposed to permissive licensing.
▶ Historical background for US copyright and patent laws.
▶ The correct juxtaposition: “free vs. proprietary”, not

“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
▶ Public domain.
▶ GNU General Public License

(GPL).
▶ GNU Lesser General Public

License (LGPL).
▶ Berkeley Software

Distribution (BSD) license.
▶ MIT X11 license.
▶ Pointless proliferation of

licenses.
▶ The Creative Commons

milieu.

Ethics, convenience, combativeness

The founding of the free software movement

The open source movement

Milestones
1987 Eric Raymond: “The Cathedral and the

Bazaar” (TCatB).
Key phrase: “Given enough eyeballs, all
bugs are shallow” (Linus’s law).

1998-01 Frank Hecker internal Netscape
whitepaper: make source code free. Cites
TCatB.

1998-02-02 Christine Peterson coins term
“open source”. Goal: communicate
advantages of free s/w to commercial s/w
companies.

1998-02-05 Strategy group at Netscape adopts
term open source.

1998-04-07 O’Reilly “Freeware Summit”
becomes known as “Open Source Summit”.

The movement
▶ Free Software and Open Source Software:

same referent (body of software).
▶ Focus on usefulness rather than the ethical

underpinnings.
▶ Gets around English language ambiguity of

“free” (speech and beer).
▶ Ends up causing its own ambiguity due to

conflation with various other uses of the
word open.

▶ Composite terms: FOSS, FLOSS.
▶ Used almost universally by companies that

release free software (i.e. all companies).

The GNU/Linux operating system

▶ Linus Torvalds announces a new kernel, 1991-09-17.
▶ Torvalds Torvalds places Linux under the GNU General Public License.
▶ Torvalds states “ Making Linux GPL’d was definitely the best thing I ever did.” 1997-09-30
▶ The Linux kernel brings the last key component to the GNU operating system.

Terminology wars.

1898 – FUD around GNU/Linux
https://archive.nytimes.com/www.nytimes.com/library/tech/98/11/biztech/articles/03memo.html

The “Halloween Documents”This is an archived page. Report a problem

MICROSOFT ON TRIAL
Index of Articles

Forum
Is Microsoft too powerful a
player in the computer
industry?

November 3, 1998

Internal Memo Shows Microsoft
Executives' Concern Over Free
Software

By AMY HARMON and JOHN MARKOFF

n internal memorandum reflecting the views of some of
Microsoft Corp.'s top executives and software

development managers reveals deep concern about the
threat of free software and proposes a number of strategies
for competing against free programs that have recently
been gaining in popularity.

The memo warns that the quality of free software can meet
or exceed that of commercial programs and describes it as a
potentially serious threat to Microsoft.

The document was sent anonymously
last week to Eric Raymond, a key
figure in a loosely knit group of
software developers who
collaboratively create and distribute
free programs ranging from
operating systems to Web browsers.

Microsoft executives acknowledged
on Monday that the document was
authentic.

Edmund Muth, Microsoft's

Internal Memo Shows Microsoft Executives' Con... https://archive.nytimes.com/www.nytimes.com/lib...

1 of 3 5/18/20, 4:28 PM

New York Times, 1998-11-03.

...
Consequently, OSS poses a direct, short-term revenue
and platform threat to Microsoft – particularly in
server space. Additionally, the intrinsic parallelism and
free idea exchange in OSS has benefits that are not
replicable with our current licensing model and
therefore present a long term developer mindshare
threat.

...
[...] the memorandum calls the free software movement
a “long-term credible” threat and warns that employing
a traditional Microsoft marketing strategy known as
“FUD,” an acronym for “fear, uncertainty and doubt,”
will not succeed against the developers of free software.

https://archive.nytimes.com/www.nytimes.com/library/tech/98/11/biztech/articles/03memo.html

The (software) pillars of the earth
Microsoft retreats from its position

ZDNet, 2020-05-18, https://www.theregister.co.uk/2020/05/15/microsoft_brad_smith_open_source/

▶ Non-penetration: home computers (but soon...), some engineering CAD packages, some
graphical front-ends for operating systems.

▶ Penetration: all web servers, all departmental serverse, all supercomputerse, all embedded
systems, all phones.

▶ Two big pillars: gcc and linux kernel.
▶ Smaller pillars: apache, all version control systems, all programming languages, most web

client-side frameworks.
▶ The GNU/Linux distributions: terminology.
▶ The GNU/Linux distributions: flavours (Debian and Red Hat).

https://www.theregister.co.uk/2020/05/15/microsoft_brad_smith_open_source/

Picking what will last – messaging systems
Naturalmente . . . xkcd: https://xkcd.com/1810/

I’m one of the few Instagram users who connects solely through the Unix ’talk’ gateway.

Picking what will last – messaging systems
Naturalmente . . . xkcd: https://xkcd.com/1810/

I’m one of the few Instagram users who connects solely through the Unix ’talk’ gateway.

Example: messaging “standards”
Naturalmente . . . xkcd: https://xkcd.com/1810/

Fortunately, the charging one has been solved now that we’ve all standardized on mini-USB. Or is it
micro-USB? ****.

Example: messaging “standards”
Naturalmente . . . xkcd: https://xkcd.com/1810/

Fortunately, the charging one has been solved now that we’ve all standardized on mini-USB. Or is it
micro-USB? ****.

Documentation formats
Naturalmente . . . xkcd: https://xkcd.com/1301/

I have never been lied to by data in a .txt file which has been hand-aligned.

Documentation formats
Naturalmente . . . xkcd: https://xkcd.com/1301/

I have never been lied to by data in a .txt file which has been hand-aligned.

Part V – Case studies

Part V – Case studies

Case studies - and what do we get out of them?

The awful
Not quite on the scale of Bhopal, but can’t say much more than that.

The awful that got back on track
The example of IBM’s OS/360.

Things that work
ycombinator discussion of sqlite:
https://news.ycombinator.com/item?id=34258858

https://news.ycombinator.com/item?id=34258858

Case studies - and what do we get out of them?

The awful
Not quite on the scale of Bhopal, but can’t say much more than that.

The awful that got back on track
The example of IBM’s OS/360.

Things that work
ycombinator discussion of sqlite:
https://news.ycombinator.com/item?id=34258858

https://news.ycombinator.com/item?id=34258858

Case studies - and what do we get out of them?

The awful
Not quite on the scale of Bhopal, but can’t say much more than that.

The awful that got back on track
The example of IBM’s OS/360.

Things that work
ycombinator discussion of sqlite:
https://news.ycombinator.com/item?id=34258858

https://news.ycombinator.com/item?id=34258858

An example that did not work

Think of a project you are aware of that failed with a bang.
Think of it in a lovingly humorous manner, of course, since...
...we are here to get “lessons learned”, not to be nasty. After all, it will never be as bad as:

Deteriorating section of the Bhopal
MIC (Methyl isocyanate) plant in
2008, decades after the gas leak.
Initial death toll: 2259 people, total:
20000 people.

An example that did not work
Think of a project you are aware of that failed with a bang.

Think of it in a lovingly humorous manner, of course, since...
...we are here to get “lessons learned”, not to be nasty. After all, it will never be as bad as:

Deteriorating section of the Bhopal
MIC (Methyl isocyanate) plant in
2008, decades after the gas leak.
Initial death toll: 2259 people, total:
20000 people.

An example that did not work
Think of a project you are aware of that failed with a bang.
Think of it in a lovingly humorous manner, of course, since...

...we are here to get “lessons learned”, not to be nasty. After all, it will never be as bad as:

Deteriorating section of the Bhopal
MIC (Methyl isocyanate) plant in
2008, decades after the gas leak.
Initial death toll: 2259 people, total:
20000 people.

An example that did not work
Think of a project you are aware of that failed with a bang.
Think of it in a lovingly humorous manner, of course, since...
...we are here to get “lessons learned”,

not to be nasty. After all, it will never be as bad as:

Deteriorating section of the Bhopal
MIC (Methyl isocyanate) plant in
2008, decades after the gas leak.
Initial death toll: 2259 people, total:
20000 people.

An example that did not work
Think of a project you are aware of that failed with a bang.
Think of it in a lovingly humorous manner, of course, since...
...we are here to get “lessons learned”, not to be nasty. After all, it will never be as bad as:

Deteriorating section of the Bhopal
MIC (Methyl isocyanate) plant in
2008, decades after the gas leak.
Initial death toll: 2259 people, total:
20000 people.

An example that did not work
Think of a project you are aware of that failed with a bang.
Think of it in a lovingly humorous manner, of course, since...
...we are here to get “lessons learned”, not to be nasty. After all, it will never be as bad as:

Deteriorating section of the Bhopal
MIC (Methyl isocyanate) plant in
2008, decades after the gas leak.
Initial death toll: 2259 people, total:
20000 people.

An example that did not work
Think of a project you are aware of that failed with a bang.
Think of it in a lovingly humorous manner, of course, since...
...we are here to get “lessons learned”, not to be nasty. After all, it will never be as bad as:

Deteriorating section of the Bhopal
MIC (Methyl isocyanate) plant in
2008, decades after the gas leak.
Initial death toll: 2259 people, total:
20000 people.

Case studies – failures – Apple Maps
https://www.quora.com/What-was-Steve-Jobs-wrong-about

Steve Jobs’s was celebrated for his
business and product development skills
after turning Apple in 1990s from
“arguably one of the worst-managed
companies in the industry” to a dominant
tech company.

Mis-sizing Apple Maps
Maps is a difficult problem.At Google, at around the
time Apple started working on Maps, I’d estimate
Google had acquired several Maps-related
companies at a cost of several hundred million
dollars. Google had several hundreds of engineers
working on Maps and Geography-related projects on
a full-time basis. You could compare the level of
effort in a project like this, as executed by Google,
to a duck. A duck always appears calm on the
surface of the water, but, under the water, the
duck’s feet are always paddling like hell.

Take-home
Software as the main driver of complexity.
Ducks!

https://www.quora.com/What-was-Steve-Jobs-wrong-about

Case studies – failures – Apple Maps
https://www.quora.com/What-was-Steve-Jobs-wrong-about

Steve Jobs’s was celebrated for his
business and product development skills
after turning Apple in 1990s from
“arguably one of the worst-managed
companies in the industry” to a dominant
tech company.

Mis-sizing Apple Maps
Maps is a difficult problem.

At Google, at around the
time Apple started working on Maps, I’d estimate
Google had acquired several Maps-related
companies at a cost of several hundred million
dollars. Google had several hundreds of engineers
working on Maps and Geography-related projects on
a full-time basis. You could compare the level of
effort in a project like this, as executed by Google,
to a duck. A duck always appears calm on the
surface of the water, but, under the water, the
duck’s feet are always paddling like hell.

Take-home
Software as the main driver of complexity.
Ducks!

https://www.quora.com/What-was-Steve-Jobs-wrong-about

Case studies – failures – Apple Maps
https://www.quora.com/What-was-Steve-Jobs-wrong-about

Steve Jobs’s was celebrated for his
business and product development skills
after turning Apple in 1990s from
“arguably one of the worst-managed
companies in the industry” to a dominant
tech company.

Mis-sizing Apple Maps
Maps is a difficult problem.At Google, at around the
time Apple started working on Maps, I’d estimate
Google had acquired several Maps-related
companies at a cost of several hundred million
dollars.

Google had several hundreds of engineers
working on Maps and Geography-related projects on
a full-time basis. You could compare the level of
effort in a project like this, as executed by Google,
to a duck. A duck always appears calm on the
surface of the water, but, under the water, the
duck’s feet are always paddling like hell.

Take-home
Software as the main driver of complexity.
Ducks!

https://www.quora.com/What-was-Steve-Jobs-wrong-about

Case studies – failures – Apple Maps
https://www.quora.com/What-was-Steve-Jobs-wrong-about

Steve Jobs’s was celebrated for his
business and product development skills
after turning Apple in 1990s from
“arguably one of the worst-managed
companies in the industry” to a dominant
tech company.

Mis-sizing Apple Maps
Maps is a difficult problem.At Google, at around the
time Apple started working on Maps, I’d estimate
Google had acquired several Maps-related
companies at a cost of several hundred million
dollars. Google had several hundreds of engineers
working on Maps and Geography-related projects on
a full-time basis.

You could compare the level of
effort in a project like this, as executed by Google,
to a duck. A duck always appears calm on the
surface of the water, but, under the water, the
duck’s feet are always paddling like hell.

Take-home
Software as the main driver of complexity.
Ducks!

https://www.quora.com/What-was-Steve-Jobs-wrong-about

Case studies – failures – Apple Maps
https://www.quora.com/What-was-Steve-Jobs-wrong-about

Steve Jobs’s was celebrated for his
business and product development skills
after turning Apple in 1990s from
“arguably one of the worst-managed
companies in the industry” to a dominant
tech company.

Mis-sizing Apple Maps
Maps is a difficult problem.At Google, at around the
time Apple started working on Maps, I’d estimate
Google had acquired several Maps-related
companies at a cost of several hundred million
dollars. Google had several hundreds of engineers
working on Maps and Geography-related projects on
a full-time basis. You could compare the level of
effort in a project like this, as executed by Google,
to a duck. A duck always appears calm on the
surface of the water, but, under the water, the
duck’s feet are always paddling like hell.

Take-home

Software as the main driver of complexity.
Ducks!

https://www.quora.com/What-was-Steve-Jobs-wrong-about

Case studies – failures – Apple Maps
https://www.quora.com/What-was-Steve-Jobs-wrong-about

Steve Jobs’s was celebrated for his
business and product development skills
after turning Apple in 1990s from
“arguably one of the worst-managed
companies in the industry” to a dominant
tech company.

Mis-sizing Apple Maps
Maps is a difficult problem.At Google, at around the
time Apple started working on Maps, I’d estimate
Google had acquired several Maps-related
companies at a cost of several hundred million
dollars. Google had several hundreds of engineers
working on Maps and Geography-related projects on
a full-time basis. You could compare the level of
effort in a project like this, as executed by Google,
to a duck. A duck always appears calm on the
surface of the water, but, under the water, the
duck’s feet are always paddling like hell.

Take-home
Software as the main driver of complexity.

Ducks!

https://www.quora.com/What-was-Steve-Jobs-wrong-about

Case studies – failures – Apple Maps
https://www.quora.com/What-was-Steve-Jobs-wrong-about

Steve Jobs’s was celebrated for his
business and product development skills
after turning Apple in 1990s from
“arguably one of the worst-managed
companies in the industry” to a dominant
tech company.

Mis-sizing Apple Maps
Maps is a difficult problem.At Google, at around the
time Apple started working on Maps, I’d estimate
Google had acquired several Maps-related
companies at a cost of several hundred million
dollars. Google had several hundreds of engineers
working on Maps and Geography-related projects on
a full-time basis. You could compare the level of
effort in a project like this, as executed by Google,
to a duck. A duck always appears calm on the
surface of the water, but, under the water, the
duck’s feet are always paddling like hell.

Take-home
Software as the main driver of complexity.
Ducks!

https://www.quora.com/What-was-Steve-Jobs-wrong-about

Case studies – failures – Virtual Case File

Software project by the FBI to replace old
“Automated Case Support” software system.

[the Aerospace Corporation] said the SAIC
software was incomplete, inadequate and so
poorly designed that it would be essentially
unusable under real-world conditions.

Even in rudimentary tests, the system did not
comply with basic requirements, the report
said.

https://spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file

https://spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file

Case studies – failures – Virtual Case File

Software project by the FBI to replace old
“Automated Case Support” software system.

[the Aerospace Corporation] said the SAIC
software was incomplete, inadequate and so
poorly designed that it would be essentially
unusable under real-world conditions.

Even in rudimentary tests, the system did not
comply with basic requirements, the report
said.

https://spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file

https://spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file

Case studies – failures – Virtual Case File

Software project by the FBI to replace old
“Automated Case Support” software system.

[the Aerospace Corporation] said the SAIC
software was incomplete, inadequate and so
poorly designed that it would be essentially
unusable under real-world conditions.

Even in rudimentary tests, the system did not
comply with basic requirements, the report
said.

https://spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file

https://spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file

Case studies – failures – Virtual Case File

Software project by the FBI to replace old
“Automated Case Support” software system.

[the Aerospace Corporation] said the SAIC
software was incomplete, inadequate and so
poorly designed that it would be essentially
unusable under real-world conditions.

Even in rudimentary tests, the system did not
comply with basic requirements, the report
said.

https://spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file

https://spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file

Case studies – failures – Virtual Case File

Software project by the FBI to replace old
“Automated Case Support” software system.

[the Aerospace Corporation] said the SAIC
software was incomplete, inadequate and so
poorly designed that it would be essentially
unusable under real-world conditions.

Even in rudimentary tests, the system did not
comply with basic requirements, the report
said.

https://spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file

https://spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file

Case studies – failures – Virtual Case File

Software project by the FBI to replace old
“Automated Case Support” software system.

[the Aerospace Corporation] said the SAIC
software was incomplete, inadequate and so
poorly designed that it would be essentially
unusable under real-world conditions.

Even in rudimentary tests, the system did not
comply with basic requirements, the report
said.

https://spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file

https://spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file

Virtual Case File failure – lessons learned

▶ Lack of a strong technical architecture (“blueprint”)
from the outset led to poor architectural decisions.

▶ Repeated changes in specification.
▶ Repeated turnover of management, which

contributed to the specification problem.
▶ Micromanagement of software developers.
▶ The inclusion of many FBI personnel who had little

or no formal training in computer science as
managers and even engineers on the project.

▶ Scope creep as requirements were continually added
to the system even as it was falling behind schedule.

▶ Code bloat due to changing specifications and scope
creep—at one point it was estimated the software
had over 700,000 lines of code.

▶ Planned use of a flash cutover deployment made it
difficult to adopt the system until it was perfected.

Plenty information technology
disasters

The FBI tries again

Virtual Case File failure – lessons learned
▶ Lack of a strong technical architecture (“blueprint”)

from the outset led to poor architectural decisions.

▶ Repeated changes in specification.
▶ Repeated turnover of management, which

contributed to the specification problem.
▶ Micromanagement of software developers.
▶ The inclusion of many FBI personnel who had little

or no formal training in computer science as
managers and even engineers on the project.

▶ Scope creep as requirements were continually added
to the system even as it was falling behind schedule.

▶ Code bloat due to changing specifications and scope
creep—at one point it was estimated the software
had over 700,000 lines of code.

▶ Planned use of a flash cutover deployment made it
difficult to adopt the system until it was perfected.

Plenty information technology
disasters

The FBI tries again

Virtual Case File failure – lessons learned
▶ Lack of a strong technical architecture (“blueprint”)

from the outset led to poor architectural decisions.
▶ Repeated changes in specification.

▶ Repeated turnover of management, which
contributed to the specification problem.

▶ Micromanagement of software developers.
▶ The inclusion of many FBI personnel who had little

or no formal training in computer science as
managers and even engineers on the project.

▶ Scope creep as requirements were continually added
to the system even as it was falling behind schedule.

▶ Code bloat due to changing specifications and scope
creep—at one point it was estimated the software
had over 700,000 lines of code.

▶ Planned use of a flash cutover deployment made it
difficult to adopt the system until it was perfected.

Plenty information technology
disasters

The FBI tries again

Virtual Case File failure – lessons learned
▶ Lack of a strong technical architecture (“blueprint”)

from the outset led to poor architectural decisions.
▶ Repeated changes in specification.
▶ Repeated turnover of management, which

contributed to the specification problem.

▶ Micromanagement of software developers.
▶ The inclusion of many FBI personnel who had little

or no formal training in computer science as
managers and even engineers on the project.

▶ Scope creep as requirements were continually added
to the system even as it was falling behind schedule.

▶ Code bloat due to changing specifications and scope
creep—at one point it was estimated the software
had over 700,000 lines of code.

▶ Planned use of a flash cutover deployment made it
difficult to adopt the system until it was perfected.

Plenty information technology
disasters

The FBI tries again

Virtual Case File failure – lessons learned
▶ Lack of a strong technical architecture (“blueprint”)

from the outset led to poor architectural decisions.
▶ Repeated changes in specification.
▶ Repeated turnover of management, which

contributed to the specification problem.
▶ Micromanagement of software developers.

▶ The inclusion of many FBI personnel who had little
or no formal training in computer science as
managers and even engineers on the project.

▶ Scope creep as requirements were continually added
to the system even as it was falling behind schedule.

▶ Code bloat due to changing specifications and scope
creep—at one point it was estimated the software
had over 700,000 lines of code.

▶ Planned use of a flash cutover deployment made it
difficult to adopt the system until it was perfected.

Plenty information technology
disasters

The FBI tries again

Virtual Case File failure – lessons learned
▶ Lack of a strong technical architecture (“blueprint”)

from the outset led to poor architectural decisions.
▶ Repeated changes in specification.
▶ Repeated turnover of management, which

contributed to the specification problem.
▶ Micromanagement of software developers.
▶ The inclusion of many FBI personnel who had little

or no formal training in computer science as
managers and even engineers on the project.

▶ Scope creep as requirements were continually added
to the system even as it was falling behind schedule.

▶ Code bloat due to changing specifications and scope
creep—at one point it was estimated the software
had over 700,000 lines of code.

▶ Planned use of a flash cutover deployment made it
difficult to adopt the system until it was perfected.

Plenty information technology
disasters

The FBI tries again

Virtual Case File failure – lessons learned
▶ Lack of a strong technical architecture (“blueprint”)

from the outset led to poor architectural decisions.
▶ Repeated changes in specification.
▶ Repeated turnover of management, which

contributed to the specification problem.
▶ Micromanagement of software developers.
▶ The inclusion of many FBI personnel who had little

or no formal training in computer science as
managers and even engineers on the project.

▶ Scope creep as requirements were continually added
to the system even as it was falling behind schedule.

▶ Code bloat due to changing specifications and scope
creep—at one point it was estimated the software
had over 700,000 lines of code.

▶ Planned use of a flash cutover deployment made it
difficult to adopt the system until it was perfected.

Plenty information technology
disasters

The FBI tries again

Virtual Case File failure – lessons learned
▶ Lack of a strong technical architecture (“blueprint”)

from the outset led to poor architectural decisions.
▶ Repeated changes in specification.
▶ Repeated turnover of management, which

contributed to the specification problem.
▶ Micromanagement of software developers.
▶ The inclusion of many FBI personnel who had little

or no formal training in computer science as
managers and even engineers on the project.

▶ Scope creep as requirements were continually added
to the system even as it was falling behind schedule.

▶ Code bloat due to changing specifications and scope
creep—at one point it was estimated the software
had over 700,000 lines of code.

▶ Planned use of a flash cutover deployment made it
difficult to adopt the system until it was perfected.

Plenty information technology
disasters

The FBI tries again

Virtual Case File failure – lessons learned
▶ Lack of a strong technical architecture (“blueprint”)

from the outset led to poor architectural decisions.
▶ Repeated changes in specification.
▶ Repeated turnover of management, which

contributed to the specification problem.
▶ Micromanagement of software developers.
▶ The inclusion of many FBI personnel who had little

or no formal training in computer science as
managers and even engineers on the project.

▶ Scope creep as requirements were continually added
to the system even as it was falling behind schedule.

▶ Code bloat due to changing specifications and scope
creep—at one point it was estimated the software
had over 700,000 lines of code.

▶ Planned use of a flash cutover deployment made it
difficult to adopt the system until it was perfected.

Plenty information technology
disasters

The FBI tries again

Virtual Case File failure – lessons learned
▶ Lack of a strong technical architecture (“blueprint”)

from the outset led to poor architectural decisions.
▶ Repeated changes in specification.
▶ Repeated turnover of management, which

contributed to the specification problem.
▶ Micromanagement of software developers.
▶ The inclusion of many FBI personnel who had little

or no formal training in computer science as
managers and even engineers on the project.

▶ Scope creep as requirements were continually added
to the system even as it was falling behind schedule.

▶ Code bloat due to changing specifications and scope
creep—at one point it was estimated the software
had over 700,000 lines of code.

▶ Planned use of a flash cutover deployment made it
difficult to adopt the system until it was perfected.

Plenty information technology
disasters

The FBI tries again

Virtual Case File failure – lessons learned
▶ Lack of a strong technical architecture (“blueprint”)

from the outset led to poor architectural decisions.
▶ Repeated changes in specification.
▶ Repeated turnover of management, which

contributed to the specification problem.
▶ Micromanagement of software developers.
▶ The inclusion of many FBI personnel who had little

or no formal training in computer science as
managers and even engineers on the project.

▶ Scope creep as requirements were continually added
to the system even as it was falling behind schedule.

▶ Code bloat due to changing specifications and scope
creep—at one point it was estimated the software
had over 700,000 lines of code.

▶ Planned use of a flash cutover deployment made it
difficult to adopt the system until it was perfected.

Plenty information technology
disasters

The FBI tries again

Case studies – Boreland compilers

Boreland had it all: Pascal and then C
compilers were widely used and loved.

tech
After realising that the compiler didn’t
produce the same results compiling the
same code twice and finding that the
debugger was buggy I had to just drop
Borland.

management
Borland lost its way when executive management decided to
change the company to pursue a different market.
A few years after Borland went public, founder and CEO
Philippe Kahn began to have increasing disagreements with
the Borland board of directors. [. . .] board of directors
wanted to shift gears and pursue the "enterprise" software
market. I get the impression that this difference of opinion
simmered for years. Ultimately the board fired Kahn and
threw the company headlong into the pursuit of the
enterprise market.
Borland’s long slow death spiral began when it turned away
from what it knew best to chase a unicorn it knew nothing
about.

market direction
Overall, Borland competed too much with Microsoft. It
became a war of “who wants to bear the mantle of
responsiblity the most?” and Microsoft just kept pulling tricks
and pouring resources into their developer tools, office apps,
etc. Without legislation preventing an OS vendor from also
supplying applications, the fight was futile as long as MS had
the passion for the space.

Case studies – Boreland compilers

Boreland had it all: Pascal and then C
compilers were widely used and loved.

tech
After realising that the compiler didn’t
produce the same results compiling the
same code twice and finding that the
debugger was buggy I had to just drop
Borland.

management
Borland lost its way when executive management decided to
change the company to pursue a different market.
A few years after Borland went public, founder and CEO
Philippe Kahn began to have increasing disagreements with
the Borland board of directors. [. . .] board of directors
wanted to shift gears and pursue the "enterprise" software
market. I get the impression that this difference of opinion
simmered for years. Ultimately the board fired Kahn and
threw the company headlong into the pursuit of the
enterprise market.
Borland’s long slow death spiral began when it turned away
from what it knew best to chase a unicorn it knew nothing
about.

market direction
Overall, Borland competed too much with Microsoft. It
became a war of “who wants to bear the mantle of
responsiblity the most?” and Microsoft just kept pulling tricks
and pouring resources into their developer tools, office apps,
etc. Without legislation preventing an OS vendor from also
supplying applications, the fight was futile as long as MS had
the passion for the space.

Case studies – Boreland compilers

Boreland had it all: Pascal and then C
compilers were widely used and loved.

tech
After realising that the compiler didn’t
produce the same results compiling the
same code twice and finding that the
debugger was buggy I had to just drop
Borland.

management
Borland lost its way when executive management decided to
change the company to pursue a different market.
A few years after Borland went public, founder and CEO
Philippe Kahn began to have increasing disagreements with
the Borland board of directors. [. . .] board of directors
wanted to shift gears and pursue the "enterprise" software
market. I get the impression that this difference of opinion
simmered for years. Ultimately the board fired Kahn and
threw the company headlong into the pursuit of the
enterprise market.
Borland’s long slow death spiral began when it turned away
from what it knew best to chase a unicorn it knew nothing
about.

market direction
Overall, Borland competed too much with Microsoft. It
became a war of “who wants to bear the mantle of
responsiblity the most?” and Microsoft just kept pulling tricks
and pouring resources into their developer tools, office apps,
etc. Without legislation preventing an OS vendor from also
supplying applications, the fight was futile as long as MS had
the passion for the space.

Case studies – Boreland compilers

Boreland had it all: Pascal and then C
compilers were widely used and loved.

tech
After realising that the compiler didn’t
produce the same results compiling the
same code twice and finding that the
debugger was buggy I had to just drop
Borland.

management
Borland lost its way when executive management decided to
change the company to pursue a different market.
A few years after Borland went public, founder and CEO
Philippe Kahn began to have increasing disagreements with
the Borland board of directors. [. . .] board of directors
wanted to shift gears and pursue the "enterprise" software
market. I get the impression that this difference of opinion
simmered for years. Ultimately the board fired Kahn and
threw the company headlong into the pursuit of the
enterprise market.
Borland’s long slow death spiral began when it turned away
from what it knew best to chase a unicorn it knew nothing
about.

market direction
Overall, Borland competed too much with Microsoft. It
became a war of “who wants to bear the mantle of
responsiblity the most?” and Microsoft just kept pulling tricks
and pouring resources into their developer tools, office apps,
etc. Without legislation preventing an OS vendor from also
supplying applications, the fight was futile as long as MS had
the passion for the space.

Case studies – Python packaging

[...] area of Python that many developers have problems with [...]
many different solutions pop up over the years [...] wars, and
attempts to solve it [...] packaging ecosystem and tools making
their lives harder [...] confused about virtual environments [...] is
the organization behind most of the packaging tools and standards
part of the problem itself?

Join me on a journey through packaging in Python and elsewhere
[...] classic packaging stack (involving setuptools and friends), the
scientific stack (with conda), [...] modern/alternate [...] Pipenv,
Poetry, Hatch, or PDM.

Case studies – Python packaging

[...] area of Python that many developers have problems with [...]
many different solutions pop up over the years [...] wars, and
attempts to solve it [...] packaging ecosystem and tools making
their lives harder [...] confused about virtual environments [...] is
the organization behind most of the packaging tools and standards
part of the problem itself?

Join me on a journey through packaging in Python and elsewhere
[...] classic packaging stack (involving setuptools and friends), the
scientific stack (with conda), [...] modern/alternate [...] Pipenv,
Poetry, Hatch, or PDM.

Case studies – Python packaging

[...] area of Python that many developers have problems with [...]
many different solutions pop up over the years [...] wars, and
attempts to solve it [...] packaging ecosystem and tools making
their lives harder [...] confused about virtual environments [...] is
the organization behind most of the packaging tools and standards
part of the problem itself?

Join me on a journey through packaging in Python and elsewhere
[...] classic packaging stack (involving setuptools and friends), the
scientific stack (with conda), [...] modern/alternate [...] Pipenv,
Poetry, Hatch, or PDM.

SQLite - it just works

Richard Hipp
SQLite came from a Hipp’s experience maintaining an
INFORMIX database on a navy battleship, and the
server kept crashing.
“Richard, why don’t you just write one?” “Okay, I’ll
give it a try.”
Newt Gingrich and Bill Clinton were having a fight of
some sort, so all government contracts got shut down,
so I was out of work for a few months, and I thought,
“Well, I’ll just write that database engine now.”

We were going around boasting to everybody naively
that SQLite didn’t have any bugs in it, or no serious
bugs, but Android definitely proved us wrong. Look, I
used to think that I could write software with no bugs in
it. It’s amazing how many bugs will crop up when your
software suddenly gets shipped on millions of devices.

SQLite - it just works

Richard Hipp
SQLite came from a Hipp’s experience maintaining an
INFORMIX database on a navy battleship, and the
server kept crashing.
“Richard, why don’t you just write one?” “Okay, I’ll
give it a try.”
Newt Gingrich and Bill Clinton were having a fight of
some sort, so all government contracts got shut down,
so I was out of work for a few months, and I thought,
“Well, I’ll just write that database engine now.”

We were going around boasting to everybody naively
that SQLite didn’t have any bugs in it, or no serious
bugs, but Android definitely proved us wrong. Look, I
used to think that I could write software with no bugs in
it. It’s amazing how many bugs will crop up when your
software suddenly gets shipped on millions of devices.

SQLite - it just works

Richard Hipp
SQLite came from a Hipp’s experience maintaining an
INFORMIX database on a navy battleship, and the
server kept crashing.
“Richard, why don’t you just write one?” “Okay, I’ll
give it a try.”
Newt Gingrich and Bill Clinton were having a fight of
some sort, so all government contracts got shut down,
so I was out of work for a few months, and I thought,
“Well, I’ll just write that database engine now.”

We were going around boasting to everybody naively
that SQLite didn’t have any bugs in it, or no serious
bugs, but Android definitely proved us wrong. Look, I
used to think that I could write software with no bugs in
it. It’s amazing how many bugs will crop up when your
software suddenly gets shipped on millions of devices.

SQLite - it just works

Richard Hipp
SQLite came from a Hipp’s experience maintaining an
INFORMIX database on a navy battleship, and the
server kept crashing.

“Richard, why don’t you just write one?” “Okay, I’ll
give it a try.”
Newt Gingrich and Bill Clinton were having a fight of
some sort, so all government contracts got shut down,
so I was out of work for a few months, and I thought,
“Well, I’ll just write that database engine now.”

We were going around boasting to everybody naively
that SQLite didn’t have any bugs in it, or no serious
bugs, but Android definitely proved us wrong. Look, I
used to think that I could write software with no bugs in
it. It’s amazing how many bugs will crop up when your
software suddenly gets shipped on millions of devices.

SQLite - it just works

Richard Hipp
SQLite came from a Hipp’s experience maintaining an
INFORMIX database on a navy battleship, and the
server kept crashing.
“Richard, why don’t you just write one?” “Okay, I’ll
give it a try.”

Newt Gingrich and Bill Clinton were having a fight of
some sort, so all government contracts got shut down,
so I was out of work for a few months, and I thought,
“Well, I’ll just write that database engine now.”

We were going around boasting to everybody naively
that SQLite didn’t have any bugs in it, or no serious
bugs, but Android definitely proved us wrong. Look, I
used to think that I could write software with no bugs in
it. It’s amazing how many bugs will crop up when your
software suddenly gets shipped on millions of devices.

SQLite - it just works

Richard Hipp
SQLite came from a Hipp’s experience maintaining an
INFORMIX database on a navy battleship, and the
server kept crashing.
“Richard, why don’t you just write one?” “Okay, I’ll
give it a try.”
Newt Gingrich and Bill Clinton were having a fight of
some sort, so all government contracts got shut down,
so I was out of work for a few months, and I thought,
“Well, I’ll just write that database engine now.”

We were going around boasting to everybody naively
that SQLite didn’t have any bugs in it, or no serious
bugs, but Android definitely proved us wrong. Look, I
used to think that I could write software with no bugs in
it. It’s amazing how many bugs will crop up when your
software suddenly gets shipped on millions of devices.

SQLite - it just works

Richard Hipp
SQLite came from a Hipp’s experience maintaining an
INFORMIX database on a navy battleship, and the
server kept crashing.
“Richard, why don’t you just write one?” “Okay, I’ll
give it a try.”
Newt Gingrich and Bill Clinton were having a fight of
some sort, so all government contracts got shut down,
so I was out of work for a few months, and I thought,
“Well, I’ll just write that database engine now.”

We were going around boasting to everybody naively
that SQLite didn’t have any bugs in it, or no serious
bugs, but Android definitely proved us wrong. Look, I
used to think that I could write software with no bugs in
it. It’s amazing how many bugs will crop up when your
software suddenly gets shipped on millions of devices.

SQLite - it just works

. . . but I’d be in more trouble if SQLite
disappeared. Richard’s database is the most
used database in the world, and by some
counts, it’s the most widely deployed software
module of any type. If it disappeared, your web
browser wouldn’t work, your smartphone
probably wouldn’t start up, and probably your
car wouldn’t start up, as well.

Its impact on the world is massive, and there’s
plenty of places where it could have lost its
way. The Consortium could have stifled
progress or run out of money, or the full year it
took to address all the android bugs could have
easily burnt Richard out, but he prevailed and
now he’s in a great position to offer advice to
others who want to create impactful open
source software.

“probably one of the dark horse reasons for
success is its "open source but not open
contributions" model and strong personal
leadership from Richard”

SQLite - it just works
. . . but I’d be in more trouble if SQLite
disappeared. Richard’s database is the most
used database in the world, and by some
counts, it’s the most widely deployed software
module of any type. If it disappeared, your web
browser wouldn’t work, your smartphone
probably wouldn’t start up, and probably your
car wouldn’t start up, as well.

Its impact on the world is massive, and there’s
plenty of places where it could have lost its
way. The Consortium could have stifled
progress or run out of money, or the full year it
took to address all the android bugs could have
easily burnt Richard out, but he prevailed and
now he’s in a great position to offer advice to
others who want to create impactful open
source software.

“probably one of the dark horse reasons for
success is its "open source but not open
contributions" model and strong personal
leadership from Richard”

SQLite - it just works
. . . but I’d be in more trouble if SQLite
disappeared. Richard’s database is the most
used database in the world, and by some
counts, it’s the most widely deployed software
module of any type. If it disappeared, your web
browser wouldn’t work, your smartphone
probably wouldn’t start up, and probably your
car wouldn’t start up, as well.

Its impact on the world is massive, and there’s
plenty of places where it could have lost its
way. The Consortium could have stifled
progress or run out of money, or the full year it
took to address all the android bugs could have
easily burnt Richard out, but he prevailed and
now he’s in a great position to offer advice to
others who want to create impactful open
source software.

“probably one of the dark horse reasons for
success is its "open source but not open
contributions" model and strong personal
leadership from Richard”

Case studies – GNU Scientific Library (GSL)

royalsocietypublishing.org/journal/rsta

Opinion piece
Cite this article: Fortunato L, Galassi M. 2021
The case for free and open source software in
research and scholarship. Phil. Trans. R. Soc. A
379: 20200079.
https://doi.org/10.1098/rsta.2020.0079

Accepted: 8 February 2021

One contribution of 15 to a theme issue
‘Reliability and reproducibility in
computational science: implementing
verification, validation and uncertainty
quantification in silico’.

Subject Areas:
software, computational mathematics,
mathematical modelling

Keywords:
free and open source software (FOSS),
GNU Scientific Library (GSL), open research,
open scholarship, open science, reproducibility

Author for correspondence:
Laura Fortunato
e-mail: laura.fortunato@anthro.ox.ac.uk

The case for free and open
source software in research
and scholarship
Laura Fortunato1,2 and Mark Galassi3

1Institute of Cognitive and Evolutionary Anthropology, University of
Oxford, 64 Banbury Road, Oxford OX2 6PN, UK
2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
3Space Science and Applications Group, Los Alamos National
Laboratory, Los Alamos, NM 87545, USA

LF, 0000-0001-8546-9497; MG, 0000-0002-3279-2693

Free and open source software (FOSS) is any computer
program released under a licence that grants users
rights to run the program for any purpose, to study
it, to modify it, and to redistribute it in original or
modified form. Our aim is to explore the intersection
between FOSS and computational reproducibility.
We begin by situating FOSS in relation to other
‘open’ initiatives, and specifically open science, open
research, and open scholarship. In this context, we
argue that anyone who actively contributes to the
research process today is a computational researcher,
in that they use computers to manage and store
information. We then provide a primer to FOSS
suitable for anyone concerned with research quality
and sustainability—including researchers in any field,
as well as support staff, administrators, publishers,
funders, and so on. Next, we illustrate how the
notions introduced in the primer apply to resources
for scientific computing, with reference to the GNU
Scientific Library as a case study. We conclude by
discussing why the common interpretation of ‘open
source’ as ‘open code’ is misplaced, and we use this
example to articulate the role of FOSS in research and
scholarship today.

This article is part of the theme issue ‘Reliability
and reproducibility in computational science:
implementing verification, validation and uncertainty
quantification in silico’.

2021 The Author(s) Published by the Royal Society. All rights reserved.

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

23
 J

an
ua

ry
 2

02
3

Article gives a general introduction to
free/open-source software aimed at
quantitative social scientists.

Uses the vagaries that brought to the
GNU Scientific Library in the 1990s.

Numerical analysis landscape: 1980s and 1990s

Grand old packages: SLATEC, netlib,
CLAMS
Sandia, Los Alamos, Air Force Research Lab Technical
Exchange Committee (SLATEC): high quality public domain
math library - started in 1974, still shipping now.
netlib: set up in 1985 for network access to high quality
libraries.
CLAMS: Common Los Alamos Math System - proprietary and
now defunct.

But...
It’s all in FORTRAN. 1990s are coming, physicists are
programming in C.
Many relied on Numerical Recipes, nice pedagogical
explainations but rubbish code.

Case studies – GNU Scientific Library (GSL)

royalsocietypublishing.org/journal/rsta

Opinion piece
Cite this article: Fortunato L, Galassi M. 2021
The case for free and open source software in
research and scholarship. Phil. Trans. R. Soc. A
379: 20200079.
https://doi.org/10.1098/rsta.2020.0079

Accepted: 8 February 2021

One contribution of 15 to a theme issue
‘Reliability and reproducibility in
computational science: implementing
verification, validation and uncertainty
quantification in silico’.

Subject Areas:
software, computational mathematics,
mathematical modelling

Keywords:
free and open source software (FOSS),
GNU Scientific Library (GSL), open research,
open scholarship, open science, reproducibility

Author for correspondence:
Laura Fortunato
e-mail: laura.fortunato@anthro.ox.ac.uk

The case for free and open
source software in research
and scholarship
Laura Fortunato1,2 and Mark Galassi3

1Institute of Cognitive and Evolutionary Anthropology, University of
Oxford, 64 Banbury Road, Oxford OX2 6PN, UK
2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
3Space Science and Applications Group, Los Alamos National
Laboratory, Los Alamos, NM 87545, USA

LF, 0000-0001-8546-9497; MG, 0000-0002-3279-2693

Free and open source software (FOSS) is any computer
program released under a licence that grants users
rights to run the program for any purpose, to study
it, to modify it, and to redistribute it in original or
modified form. Our aim is to explore the intersection
between FOSS and computational reproducibility.
We begin by situating FOSS in relation to other
‘open’ initiatives, and specifically open science, open
research, and open scholarship. In this context, we
argue that anyone who actively contributes to the
research process today is a computational researcher,
in that they use computers to manage and store
information. We then provide a primer to FOSS
suitable for anyone concerned with research quality
and sustainability—including researchers in any field,
as well as support staff, administrators, publishers,
funders, and so on. Next, we illustrate how the
notions introduced in the primer apply to resources
for scientific computing, with reference to the GNU
Scientific Library as a case study. We conclude by
discussing why the common interpretation of ‘open
source’ as ‘open code’ is misplaced, and we use this
example to articulate the role of FOSS in research and
scholarship today.

This article is part of the theme issue ‘Reliability
and reproducibility in computational science:
implementing verification, validation and uncertainty
quantification in silico’.

2021 The Author(s) Published by the Royal Society. All rights reserved.

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

23
 J

an
ua

ry
 2

02
3

Article gives a general introduction to
free/open-source software aimed at
quantitative social scientists.

Uses the vagaries that brought to the
GNU Scientific Library in the 1990s.

Numerical analysis landscape: 1980s and 1990s

Grand old packages: SLATEC, netlib,
CLAMS
Sandia, Los Alamos, Air Force Research Lab Technical
Exchange Committee (SLATEC): high quality public domain
math library - started in 1974, still shipping now.
netlib: set up in 1985 for network access to high quality
libraries.
CLAMS: Common Los Alamos Math System - proprietary and
now defunct.

But...
It’s all in FORTRAN. 1990s are coming, physicists are
programming in C.
Many relied on Numerical Recipes, nice pedagogical
explainations but rubbish code.

Case studies – GNU Scientific Library (GSL)

royalsocietypublishing.org/journal/rsta

Opinion piece
Cite this article: Fortunato L, Galassi M. 2021
The case for free and open source software in
research and scholarship. Phil. Trans. R. Soc. A
379: 20200079.
https://doi.org/10.1098/rsta.2020.0079

Accepted: 8 February 2021

One contribution of 15 to a theme issue
‘Reliability and reproducibility in
computational science: implementing
verification, validation and uncertainty
quantification in silico’.

Subject Areas:
software, computational mathematics,
mathematical modelling

Keywords:
free and open source software (FOSS),
GNU Scientific Library (GSL), open research,
open scholarship, open science, reproducibility

Author for correspondence:
Laura Fortunato
e-mail: laura.fortunato@anthro.ox.ac.uk

The case for free and open
source software in research
and scholarship
Laura Fortunato1,2 and Mark Galassi3

1Institute of Cognitive and Evolutionary Anthropology, University of
Oxford, 64 Banbury Road, Oxford OX2 6PN, UK
2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
3Space Science and Applications Group, Los Alamos National
Laboratory, Los Alamos, NM 87545, USA

LF, 0000-0001-8546-9497; MG, 0000-0002-3279-2693

Free and open source software (FOSS) is any computer
program released under a licence that grants users
rights to run the program for any purpose, to study
it, to modify it, and to redistribute it in original or
modified form. Our aim is to explore the intersection
between FOSS and computational reproducibility.
We begin by situating FOSS in relation to other
‘open’ initiatives, and specifically open science, open
research, and open scholarship. In this context, we
argue that anyone who actively contributes to the
research process today is a computational researcher,
in that they use computers to manage and store
information. We then provide a primer to FOSS
suitable for anyone concerned with research quality
and sustainability—including researchers in any field,
as well as support staff, administrators, publishers,
funders, and so on. Next, we illustrate how the
notions introduced in the primer apply to resources
for scientific computing, with reference to the GNU
Scientific Library as a case study. We conclude by
discussing why the common interpretation of ‘open
source’ as ‘open code’ is misplaced, and we use this
example to articulate the role of FOSS in research and
scholarship today.

This article is part of the theme issue ‘Reliability
and reproducibility in computational science:
implementing verification, validation and uncertainty
quantification in silico’.

2021 The Author(s) Published by the Royal Society. All rights reserved.

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

23
 J

an
ua

ry
 2

02
3

Article gives a general introduction to
free/open-source software aimed at
quantitative social scientists.

Uses the vagaries that brought to the
GNU Scientific Library in the 1990s.

Numerical analysis landscape: 1980s and 1990s

Grand old packages: SLATEC, netlib,
CLAMS
Sandia, Los Alamos, Air Force Research Lab Technical
Exchange Committee (SLATEC): high quality public domain
math library - started in 1974, still shipping now.
netlib: set up in 1985 for network access to high quality
libraries.
CLAMS: Common Los Alamos Math System - proprietary and
now defunct.

But...
It’s all in FORTRAN. 1990s are coming, physicists are
programming in C.
Many relied on Numerical Recipes, nice pedagogical
explainations but rubbish code.

Case studies – GNU Scientific Library (GSL)

royalsocietypublishing.org/journal/rsta

Opinion piece
Cite this article: Fortunato L, Galassi M. 2021
The case for free and open source software in
research and scholarship. Phil. Trans. R. Soc. A
379: 20200079.
https://doi.org/10.1098/rsta.2020.0079

Accepted: 8 February 2021

One contribution of 15 to a theme issue
‘Reliability and reproducibility in
computational science: implementing
verification, validation and uncertainty
quantification in silico’.

Subject Areas:
software, computational mathematics,
mathematical modelling

Keywords:
free and open source software (FOSS),
GNU Scientific Library (GSL), open research,
open scholarship, open science, reproducibility

Author for correspondence:
Laura Fortunato
e-mail: laura.fortunato@anthro.ox.ac.uk

The case for free and open
source software in research
and scholarship
Laura Fortunato1,2 and Mark Galassi3

1Institute of Cognitive and Evolutionary Anthropology, University of
Oxford, 64 Banbury Road, Oxford OX2 6PN, UK
2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
3Space Science and Applications Group, Los Alamos National
Laboratory, Los Alamos, NM 87545, USA

LF, 0000-0001-8546-9497; MG, 0000-0002-3279-2693

Free and open source software (FOSS) is any computer
program released under a licence that grants users
rights to run the program for any purpose, to study
it, to modify it, and to redistribute it in original or
modified form. Our aim is to explore the intersection
between FOSS and computational reproducibility.
We begin by situating FOSS in relation to other
‘open’ initiatives, and specifically open science, open
research, and open scholarship. In this context, we
argue that anyone who actively contributes to the
research process today is a computational researcher,
in that they use computers to manage and store
information. We then provide a primer to FOSS
suitable for anyone concerned with research quality
and sustainability—including researchers in any field,
as well as support staff, administrators, publishers,
funders, and so on. Next, we illustrate how the
notions introduced in the primer apply to resources
for scientific computing, with reference to the GNU
Scientific Library as a case study. We conclude by
discussing why the common interpretation of ‘open
source’ as ‘open code’ is misplaced, and we use this
example to articulate the role of FOSS in research and
scholarship today.

This article is part of the theme issue ‘Reliability
and reproducibility in computational science:
implementing verification, validation and uncertainty
quantification in silico’.

2021 The Author(s) Published by the Royal Society. All rights reserved.

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

23
 J

an
ua

ry
 2

02
3

Article gives a general introduction to
free/open-source software aimed at
quantitative social scientists.

Uses the vagaries that brought to the
GNU Scientific Library in the 1990s.

Numerical analysis landscape: 1980s and 1990s

Grand old packages: SLATEC, netlib,
CLAMS
Sandia, Los Alamos, Air Force Research Lab Technical
Exchange Committee (SLATEC): high quality public domain
math library - started in 1974, still shipping now.
netlib: set up in 1985 for network access to high quality
libraries.
CLAMS: Common Los Alamos Math System - proprietary and
now defunct.

But...
It’s all in FORTRAN. 1990s are coming, physicists are
programming in C.
Many relied on Numerical Recipes, nice pedagogical
explainations but rubbish code.

Case studies – GNU Scientific Library (GSL)

royalsocietypublishing.org/journal/rsta

Opinion piece
Cite this article: Fortunato L, Galassi M. 2021
The case for free and open source software in
research and scholarship. Phil. Trans. R. Soc. A
379: 20200079.
https://doi.org/10.1098/rsta.2020.0079

Accepted: 8 February 2021

One contribution of 15 to a theme issue
‘Reliability and reproducibility in
computational science: implementing
verification, validation and uncertainty
quantification in silico’.

Subject Areas:
software, computational mathematics,
mathematical modelling

Keywords:
free and open source software (FOSS),
GNU Scientific Library (GSL), open research,
open scholarship, open science, reproducibility

Author for correspondence:
Laura Fortunato
e-mail: laura.fortunato@anthro.ox.ac.uk

The case for free and open
source software in research
and scholarship
Laura Fortunato1,2 and Mark Galassi3

1Institute of Cognitive and Evolutionary Anthropology, University of
Oxford, 64 Banbury Road, Oxford OX2 6PN, UK
2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
3Space Science and Applications Group, Los Alamos National
Laboratory, Los Alamos, NM 87545, USA

LF, 0000-0001-8546-9497; MG, 0000-0002-3279-2693

Free and open source software (FOSS) is any computer
program released under a licence that grants users
rights to run the program for any purpose, to study
it, to modify it, and to redistribute it in original or
modified form. Our aim is to explore the intersection
between FOSS and computational reproducibility.
We begin by situating FOSS in relation to other
‘open’ initiatives, and specifically open science, open
research, and open scholarship. In this context, we
argue that anyone who actively contributes to the
research process today is a computational researcher,
in that they use computers to manage and store
information. We then provide a primer to FOSS
suitable for anyone concerned with research quality
and sustainability—including researchers in any field,
as well as support staff, administrators, publishers,
funders, and so on. Next, we illustrate how the
notions introduced in the primer apply to resources
for scientific computing, with reference to the GNU
Scientific Library as a case study. We conclude by
discussing why the common interpretation of ‘open
source’ as ‘open code’ is misplaced, and we use this
example to articulate the role of FOSS in research and
scholarship today.

This article is part of the theme issue ‘Reliability
and reproducibility in computational science:
implementing verification, validation and uncertainty
quantification in silico’.

2021 The Author(s) Published by the Royal Society. All rights reserved.

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

23
 J

an
ua

ry
 2

02
3

Article gives a general introduction to
free/open-source software aimed at
quantitative social scientists.

Uses the vagaries that brought to the
GNU Scientific Library in the 1990s.

Numerical analysis landscape: 1980s and 1990s

Grand old packages: SLATEC, netlib,
CLAMS
Sandia, Los Alamos, Air Force Research Lab Technical
Exchange Committee (SLATEC): high quality public domain
math library - started in 1974, still shipping now.
netlib: set up in 1985 for network access to high quality
libraries.
CLAMS: Common Los Alamos Math System - proprietary and
now defunct.

But...
It’s all in FORTRAN. 1990s are coming, physicists are
programming in C.
Many relied on Numerical Recipes, nice pedagogical
explainations but rubbish code.

	Frontmatter
	Goals
	Curriculum
	Part II – Programming languages
	Programming languages
	Programming Languages
	Stories of programming languages
	Tour of languages
	Insights on languages

	Part III – Operating systems
	Operating systems
	Operating Systems
	Stories of operating systems

	Insights
	Insights on operating systems

	Part IV – Tools and methodologies
	Tools and methodologies
	Methodologies
	Development methodologies
	Programming Languages
	Workflow and tools
	Editors

	Version control
	Debugging
	Summarizing on tools
	The bones of the world
	Case study: Beowulf clusters
	Licensing, software freedom, open source

	Part V – Case studies
	Case studies
	Case studies
	Case studies

