Modern Software Engineering and Research

A professional development workshop

Mark Galassi

Space Science and Applications group
Los Alamos National Laboratory
and
Institute for Computing in Research

2020-05-16, 2021-01-20, 2023-01-24
Last built 2023-02-13T19:07:22

LA-UR-20-24695
(You may redistribute these slides with their IATEX source code under the terms of the
Creative Commons Attribution-ShareAlike 4.0 public license)

Outline

Goals

Curriculum

Goals and path

Goals and path

Goals

» Have a broad view of University curriculum,
successes and limitations, state of industry.

Goals and path

Goals
» Have a broad view of University curriculum,
successes and limitations, state of industry.

» Awareness of grand challenges
in software engineering.

Goals and path

Goals
» Have a broad view of University curriculum,
successes and limitations, state of industry.
» Awareness of grand challenges
in software engineering.

» Awareness of current approaches
to address those challenges.

Goals and path

Goals
» Have a broad view of University curriculum,
successes and limitations, state of industry.
» Awareness of grand challenges
in software engineering.
» Awareness of current approaches
to address those challenges.

» Largely historical: my personal inclination
to use history for metaphor and perspective.

Goals and path

Goals

» Have a broad view of University curriculum,
successes and limitations, state of industry.

» Awareness of grand challenges
in software engineering.

» Awareness of current approaches
to address those challenges.

» Largely historical: my personal inclination

to use history for metaphor and perspective.

The meandering path

Goals and path

Goals

» Have a broad view of University curriculum,
successes and limitations, state of industry.

» Awareness of grand challenges
in software engineering.

» Awareness of current approaches
to address those challenges.

» Largely historical: my personal inclination

to use history for metaphor and perspective.

The meandering path

» Curriculum

Goals and path

Goals

» Have a broad view of University curriculum,
successes and limitations, state of industry.

» Awareness of grand challenges
in software engineering.

» Awareness of current approaches
to address those challenges.

» Largely historical: my personal inclination

to use history for metaphor and perspective.

The meandering path
» Curriculum

» Programming languages

Goals and path

Goals

» Have a broad view of University curriculum,
successes and limitations, state of industry.

» Awareness of grand challenges
in software engineering.

» Awareness of current approaches
to address those challenges.

» Largely historical: my personal inclination

to use history for metaphor and perspective.

The meandering path
» Curriculum
» Programming languages

» Operating systems

Goals and path

Goals

» Have a broad view of University curriculum,
successes and limitations, state of industry.

» Awareness of grand challenges
in software engineering.

» Awareness of current approaches
to address those challenges.

» Largely historical: my personal inclination

to use history for metaphor and perspective.

The meandering path
» Curriculum
» Programming languages
» Operating systems
» Tools and methodologies

Goals and path

Goals

» Have a broad view of University curriculum,
successes and limitations, state of industry.

» Awareness of grand challenges
in software engineering.

» Awareness of current approaches
to address those challenges.

» Largely historical: my personal inclination

to use history for metaphor and perspective.

The meandering path

v

Curriculum

» Programming languages
» Operating systems

» Tools and methodologies
>

Case studies

Goals and path

Goals

» Have a broad view of University curriculum,
successes and limitations, state of industry.

» Awareness of grand challenges
in software engineering.

» Awareness of current approaches
to address those challenges.

» Largely historical: my personal inclination

to use history for metaphor and perspective.

Style

» Slides are placeholders for me to then tell stories.

The meandering path

v

Curriculum

» Programming languages
» Operating systems

» Tools and methodologies
>

Case studies

Goals and path

Goals

» Have a broad view of University curriculum,
successes and limitations, state of industry.

» Awareness of grand challenges
in software engineering.

» Awareness of current approaches
to address those challenges.

» Largely historical: my personal inclination

to use history for metaphor and perspective.

Style

» Slides are placeholders for me to then tell stories.

The meandering path

v

Curriculum

» Programming languages
» Operating systems

» Tools and methodologies
>

Case studies

Please interrupt: | hope you will talk and tell stories too.

Goals and path

Goals

» Have a broad view of University curriculum,
successes and limitations, state of industry.

» Awareness of grand challenges
in software engineering.

» Awareness of current approaches
to address those challenges.

» Largely historical: my personal inclination

to use history for metaphor and perspective.

Style

» Slides are placeholders for me to then tell stories.

The meandering path
» Curriculum
» Programming languages
» Operating systems
» Tools and methodologies
> Case studies

Please interrupt: | hope you will talk and tell stories too.

» Note: | am part of the secret cabal that seeks to give a seminar made entirely of xkecd

slides.

Part | — Curriculum

(Part 1= Curriculum)

The Computer Science Curriculum

From https://teachyourselfcs.com/

Computer programming

https://teachyourselfcs.com/

The Computer Science Curriculum

From https://teachyourselfcs.com/

Computer programming
j Computer Architecture

BRYANT + O'HALLARON

https://teachyourselfcs.com/

The Computer Science Curriculum

From https://teachyourselfcs.com/

Computer programming
Computer Architecture

BRYANT + O'HALLARON

Steven S. Skiena

https://teachyourselfcs.com/

The Computer Science Curriculum

From https://teachyourselfcs.com/

Computer programming
| Computer Architecture
Algorithms and Data Structures

S PROSRAUINERS PERITECTIVE : Discrete Math

Algorithm Desi
CONCRETE MATHEMATICS

A FOUNDATION FOR COMPUTER SCIENCE

GRAHAM & KNUTH- 5 PATASHNIK

BRYANT + O'HALLARON

Steven S. Skiena

https://teachyourselfcs.com/

The Computer Science Curriculum

From https://teachyourselfcs.com/

Computer programming
Computer Architecture

Algorithms and Data Structures

Discrete Math
B S Operating Systems

A FOUNDATION FOR

- |oRanAm & KNuTH PATA

Operating
Systems

Three Easy Pieces

BRYANT + O'HALLARON

https://teachyourselfcs.com/

The Computer Science Curriculum

From https://teachyourselfcs.com/

Computer programming
Computer Architecture

Algorithms and Data Structures

Discrete Math
B S Operating Systems

A FOUNDATION FOR

System

! Forensics
Three Easy Piece .

BRYANT « O'HALLARON i p—

Andrea C. Arpaci

https://teachyourselfcs.com/

The Computer Science Curriculum

From https://teachyourselfcs.com/

Computer programming
| Computer Architecture

Algorithms and Data Structures

- Discrete Math
Algorithm Desi

A FOUNDATION FOR

System

BRYANT « O'HALLARON Three Easy Piece

Remit HArpaci
Andrea C. Arpaci

KUROSE ROSS

oeea Operating Systems
Phmee e el Computer security

https://teachyourselfcs.com/

The Computer Science Curriculum

From https://teachyourselfcs.com/

Computer programming
Computer Architecture

oeea Operating Systems

A FOUNDATION FOR

Networking ‘4 :
| Databases o ~ | System

! Forensics
Thiree Easy Piece = ,

Remit HArpaci
Andrea C. Arpaci

https://teachyourselfcs.com/

The Computer Science Curriculum

From https://teachyourselfcs.com/

Computer programming
Computer Architecture

oeea Operating Systems

A FOUNDATION FOR

Networking ‘4 :
Databases o ~ | System

! Forensics
Thiree Easy Piece = ,

Remit HArpaci
Andrea C. Arpaci

https://teachyourselfcs.com/

The Computer Science Curriculum

From https://teachyourselfcs.com/

Computer programming
Computer Architecture

oeea Operating Systems

A FOUNDATION FOR

Networking ‘ J %
Databases o System

! Forensics
Thiree Easy Piece = ,

Artificial Intelligenc

el

Andrea C. Arpaci

https://teachyourselfcs.com/

The Computer Science Curriculum

From https://teachyourselfcs.com/

Computer programming
Computer Architecture

i s CONCRETE I Operating Systems
Networking >4

Databases ' System
Computer Netweal* = : " o
i L A Compilers-and Languages {7/ Jire e

Artificial Intelligence

Artificial
Intelligence | |

https://teachyourselfcs.com/

The Software Engineering curriculum

Margaret Hamilton, who led the MIT team that wrote the Apollo
on-board software in the 1960s, is one of the coiners of the term
“software engineering”.

The Software Engineering curriculum

Figure 3.
Software-Electrical Engineering Analog

Margaret Hamilton, who led the MIT team that wrote the Apollo
on-board software in the 1960s, is one of the coiners of the term
“software engineering”.

The Software Engineering curriculum

Figure 3.
Software-Electrical Engineering Analog

Most of the computer science department courses.

Margaret Hamilton, who led the MIT team that wrote the Apollo
on-board software in the 1960s, is one of the coiners of the term
“software engineering”.

The Software Engineering curriculum

Figure 3.
Software-Electrical Engineering Analog

Most of the computer science department courses.
Less math.

Margaret Hamilton, who led the MIT team that wrote the Apollo
on-board software in the 1960s, is one of the coiners of the term
“software engineering”.

The Software Engineering curriculum

Figure 3.
Software-Electrical Engineering Analog

Most of the computer science department courses.
Less math.
Process and management classes.

Margaret Hamilton, who led the MIT team that wrote the Apollo
on-board software in the 1960s, is one of the coiners of the term
“software engineering”.

The Software Engineering curriculum

Figure 3.
Software-Electrical Engineering Analog

Most of the computer science department courses.
Less math.

Process and management classes.

: ISO’s “Software Engineering Body of Knowledge"
Margaret Hamilton, who led the MIT team that wrote the Apollo (SWE BOK)_

on-board software in the 1960s, is one of the coiners of the term
“software engineering”.

Part Il — Programming languages

Part Il — Programming languages

Grand challenges for programming language design

Terminology
Attitude toward terminology Suspend one’s uncertainty.
Interpreter Slow and flexible.

Compiler Fast: compiles to machine code. And what is that machine code,
with its fabled ones and zeros? See

Controlling complexity of large programs
Cutoff at about 100 thousand lines of code.

Performance

Language features are related to how well you can optimize.

Memory safety

Avoiding memory corruption while keeping high performance.

The story of programming languages

From https://www.scriptol.com/programming/chronology.php

https://www.scriptol.com/programming/chronology.php

The story of programming languages

From https://www.scriptol.com/programming/chronology.php

Prehistory

1840 Analytical Engine (Charles Babbage and Ada
Lovelace)

1943 ENIAC coding system

1947-1949 Assembly language

1955 FLOW-MATIC (Grace Hopper)

https://www.scriptol.com/programming/chronology.php

The story of programming languages

From https://www.scriptol.com/programming/chronology.php

Prehistory

1840 Analytical Engine (Charles Babbage and Ada
Lovelace)

1943 ENIAC coding system

1947-1949 Assembly language

1955 FLOW-MATIC (Grace Hopper)

The 1950s

1957 FORTRAN (John Backus)
1958 LISP (John McCarthy)
1959 COBOL (CODASYL group)

https://www.scriptol.com/programming/chronology.php

The story of programming languages

From https://www.scriptol.com/programming/chronology.php

Prehistory

1840 Analytical Engine (Charles Babbage and Ada
Lovelace)

1943 ENIAC coding system

1947-1949 Assembly language

1955 FLOW-MATIC (Grace Hopper)

o
The 1950s
1957 FORTRAN (John Backus)
1958 LISP (John McCarthy)
1959 COBOL (CODASYL group)
v

The 1960s

1960 ALGOL 60
1962 APL

1964 BASIC
1964 Simula
1969 PL/1, B

https://www.scriptol.com/programming/chronology.php

The story of programming languages

From https://www.scriptol.com/programming/chronology.php

Prehistory

1840 Analytical Engine (Charles Babbage and Ada
Lovelace)

1943 ENIAC coding system

1947-1949 Assembly language

1955 FLOW-MATIC (Grace Hopper)

The 1970s

1970
1972
1973
1975
1977

Pascal

C

FORTH, ML
Scheme

Bourne shell

The 1950s

1957 FORTRAN (John Backus)
1958 LISP (John McCarthy)
1959 COBOL (CODASYL group)

The 1960s

1960 ALGOL 60
1962 APL

1964 BASIC
1964 Simula
1969 PL/1, B

https://www.scriptol.com/programming/chronology.php

The story of programming languages

From https://www.scriptol.com/programming/chronology.php

Prehistory

1840 Analytical Engine (Charles Babbage and Ada
Lovelace)

1943 ENIAC coding system

1947-1949 Assembly language

1955 FLOW-MATIC (Grace Hopper)

The 1970s

1970
1972
1973
1975
1977

Pascal

C

FORTH, ML
Scheme

Bourne shell

The 1950s

1957 FORTRAN (John Backus)
1958 LISP (John McCarthy)
1959 COBOL (CODASYL group)

The 1960s

1960 ALGOL 60
1962 APL

1964 BASIC
1964 Simula
1969 PL/1, B

The 1980s

1980
1983
1985
1987
1988

Smalltalk

Ada

Postscript, C++
Perl

Tel

https://www.scriptol.com/programming/chronology.php

The story of programming languages

From https://www.scriptol.com/programming/chronology.php

Prehistory The 1970s

1840 Analytical Engine (Charles Babbage and Ada 1970 Pascal
Lovelace) 1972 C

1943 ENIAC coding system 1973 FORTH, ML

1947-1949 Assembly language 1975 Scheme

1955 FLOW-MATIC (Grace Hopper)) 1977 Bourne shell

The 1950s The 1980s

1957 FORTRAN (John Backus) 1980 Smalltalk
1958 LISP (John McCarthy) 1983 Ada
1959 COBOL (CODASYL group) 1985 Postscript, C++
s 1987 Perl
1988 Tcl

The 1960s
1060 ALGOL 60 The 1990s

1962 APL

1964 BASIC 1990 Haskell

1964 Simula 1991 Python

1969 PL/1, B 1995 Java, javascript, Ruby, PHP

https://www.scriptol.com/programming/chronology.php

The story of programming languages

From https://www.scriptol.com/programming/chronology.php

Prehistory The 1970s The “aughts”
1840 Analytical Engine (Charles Babbage and Ada 1970 Pascal 2000 C#
Lovelace) 1972 C 2004 Scala
1943 ENIAC coding system 1973 FORTH, ML 2006 Rust
1947-1949 Assembly language 1975 Scheme 2007 Scratch
1955 FLOW-MATIC (Grace Hopper) '} 1977 Bourne shell J 2009 Go

The 1950s The 1980s

1957 FORTRAN (John Backus) 1980 Smalltalk
1958 LISP (John McCarthy) 1983 Ada
1959 COBOL (CODASYL group) 1985 Postscript, C++
s 1987 Perl
1988 Tcl

The 1960s ’
1060 ALGOL 60 The 1990s

1962 APL

1964 BASIC 1990 Haskell

1964 Simula 1991 Python

1969 PL/1, B 1995 Java, javascript, Ruby, PHP

https://www.scriptol.com/programming/chronology.php

The story of programming languages

From https://www.scriptol.com/programming/chronology.php

Prehistory The 1970s The “aughts”
1840 Analytical Engine (Charles Babbage and Ada 1970 Pascal 2000 C#
Lovelace) 1972 C 2004 Scala
1943 ENIAC coding system 1973 FORTH, ML 2006 Rust
1947-1949 Assembly language 1975 Scheme 2007 Scratch
1955 FLOW-MATIC (Grace Hopper) '} 1977 Bourne shell J 2009 Go

The 1950s The 1980s The 2010s

1957 FORTRAN (John Backus) 1980 Smalltalk 2010 Julia
1958 LISP (John McCarthy) 1983 Ada 2012 Kotlin
1959 COBOL (CODASYL group) 1985 Postscript, C++ 2017 WebAssembly
s 1987 Perl
1988 Tcl

The 1960s ’
1060 ALGOL 60 The 1990s

1962 APL

1964 BASIC 1990 Haskell

1964 Simula 1991 Python

1969 PL/1, B 1995 Java, javascript, Ruby, PHP

https://www.scriptol.com/programming/chronology.php

The story of programming languages

From https://www.scriptol.com/programming/chronology.php

Prehistory

1840 Analytical Engine (Charles Babbage and Ada
Lovelace)

1943 ENIAC coding system

1947-1949 Assembly language

1955 FLOW-MATIC (Grace Hopper)

The 1970s

1970
1972
1973
1975
1977

Pascal

C

FORTH, ML
Scheme

Bourne shell

The “aughts”

2000 C#
2004 Scala
2006 Rust
2007 Scratch
2009 Go

The 1950s

1957 FORTRAN (John Backus)
1958 LISP (John McCarthy)
1959 COBOL (CODASYL group)

The 1960s

1960 ALGOL 60
1962 APL

1964 BASIC
1964 Simula
1969 PL/1, B

The 1980s

1980
1983
1985
1987
1988

Smalltalk

Ada

Postscript, C++
Perl

Tel

The 1990s

1990
1991
1995

Haskell
Python
Java, javascript, Ruby, PHP

The 2010s

2010 Julia
2012 Kotlin
2017 WebAssembly

The future (created by
Santa Fe youngsters)

2027 greenchile
2030 joemama
2032 updog

https://www.scriptol.com/programming/chronology.php

The story of programming languages — timeline

170
1572

1

e

195

Fortran |
Lisp
Algol 60 coBoL
iR g
Smaltalk
| Pascal Prolog
|
Scheme | |
Fotran77 ML
‘ CKeR)
| Smaltalk 80
Ads 83
CommonLisp it J‘ Y
perl | et caml
o
Python - Fortran 90
Java - Javascript | perls Ry
AN ocem
Scheme RSRS CH+ (150) Haskell 98

“c# Python2.0

Java 2 (v1.5 beta) c#2.0

The story of programming languages — influence

What do these languages look like?

From http://rosettacode.org/wiki/Loops/For

Rosetta code What we will investigate

We will write the “stars” program which prints
first one, then two, three, four and five stars
on separate lines, so we can discuss the
following about each language: (a) Motivation
and history, (b) Syntax peculiarities and “feel”

archetypes FORTRAN, LISP, COBOL

wide diversity FORTH, Smalltalk, Pascal,
Haskell

currently relevant C, C4++, Go, Rust, Python,
R, javascript, sh

ROSETTACODE.ORG

http://rosettacode.org/wiki/Loops/For

Machine language — 6502

Hexadecimal opcodes for a program that calculates 2 4+ 5
From https://www.atariarchives.org/mlb/chapter2.php

Hex:
1000 A9 02 69 05 8D A0 OF 60
Binary:

1000000000000 10101001 00000010 01101001 00000101 10001101 10100000 00001111 01100000

And yes, that's what they mean when they say “it's all ones and zeros.”

https://www.atariarchives.org/mlb/chapter2.php

Assembly language — 6502

1000 A9 02 LDA #$02
1002 69 05 ADC #805
1004 8D A0 OF STA $0FAQ
1007 60 RTS

FORTRAN

CC compile with "gfortran stars.for -o stars_fortran"
CC run with "./stars_fortran"
PROGRAM FORLOOP

INTEGER |, J

DO201=1,5
DO10J=1,1
C Print the asterisk.
WRITE (%,5001) "'
10 CONTINUE
Print a newline.

c
WRITE (%,5000) "
20 CONTINUE
sTOP
5000 FORMAT (A)

5001 FORMAT (A, $)
C5001 FORMAT (A, ADVANCE='NO')

LISP

1; recursive approach; you can run this with "gcl < stars.lisp"
(defun print-stars (number)
“Print a given number of stars, using recursion”
(if (= number 0)
(progn
(write-char #*)
(terpri))
(progn
(write-char #\x)
(print-stars (1- number)))))

(defun print-triangle (n-rows)
(if (= n-rows 0)
(print-stars n-rows)
(progn
(print-stars n-rows)
(print-triangle (1- n-rows)))))

(print-triangle 5)

COBOL

IDENTIFICATION DIVISION.
* compile with "cobc stars.cob -o stars_cobol
PROGRAM-ID. Display-Triangle.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 Outer-Counter PIC 9.

01 Inner-Counter PIC 9.

PROCEDURE DIVISION.
PERFORM VARYING Outer-Counter FROM 1 BY 1 UNTIL 5 < Outer-Counter

PERFORM VARYING Inner-Counter FROM 1 BY 1
UNTIL Outer-Counter < Inner-Counter
DISPLAY "+" NO ADVANCING
END-PERFORM

DISPLAY "" > Output a newline
END-PERFORM

GOBACK

/* compile with "gcc stars.c -o stars_c" and run with "./stars_c" %/
#include <stdio.h>

int main()
{
int i, j;
for (i=1,i <=5 i++) {
for(j=1;j <=1 j++) {
putchar('«');

putchar('\n');

Interlude: obfuscated C

From https://www.ioccc.org/years.html#1987

F#define iv 4

#define v ;(void

#define XI(xi)int xi[ivx'V'];

#define L(c,,i)c(){d(1);m(i);}

#include <stdio.h>

intxcc,c,i,ix="\t",exit(),X="\n"«"\d";XI(VI)XI(xi)extern(xvi[]) ().(*
signal())();charxV,cm,D['x'], M="\n",1,xgets();L(MV,V,(c+="d",ix))m(x){v)
signal(X/'I',vi[x]); }d(x)charsx;{v)write(i,x,i); }L(MC,V,M+1)xv(){c>=i?m(
c/M/M+M):(d(&M),m(cm)); }L(mi,V+cm,M)L(md,V,M)MM(){c=cxM%X;V-=cm;m(ix);}
LXX(){gets(D)||(vi[iv])();c=atoi(D);while(c>=X){c-=X;d("m"); } V="ivxlcdm"
~+iv;m(ix); }LV () {c-=c;while((i=cc[*D=getchar()]) >-1)i?(c? (c<i&&lI(-c-c,
"%d"),1(1,"+%d")):1(i," (%d")): (c&&I(M,")"),I(xD," %c")),c=i;c&&I(X,")").|
(-1,"%c");m(iv-1(i&1)); JL(mLV, "\ f)i(){m(cm+lisatty (i=1)); }i(){m(c=cm

= ++I)v)pipe(VI);cc=xi+cm++;for(V="]WYmDEnX";*V;V++)xi[*V ™" '|=cxi[*V++]
=c,cx=Mxi[*V"" "|=xi[*V]=c>>I;cc[-I]-=ix v)close(*VI);cc[M]-=M;}main(){
(xvi)();for(;v)write(VI[I],V,M)); H(xI,Ix)charxlx;{v) printf(Ix,xI)v)

fflush(stdout); }L(xx,V+I,(c-=X/cm,ix))int(*vi[]) ()={ii,li, LXX,LV exit,|,
d.l,d,xv,MM,md,MC,ml,MV xx,xx,xx,xx,MV,mi};

https://www.ioccc.org/years.html#1987

Forth

(run this with "gforth < stars.forth"
> triangle (n -)
1+ 1 do
cr i 0 do [char] * emit loop
loop ;
5 triangle

Smalltalk

"run with gst stars.st"

1 to: 5 do: [:aNumber |
aNumber timesRepeat: ["' display |.
Character nl display.

]

Pascal

(* compile with "fpc stars.p -ostars_pascal”, run with "./stars_pascal" x)
program stars(output);

var
i, j: integer;

begin
fori:=1to 5 do
begin
forj:=1toido
write('x');
writeln
end
end.

Haskell

- | compile with "ghc stars.hs -o stars_haskell" and run with "./stars_haskell"
import Control.Monad

main = do
forM_ [1..5] $ \i -> do
forM_ [1..]] $ \j -> do
putChar 'x'
putChar "\n'

Javascript

// run with "node < stars.js", or change console.log(s) to print(s)
// and you can run with "rhino < stars.js"

var i, j;
for(i=1i<=5i+=1){
= Il;
for(=0;j<i;j+=1)

s +="4';

console.log(s);

}

Python

#! /usr/bin/env python3
run this with "python3 stars.py"

for i in range(5):
for j in range(i+1):
print("«', end="")
print()

// run with "R -f stars.R"
for(i in 0:4) {
s <"
for(j in 0:i) {
s <- paste(s, "x
}
print(s)

}

n
1

sep:II II)

Java

// compile with "javac stars.java" and run with "java stars"
public class stars {
public static void main(String][] args) {
for (inti=0;i<5; i++) {
for (intj=0;j<=1i; j++) {
System.out.print("*");
}
System.out.printin();
}
¥
}

Rust

// compile with "rustc stars.rs -o stars_rust", run with "./stars_rust"
fn main() {
foriin 0.5 {
for _in0..=i {
print!("*");

}

printin!();
}
}

Go

// compile with "gccgo stars.go -o stars_go", run with "./stars_go"
package main

import "fmt"

func main() {
fori:=1;i<=5; i++ {
forj:i=1,j <=1 j++ {
fmt.Printf("«")
}
fmt.Printf("\n")
}
}

sh

to run it just paste it into the shell or type "/bin/sh stars.sh" or
make it executable with "chmod +x stars.sh" and then run it with
"./stars.sh"
foriin “seq 15
do

for jin “seq 1 $i°

do

echo -n "x"

done

echo
done

Distilling insight from the tour

Distilling insight from the tour

Compiled versus interpreted

... (discussion) ...

Distilling insight from the tour

Compiled versus interpreted

... (discussion) ...

Broad classes of language syntax styles

... (discussion) ...

Distilling insight from the tour

Compiled versus interpreted

... (discussion) ...

Broad classes of language syntax styles

... (discussion) ...

Broad classes of language semantic styles

... (discussion) . ..

Distilling insight from the tour

Compiled versus interpreted

... (discussion) ...

Broad classes of language syntax styles

... (discussion) ...

Broad classes of language semantic styles

... (discussion) . ..

Evolution

Who influences whom? (Frame 11)

Distilling insight from the tour

Compiled versus interpreted

... (discussion) ...

Broad classes of language syntax styles

... (discussion) ...

Broad classes of language semantic styles

... (discussion) ...

Evolution

Who influences whom? (Frame 11)

Bearing upon the grand challenge problems

... (discussion) ... more in the discussion of methodologies

Fear and loathing of programming languages — indifference

Brian Kernighan: Why Pascal is Not My Favorite Programming Language
From http://www.lysator.liu.se/c/bwk-on-pascal.html

Early comment

Comparing C and Pascal is rather like comparing a Learjet to a Piper Cub - one is meant for
getting something done while the other is meant for learning - so such comparisons tend to be
somewhat farfetched. ...

Conclusion, stated in intro

... To state my conclusions at the outset: Pascal may be an admirable language for teaching
beginners how to program; | have no first-hand experience with that. It was a considerable
achievement for 1968. It has certainly influenced the design of recent languages, of which Ada
is likely to be the most important. But in its standard form (both current and proposed),
Pascal is not adequate for writing real programs. It is suitable only for small, self-contained
programs that have only trivial interactions with their environment and that make no use of
any software written by anyone else. ...

http://www.lysator.liu.se/c/bwk-on-pascal.html

Fear and loathing of programming languages — admiration
Naturalmente . ..xkcd: https://xkcd.com/297/

LISP 15 QVER HALT A
CENTURYQLD AND 1T
STILL HAS THIS PERFECT
TIMELESS AIRABOUTIT.

s

T WONDER IF THE CYCLES
WILL CONTINUE FOREVER

N T T

A FEW CODERS FROMEAMH
NEW GENERATION RE-
DISCOVERING THE LISP ARTS.

T

THESE ARE YOUR
FATHER'S PARENTHESES
N

"' e,

I~
m

3
-
Ymn

=

=
_—
—
=

WEAPONS
FoR A MORE... CIVILZED AGE.

https://xkcd.com/297/

Fear and loathing of programming languages — admiration
Naturalmente . ..xkcd: https://xkcd.com/297/

LISP 15 OVER HALF A | | T WONDER IF THE CYCLES THESE ARE YOUR
CENTURYOLD AND 1T | | WILL CONTINUE FOREVER. “_FAHER'S PARENTHESES
——— 23

STILL HAS THIS PERFECT,
TIMELESS AIRABQUT IT.

A FEW CODERS FROMEAMH
NEW GENERATION RE-
DISCOVERING THE LISP ARTS.

I've just received word that the Emperor has dissolved the MIT computer science program permanently.

!

A
=/
=

WEAPONS
FoR A MORE... CIVILZED AGE.

https://xkcd.com/297/

Fear and loathing in programming languages — love
...xked: https://xkcd.com/353/

P

A

L

/

T LEARNED ITLAST
NIGHT| EVERYTHING
1S S0 GIMPLE!

|

HELLO WORLD 15 JusT
print “Hello, world!"

T DUNNO...
DYNAMIC TYPING?
HITEGRACE?

COME JoIN US!
PROGRAMMING
15 FUN AGAIN!
IT'S A WHOLE
NEW WORLD
P HERE!

BUT HOW ARE
YOU FLYING?

I JUsT TYED
import ontigmuity
THATS IT? /
... T AL50 SAMPLED
EVERYTHING IN THE
VEDICINE CABINET
FOR COMPARISON.
/
BUT I THINK THIS
16 THE PYTHON.

https://xkcd.com/353/

Fear and loathing in programming languages — love
...xked: https://xkcd.com/353/

P

A

L

/

T LEARNED ITLAST
NIGHT| EVERYTHING
1S S0 GIMPLE!

|

HELLO WORLD 15 JusT
print “Hello, world!"

HITEGRACE?

COME JoIN US!
PROGRAMMING
15 FUN AGAIN!
IT'S A WHOLE
NEW WORLD
P HERE!

BUT HOW ARE
YOU FLYING?

T DUNNO---
DYNAMIC TYPING?

T JusT TVWED
import ontigmuity
THATS 1T? /

... T AL50 SAMPLED
EVERYTHING IN THE
MEDICINE CPBINET
FOR COMPARISON.
/
BUT I THINK THIS
16 THE PYTHON.

| wrote 20 short programs in Python yesterday. It was wonderful. Perl, I'm leaving you.

https://xkcd.com/353/

Fear and loathing of programming languages — disillusionment
Naturalmente . ..xkcd: https://xkcd.com/1987/

'/,,‘ EASY_INSTALL) «— ?— $PYTHONPATH

\'< /k‘H‘\WONDﬁH \

HOMEBREW PYHON /> (NOTHER PIP??

\\\:/éw!on/

9222 OUNED BY
/ RooT)
' ~/newenv/ /
Just/local /Cellar /ne
~|__| /vsr/local/tib/ python3.6

Ivscllocal/opt > /usr/local/lib/ python27
/(A BUNCH OF PATHS WITH “FRAMEWORKS" IN THEM SOMEWHERE)/

MY PYTHON ENVIRONMENT HAS BECOME S0 DEGRADED
THAT MY LAPTOP HAS BEEN DECLARED A SUPERFUND SITE.

https://xkcd.com/1987/

Fear and loathing of programming languages — disillusionment
Naturalmente . ..xkcd: https://xkcd.com/1987/

'/,,‘ EASY_INSTALL) «— ?— $PYTHONPATH

et)

N /> (ANOTHER PIP??

O
<
N

s
%’J

3

~/newenv/

~|__| /vsr/local/tib/ python3.6
Ivscllocol/opt "~ /usr|ocal/Iib/ python27

/(A BUNCH OF PATHS WITH “FRAMEWORKS" IN THEM SOMEWHERE)/

/ s i
Just/local /Cellar

MY PYTHON ENVIRONMENT HAS BECOME S0 DEGRADED
THAT MY LAPTOP HAS BEEN DECLARED A SUPERFUND SITE.

The Python environmental protection agency wants to seal it in a cement chamber, with pictorial messages to

future civilizations warning them about the danger of using sudo to install random Python packages.

https://xkcd.com/1987/

Links - the story of programming languages — visualizations

https://github.com/stereobooster/programming-languages-genealogical-tree
http://svalver.github.io/Proglang/
http://svalver.github.io/Proglang/paradigms.html
https://www.youtube.com/watch?v=2kP4sv3H6g8
https://www.youtube.com/watch?v=0g847HVwRSI
https://vole.wtf/coder-serial-killer-quiz/

The “extra slides” area has two of those videos embedded.

https://github.com/stereobooster/programming-languages-genealogical-tree
http://svalver.github.io/Proglang/
http://svalver.github.io/Proglang/paradigms.html
https://www.youtube.com/watch?v=ZkP4sv3H6g8
https://www.youtube.com/watch?v=Og847HVwRSI
https://vole.wtf/coder-serial-killer-quiz/

Part |l — Operating systems

Part Il — Operating systems

Operating system: what is it?

Keith Packard, 1986 Hardware abstraction layer
user space programs A H . _ . a .
(the bozos) Imagine in your head the fine-grained operations involved

in reading a file from a disk. Compare it to getting milk
from the refrigerator.

_—

Protection

This started out as avoiding stomping on memory and
device read/write. Today also relevant to cybersecurity.

Grand challenges for operating system design

Loading huge
programs
FORTRAN multi-pass

compiler on one tape:
FMS.

Proto-time-sharing

SHARE and SHARE-OS,
BBNMON.

MAC: i e)

McCarthy's

discussion of interrupts
versus polling and hardware
support.

y

Grand challenges for operating system design

Loading huge
programs
FORTRAN multi-pass

compiler on one tape:
FMS.

Proto—time—sharing » Hierarchical filesystem, virtual memory,
SHARE and SHARE-OS symmetric multiprocessing, multiple

languages, a ton more.

BBNMON.
< > Security by design (B2) - mandatory
access control, no buffer overflows
Project ol (PL/1), runtime call sanity checks.
ey
MAC: i e | » Spiral model of s/w development.
McCarthy's » One of the obvious things that went
discussion of interrupts wrong with Multics as a commercial
versus polling and hardware success was just that it was sort of
support. over-engineered in a sense. There was
- just too much in it.

Dennis Ritchie

Grand challenges for operating system design

Loading huge
programs
FORTRAN multi-pass

compiler on one tape:
FMS.

Proto-time-sharing

SHARE and SHARE-OS,
BBNMON.

Project =
MAC: 3 Lo
McCarthy's

discussion of interrupts
versus polling and hardware
support.

Hierarchical filesystem, virtual memory,
symmetric multiprocessing, multiple
languages, a ton more.

Security by design (B2) - mandatory
access control, no buffer overflows
(PL/1), runtime call sanity checks.

Spiral model of s/w development.

» One of the obvious things that went

wrong with Multics as a commercial
success was just that it was sort of
over-engineered in a sense. There was
just too much in it.

Dennis Ritchie

Original article by Ken
Thompson and Dennis
Ritchie.

Key innovations

Early days

Key innovations

Early days

Key innovations

Early days

P> Grace Hopper’s linker with tape operations.

» Time sharing: CTSS and ITS — Multics — UNIX
- slice from 140ms to [0.75,6]ms.

Key innovations

Early days

P> Grace Hopper’s linker with tape operations.

» Time sharing: CTSS and ITS — Multics — UNIX
- slice from 140ms to [0.75,6]ms.

» 0S/360 portable OS.

Key innovations

Early days

P> Grace Hopper’s linker with tape operations.

» Time sharing: CTSS and ITS — Multics — UNIX
- slice from 140ms to [0.75,6]ms.

» 0S/360 portable OS.

» Multics and UNIX innovations - abstraction.

Key innovations

Early days

P> Grace Hopper’s linker with tape operations.
T L

v

o'l]

Time sharing: CTSS and ITS — Multics — UNIX
- slice from 140ms to [0.75,6]ms.

0S/360 portable OS.

Multics and UNIX innovations - abstraction.

Sockets, multiple sources of input, and select().

A 4.2bsd Interprocess Communication Primer
DRAFT of July 27, 1983
Samuel J. Leffler
Robert S. Fabry
William N. Joy

Computer Systems Research Group .
Department of Electrical Engineering and Computer Science
University of California, Berkeley

21st century

Key innovations

Early days 21st century

» Grace Hopper's linker with tape operations.
= nl s

i

» Advanced file systems.

S L

» Time sharing: CTSS and ITS — Multics — UNIX
- slice from 140ms to [0.75,6]ms.

» 0S/360 portable OS.

Multics and UNIX innovations - abstraction.

v

Sockets, multiple sources of input, and select().

A 4.2bsd Interprocess Communication Primer
DRAFT of July 27, 1983
Samuel J. Leffler
Robert S. Fabry
William N. Joy

Computer Systems Research Group .
Department of Electrical Engineering and Computer Science
University of California, Berkeley

Key innovations

Early days

» Grace Hopper's linker with tape operations.
P
' (§ ‘

g | =
1l

» Time sharing: CTSS and ITS — Multics — UNIX
- slice from 140ms to [0.75,6]ms.

» 0S/360 portable OS.

Multics and UNIX innovations - abstraction.

v

» Sockets, multiple sources of input, and select().

A 4.2bsd Interprocess Communication Primer
DRAFT of July 27, 1983
Samuel J. Leffler
Robert S. Fabry
William N. Joy

Computer Systems Research Group .
Department of Electrical Engineering and Computer Science
University of California, Berkeley

21st century
» Advanced file systems.

» Modern security issues.

Key innovations

Early days

» Grace Hopper's linker with tape operations.
P
' (§ ‘

g | =
s il

» Time sharing: CTSS and ITS — Multics — UNIX
- slice from 140ms to [0.75,6]ms.

» 0S/360 portable OS.

Multics and UNIX innovations - abstraction.

v

» Sockets, multiple sources of input, and select().

A 4.2bsd Interprocess Communication Primer
DRAFT of July 27, 1983
Samuel J. Leffler
Robert S. Fabry
William N. Joy

Computer Systems Research Group .
Department of Electrical Engineering and Computer Science
University of California, Berkeley

21st century
» Advanced file systems.
» Modern security issues.

» Multicore and energy savings.

Key innovations

Early days
» Grace Hopper’
=l
'I

o
il
» Time sharing: CTSS and ITS — Multics — UNIX

- slice from 140ms to [0.75,6]ms.

» 0S/360 portable OS.

Multics and UNIX innovations - abstraction.

linker with tape operations.

v

» Sockets, multiple sources of input, and select().

A 4.2bsd Interprocess Communication Primer
DRAFT of July 27, 1983
Samuel J. Leffler
Robert S. Fabry
William N. Joy

Computer Systems Research Group .
Department of Electrical Engineering and Computer Science
University of California, Berkeley

21st century

>

>
>
>
>

Advanced file systems.

Modern security issues.

Multicore and energy savings.
Distributed computing (reprised).

The story of operating systems - part 1

The story of operating systems - part 1
Prehistory

pre-1955 Plugboards (no OS)

The story of operating systems - part 1
Prehistory

pre-1955 Plugboards (no OS)

1955-1960

Single batch - perforated paper paper tape, IBM, and
punchcards.

Single batch - tape Unisys and magnetic tape, 128
char/inch, eventually 800 char/inch.

1956 General Motors GM-NAA for IBM 701 and then
704.

1957 Start of Compatible TimeSharing System
(CTSS) development at MIT.

The story of operating systems - part 1

Prehistory

pre-1955 Plugboards (no OS)

1955-1960

Single batch - perforated paper
punchcards.

paper tape, IBM, and

Single batch - tape Unisys and magnetic tape, 128
char/inch, eventually 800 char/inch.

1956 General Motors GM-NAA for IBM 701 and then
704.

1957 Start of Compatible TimeSharing System
(CTSS) development at MIT.

The 1960s

1960 SHARE Operating System (SOS), later
renamed IBSYS.

1960 FORTRAN Monitor System (FMS): OS and
FORTRAN compiler on same tape!

1960 Bell Monitor (BELLMON or BESYS),
University of Michgan Executive System
(UMES).

1961 CTSS demonstrated at MIT on IBM 709.

1963 SHARE OS taken by IBM and renamed
IBSYS.

1963 DTSS (Dartmouth).
1965-2023 IBM 0S/360.

1967 Incompatible Timesharing System (ITS) at
MIT, PDP-6, PDP-10.
1967 Multics (Multiplexed Information and

Computer Services) (Bell Labs, GE, MIT), GE
645.

v

The story of operating systems - part 1

Prehistory

pre-1955 Plugboards (no OS)

1955-1960

Single batch - perforated paper
punchcards.

paper tape, IBM, and

Single batch - tape Unisys and magnetic tape, 128
char/inch, eventually 800 char/inch.

1956 General Motors GM-NAA for IBM 701 and then
704.

1957 Start of Compatible TimeSharing System
(CTSS) development at MIT.

The 1960s

1960 SHARE Operating System (SOS), later
renamed IBSYS.

1960 FORTRAN Monitor System (FMS): OS and

FORTRAN compiler on same tape!

1960 Bell Monitor (BELLMON or BESYS),
University of Michgan Executive System
(UMES).

1961 CTSS demonstrated at MIT on IBM 709.

1963 SHARE OS taken by IBM and renamed
IBSYS.

1963 DTSS (Dartmouth).
1965-2023 IBM 0S/360.

1967 Incompatible Timesharing System (ITS) at

MIT, PDP-6, PDP-10.
1967 Multics (Multiplexed Information and

Computer Services) (Bell Labs, GE, MIT), GE

645.

v

The 1970s

1970
1970

1972
1972
1972
1972
1973
1974
1975
1975
1977
1978
1978

1978

1978

1979
1979

Unix, PDP-7.

TOPS-10, PDP-7 and PDP-11 - DECWAR
and MUD!!

RSTS, PDP-11.

RT-11, PDP-11 - real-time!

RSX-11, PDP-11.

VM/370 (also VM/CMS).

Unix v.4, rewritten in C, PDP-11.
CP/M, Motorola 8080.

UNIX v.6.

Ken Thompson sabbatical at Berkeley.
1BSD UNIX released, 30 copies sent out.
Unix ported to the Interdata 8/32.

VMS, VAX, virtual memory and virtual
machine support.

UCSD p-System, PDP-11, IBM PC, Apple I,
11, Lisa.

Apple DOS, 6502.

2BSD UNIX released.

3BSD UNIX (also called VMUNIX) released,
VAX.

The story of operating systems - part deux

The 1980s

1980
1981
1981
1982
1983
1983
1983
1983
1984
1985

1985
1986
1987
1987
1989

Xenix, x86.

MS-DOS 1.x

XINU.

Commodore DOS, 6502.
Project GNU announced.

Berkeley 4.2BSD UNIX: introduces sockets.

AT&T System V UNIX.
SunOS 1.0, 4.2BSD, 68010.
Macos 1.0, 68000.

SunOS 2.0, 4.2BSD, introduces NFS, YP,
RPC, ...

AmigaOS, AtariOS, MS-Windows 1.0.
AIX, HP-UX, SunOS 3: UNIX wars begin!!
IRIX, MIPS.

0S/2.

RiscOS, MIPS.

The 1990s

1991
1992
1992
1992
1992
1992
1993
1993
1994
1994
1995
1995
1996
1998

Linux 0.1, x86.

Linux 0.12, x86 - kernel now under the GPL!
SunOS 5.x (Solaris), SPARC.
MS-Windows 3.1.

Novell NetWare 3, has TCP/IP.

Plan 9.

Slackware 1.0 (first linux distribution).
MS-Windows NT.

Red Hat.

NetBSD 1.0, first of the FOSS BSDs.
MS-Windows 95.

Debian 1.1.

PalmOS.

eCos.

The 2000s

2001
2001
2003
2004
2004
2007
2008

MS-Windows XP.

MacOS X 10.0, PowerPC.
Fedora Core 1.

Ubuntu 4.10..

Reactos.

iOS, ARM.

Android, ARM.

The story of operating systems — UNIX timeline

1970 1980 1990 2000 2010 2020 Time
FreeBSD 12.2 |
|—>| DragonFly BSD 6.0 |
Matthew Dillon
BSD family NetBSD 9.2
L»' OpenBSD 7.0 I
_’I BSD 2 4| Theo de Raadt
ol
Darwin 21.0
f 33 119NN AR AR AR AR AR AR AR AN
mac0os 11.6 I
Apple
Microsoft/SCO GNU/Hurd 0.9
_____________________ ’l—“'""“ Linus Torvalds 3.4
Andrew S. Tanenbaum

Bell Labs: Ken Thompson,
Dennis Ritchie, et al.
Univel/SCO/Xinuos

Sun/Oracle

1BM

—— e

SGI

System 1l & V family

The story of operating systems — UNIX timeline (zoom on UNIX wars)

AT&T Univel/SCO/Xinuos

Sun/Oracle
SGl

UNIX wars

From Keith Packard “A Political History of X"

talk at LinuxConf Australia, 2020
A Political History of X

How | Stopped Worrying and Learned to Love the GPL

Keith Packard
SiFive
keithp@keithp.com

https://keithp.com/documents/lca2020-x-history.pdf

UNIX wars

From Keith Packard “A Political History of X"

talk at LinuxConf Australia, 2020

A Political History of X

How | Stopped Worrying and Learned to Love the GPL

Keith Packard
SiFive
keithp@keithp.com

X

Collapse of Unix

« App market failed to thrive

- So many Unix versions

- So many Ul wants

- So much gratuitous re-engineering
« Windows happened

- Stupid cheap hardware

- Completely standard ABI

- “good enough is good enough”

X and UNIX show parallel dysfunction

Sun, HP, Digital, Apollo, Tektronix, IBM,
MIPS, Silicon Graphics: all had their own
UNIX and their own X.

https://keithp.com/documents/lca2020-x-history.pdf

UNIX wars

From Keith Packard “A Political History of X"

talk at LinuxConf Australia, 2020

A Political History of X

How | Stopped Worrying and Learned to Love the GPL

Keith Packard
SiFive
keithp@keithp.com

X

X and UNIX show parallel dysfunction

Sun, HP, Digital, Apollo, Tektronix, IBM,
MIPS, Silicon Graphics: all had their own
UNIX and their own X.

Collapse of Unix

« App market failed to thrive

- So many Unix versions

- So many Ul wants

- So much gratuitous re-engineering
« Windows happened

- Stupid cheap hardware

- Completely standard ABI

- “good enough is good enough” N
h

how it played out - and lessons

First: Windows eats the lunch of the UNIX
distributions where it can.

https://keithp.com/documents/lca2020-x-history.pdf

UNIX wars

From Keith Packard “A Political History of X"

talk at LinuxConf Australia, 2020
A Political History of X

How | Stopped Worrying and Learned to Love the GPL

Keith Packard
SiFive
keithp@keithp.com

X

X and UNIX show parallel dysfunction

Sun, HP, Digital, Apollo, Tektronix, IBM,
MIPS, Silicon Graphics: all had their own
UNIX and their own X.

Collapse of Unix

« App market failed to thrive

- So many Unix versions

- So many Ul wants

- So much gratuitous re-engineering
« Windows happened

- Stupid cheap hardware

- Completely standard ABI

- “good enough is good enough” M
h

how it played out - and lessons

First: Windows eats the lunch of the UNIX
distributions where it can.

Then: Linux took away the rest of UNIX's
market share, and X.org of X's.

https://keithp.com/documents/lca2020-x-history.pdf

UNIX wars

From Keith Packard “A Political History of X"

talk at LinuxConf Australia, 2020
A Political History of X

How | Stopped Worrying and Learned to Love the GPL

Keith Packard
SiFive
keithp@keithp.com

X

X and UNIX show parallel dysfunction

Sun, HP, Digital, Apollo, Tektronix, IBM,
MIPS, Silicon Graphics: all had their own
UNIX and their own X.

Collapse of Unix

« App market failed to thrive

- So many Unix versions

- So many Ul wants

- So much gratuitous re-engineering
« Windows happened

- Stupid cheap hardware

- Completely standard ABI

- “good enough is good enough” M
h

how it played out - and lessons

First: Windows eats the lunch of the UNIX
distributions where it can.

Then: Linux took away the rest of UNIX's
market share, and X.org of X's. Anecdote of
Stallman and the X project.

https://keithp.com/documents/lca2020-x-history.pdf

Distilling insight from the tour

Distilling insight from the tour

Devices and abstraction

... (discussion) ...

Distilling insight from the tour

Devices and abstraction

... (discussion) ...

Lockstep with hardware generations

... (discussion) ...

Distilling insight from the tour

Devices and abstraction

... (discussion) ...

Lockstep with hardware generations

... (discussion) ...

Corporate control and licensing

... (discussion) ...

Distilling insight from the tour

Devices and abstraction

... (discussion) ...

Lockstep with hardware generations

... (discussion) ...

Corporate control and licensing

... (discussion) ...

Evolution
Who influences whom?

Part IV — Methodologies

Part IV — Methodologies

Is there a path to good code?

Naturalmente . ..xkcd: https://xkcd.com/1597/

HOW TO WRITE GOOD CODE:

SPAGHETT] CODE.

THROW 1T ALLOUT
AND START OVER.

|GooD)
ICODE

https://xkcd.com/1597/

Is there a path to good code?

Naturalmente . ..xkcd: https://xkcd.com/1597/

HOW TO WRITE GOOD CODE:

SPAGHETT] CODE.

l?
THROW IT ALL OUT Y
AND START OVER.
[GOoD
CODE.

You can either hang out in the Android Loop or the HURD loop.

https://xkcd.com/1597/

So, then, uhmm, what is the path to good code?

After all we have discussed:

Could it be. ..
» [s it a good editor?
Is it version control?
Is it continuous integration?
Is it ninja debugging?
Is it principled testing?
Is it the Silicon Valley “ABC principle"?
it recognition that one good programmer is worth 10 average programmers?
Good management? No management?
A big team? A small team? Just one hacker?
Is it a good collaboration server?

Is it another software engineering fad?

VVYyVVVVYVYVYVYYVYY
7y

Is it all or most of these, plus some other undiscovered ones?

The rhythm

The rhythm

who'se to blame?

Maybe it's the movies, maybe it's the books

Maybe it's the government and all the other crooks
Maybe it's the drugs, maybe it's the parents

Maybe it's the gangs, or the colors that we're wearin’
Maybe it's the high schools, maybe it's the teachers
Tattoos, pipe bombs underneath the bleachers
Maybe it's the music, maybe it's the crack

Modern buzzword-rich methodologies: Agile

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to Change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
Ward Cunningham Jon Kern Dave Thomas

Martin Fowler Brian Marick

The Agile “12 principles”

Principles behind the Agile Manifesto

We follow these principles:

Our highest priority is to satisfy the customer
through early and continuous delivery
of valuable software.

Welcome changing requirements, even late in
development. Agile processes harness change for
the customer’s competitive advantage.

Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Business people and developers must work
together daily throughout the project.

Build projects around motivated individuals.
Give them the environment and support they need,
and trust them to get the job done.

The most efficient and effective method of
conveying information to and within a development
team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development.
The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.

Continuous attention to technical excellence
and good design enhances agility.

Simplicity—the art of maximizing the amount
of work not done—is essential.

The best architectures, requirements, and designs
emerge from self-organizing teams.

At regular intervals, the team reflects on how
to become more effective, then tunes and adjusts
its behavior accordingly.

But OOP is still so. ..

advice on the act of

If everyone hates it, why is
OOP still so widespread?

OOP has been wildly successful. But was th ss just a coincidence? And can it still
offer something unique in that other programming paradigms cannot?

&

OOP is still cool

OORP Is Still Cool in 2023

2023-01-05 by Tomas Tulka

Object-oriented programming might not be perfect but it is still the best we have.

Learning C++

Abstruse Goose

«« First

« Previous |

Random

Next »

Current »»

How to Teach Yourself Programming

Days 1-10
Teach yourself variables, con-
stants, arrays, strings, expres-
sions, statements, functions, ...

S

Days 11-21
Teach yourself program flow,
ers, references, classes,
objects, inheritance, polymor-
phism,

AR

==

Days 22 - 697

Do a lot of recreational program-

ming. Have fun hacking but re-

member to learn from your mis-
kes.

Days 698 - 3648

Interact viith other programmers.
Work on programming projects
together. Learn from them.

Days 3649 - 7781
Teach yourself advanced theoret-
ical physics and formulate a con-
sistent theory of quantum grav-

i

1=

Days 7782 - 14611
Teach yourself biochemistry,
molecular biology, genetics,

Day 14611
Use knowledge of biology to
make an age-eversing potion.

Day 14611

Use knowledge of physics to
build flux capacitor and go back
in time to day 21.

Day 21
Replace younger self.

s

Seriously, why is everyone in such a rush?

As far as | know, this
is the easiest way to

“Teach Yourself C++ in 21 Days".

Nuance in OOP from Mathew Heaney

From http://wuw.adapower.com/adapowerl/articles/popularity.html
Of course we know now that dynamic binding is nearly as efficient as static binding. The

Smalltalk legacy lives on, however, and reuse via inheritance came to be seen as the Measure
Of All Good Things.

But there is a dark side to this, called the "fragile base class" problem. Deep inheritance
hierarchies create a lot of coupling between abstractions, creating a tension between reuse and
information hiding. An abstraction is basically exposing its representation by announcing that it
inherits from another abstraction, and we should all know the kind of maintenance headaches
you have when you don't practice information hiding.

Thankfully, the tide seems to be turning, and people are beginning to realize that type
extension is not so great after all, and that "mere" aggregation is often preferable. Deep
inheritance hierarchies as a re-use mechanism may be fine for by-reference languages like
Smalltalk and Eiffel, but leaf-classes in a by-value language like Ada95 or C++ become VERY
SENSITIVE to the representation of the ancestor classes, which means massive re-compilations
are often required any time you touch a base class. (This is the sort of problem we had for
other reasons in Ada83, which motivated the inclusion of child packages in Ada95.)

http://www.adapower.com/adapower1/articles/popularity.html

Some of my opinions on project management

People matter.

Some of my opinions on project management

People matter. But why?

Some of my opinions on project management

People matter. But why?
» Cargo cult programming.
» Lack of nuance.
» Order of magnitude faster implementation.
» The silicon valley ABC principle.

Some of my opinions on project management

People matter. But why?
» Cargo cult programming.
» Lack of nuance.
» Order of magnitude faster implementation.
» The silicon valley ABC principle.

Write a lot - Michael Connelly’'s “murder book™.
» Design documents.

» Comments in code (but not as a replacement
for clean thinking).

» Emails.
» |essons learned.
» Case studies.

Modern approaches to well-tooled chat
interaction are enormously better than
traditional meetings.

Management has to exist — you need both
Oppenheimer and Groves, as Jeff Bloch
would say — but they have to be deeply
self-aware and industry-aware.

Manager should have the attitude of “the
coach has to do the full warm-up run with
the team.” Technically they should always
know when they have understood things
and when they have not.

This means you cannot have a manager who is managing
because they hit a technical ceiling.

Part IV — Workflow and tools

Part IV — Workflow and tools

Automation and efficiency
Dave Barry, 1994-02-06

Automation and efficiency
Dave Barry, 1994-02-06

[...] How am | able to produce columns with such a high degree of accuracy, day in and day
out, 54 weeks per year?

Automation and efficiency
Dave Barry, 1994-02-06

[...] How am | able to produce columns with such a high degree of accuracy, day in and day
out, 54 weeks per year?

The answer is: | use a computer. This enables me to be highly efficient. Suppose, for example,
that | need to fill up column space by writing BOOGER BOOGER BOOGER BOOGER
BOOGER. To accomplish this in the old precomputer days, | would have had to type
“BOOGER" five times manually. But now all | have to do is type it once, then simply hold the
left-hand “mouse” button down while “dragging” the “mouse” so that the “cursor” moves over
the text that | wish to “select”; then release the left-hand “mouse” [...]

Automation and efficiency .. 2

[...] button and position the “cursor” over the “Edit” heading on the “menu bar"; then click
the left-hand “mouse” button to reveal the “edit menu”; then position the “cursor” over the
“Copy” command; then click the left-hand “mouse” button; then move the “cursor” to the
point where | wish to insert the “selected” text, then click the left-hand “mouse” button; then
position the “cursor” over the “Edit” heading on the “menu bar” again; then click the left-hand
“mouse” button to reveal the “edit menu”; then position the “cursor” over the “Paste”
command; then click the left-hand “mouse” button four times; and then, as the French say,
“voila!” (Literally,“My hand hurts!")

Automation and efficiency - what is the purpose of computers?

My take on the purpose of
computers

Automation and efficiency - what is the purpose of computers?

My take on the purpose of
computers

The purpose of computers is to
automate repetitive tasks.

Automation and efficiency - what is the purpose of computers?

My take on the purpose of
computers

The purpose of computers is to
automate repetitive tasks.

The purpose of computers is to automate

repetitive tasks.

Automation and efficiency - what is the purpose of computers?

My take on the purpose of
computers

The purpose of computers is to
automate repetitive tasks.

The purpose of computers is to automate
repetitive tasks.

The purpose of computers is to automate

repetitive tasks.

Automation and efficiency - what is the purpose of computers?

My take on the purpose of
computers

The purpose of computers is to
automate repetitive tasks.

The purpose of computers is to automate
repetitive tasks.

The purpose of computers is to automate

repetitive tasks.

The ballad of Jack Thompson
» The magna charta.
» The ldaho retreat.
» Workshop skills.

Automation and efficiency - what is the purpose of computers?

My take on the purpose of
computers

The purpose of computers is to
automate repetitive tasks.

The purpose of computers is to automate
repetitive tasks.

The purpose of computers is to automate

repetitive tasks.

The ballad of Jack Thompson
» The magna charta.
» The ldaho retreat.
» Workshop skills.

The maxim, and how to apply it

» Maxim: You should have a running thread in your
mind that is always saying “dude, should you be
automating that?”

Automation and efficiency - what is the purpose of computers?

My take on the purpose of
computers

The purpose of computers is to
automate repetitive tasks.

The purpose of computers is to automate
repetitive tasks.

The purpose of computers is to automate

repetitive tasks.

The ballad of Jack Thompson
» The magna charta.
» The Idaho retreat.
» Workshop skills.

The maxim, and how to apply it

» Maxim: You should have a running thread in your
mind that is always saying “dude, should you be
automating that?”

» When that bell goes off, have your hacker friend on

speed dial. The way to “make their day” is to ask
their help in automating a task.

Automation and efficiency - what is the purpose of computers?

My take on the purpose of
computers

The purpose of computers is to
automate repetitive tasks.

The purpose of computers is to automate
repetitive tasks.

The purpose of computers is to automate

repetitive tasks.

The ballad of Jack Thompson
» The magna charta.
» The Idaho retreat.
» Workshop skills.

The maxim, and how to apply it

» Maxim: You should have a running thread in your
mind that is always saying “dude, should you be
automating that?”

» When that bell goes off, have your hacker friend on
speed dial. The way to “make their day” is to ask
their help in automating a task.

> Little by little you become the hacker on other
people’s speed dial, then you have a running thread
in your mind saying “why do | feel so good at this
validation of people asking me for help? Kind of
embarrassing. .. "

The UNIX way — an example

The !Kung of the Kalahari desert

Getting data
Download the Howell file with data from the bushmen:

wget https://raw.githubusercontent.com/rmcelreath/rethinking/master/data/Howelll.csv

the top of the file looks like:

$ head Howelll.csv
"height";"weight";"age";"male"
151.765;47.8256065;63; 1
139.7;36.4858065;63;0
136.525;31.864838;65;0
156.845;53.0419145;41;1
145.415;41.276872;51;0
163.83;62.992589;35; 1
149.225;38.2434755;32;0
168.91;55.4799715;27;1
147.955;34.869885;19;0

The UNIX way — asking questions about a text file
Can | look at that file a bit better?

The UNIX way — asking questions about a text file

Can | look at that file a bit better?
cat Howelll.csv | sed 's/;/ /g
cat Howelll.csv | sed 's/;/ /g'| less

The UNIX way — asking questions about a text file

Can | look at that file a bit better?
cat Howelll.csv | sed 's/;/ /g
cat Howelll.csv | sed 's/;/ /g'| less

How many lines?

The UNIX way — asking questions about a text file

Can | look at that file a bit better?

cat Howelll.csv | sed 's/;/ /g

cat Howelll.csv | sed 's/;/ /g'| less
How many lines?

cat Howelll.csv | wc I

The UNIX way — asking questions about a text file

Can | look at that file a bit better?
cat Howelll.csv | sed 's/;/ /g
cat Howelll.csv | sed 's/;/ /g'| less

How many lines?
cat Howelll.csv | wc I

How many people?

The UNIX way — asking questions about a text file
Can | look at that file a bit better?
cat Howelll.csv | sed 's/;/ /g

cat Howelll.csv | sed 's/;/ /g'| less
How many lines?

cat Howelll.csv | wc I
How many people?

cat Howelll.csv | grep -v height | wc -

The UNIX way — asking questions about a text file

Can | look at that file a bit better?
cat Howelll.csv | sed 's/;/ /g
cat Howelll.csv | sed 's/;/ /g'| less

How many lines?
cat Howelll.csv | wc I

How many people?
cat Howelll.csv | grep -v height | wc -

Who are the tallest 5 people?

The UNIX way — asking questions about a text file

Can | look at that file a bit better?

cat Howelll.csv | sed 's/;/ /g

cat Howelll.csv | sed 's/;/ /g'| less
How many lines?

cat Howelll.csv | wc I

How many people?
cat Howelll.csv | grep -v height | wc -
Who are the tallest 5 people?
cat Howelll.csv | grep -v height | sed 's/;/ /g'| sort -n -k 1 | tail -5

The UNIX way — asking questions about a text file

Can | look at that file a bit better?
cat Howelll.csv | sed 's/;/ /g
cat Howelll.csv | sed 's/;/ /g'| less

How many lines?
cat Howelll.csv | wc I

How many people?
cat Howelll.csv | grep -v height | wc -

Who are the tallest 5 people?
cat Howelll.csv | grep -v height | sed 's/;/ /g'| sort -n -k 1 | tail -5

Who are the oldest 5 people?

The UNIX way — asking questions about a text file

Can | look at that file a bit better?

cat Howelll.csv | sed 's/;/ /g

cat Howelll.csv | sed 's/;/ /g'| less
How many lines?

cat Howelll.csv | wc I

How many people?
cat Howelll.csv | grep -v height | wc -
Who are the tallest 5 people?
cat Howelll.csv | grep -v height | sed 's/;/ /g'| sort -n -k 1 | tail -5

Who are the oldest 5 people?
cat Howelll.csv | grep -v height | sed 's/;/ /g'| sort -n -k 3 | tail -5

The UNIX way — asking questions about a text file

Can | look at that file a bit better?
cat Howelll.csv | sed 's/;/ /g
cat Howelll.csv | sed 's/;/ /g'| less

How many lines?
cat Howelll.csv | wc I

How many people?
cat Howelll.csv | grep -v height | wc -

Who are the tallest 5 people?
cat Howelll.csv | grep -v height | sed 's/;/ /g'| sort -n -k 1 | tail -5

Who are the oldest 5 people?
cat Howelll.csv | grep -v height | sed 's/;/ /g'| sort -n -k 3 | tail -5

How many men?

The UNIX way — asking questions about a text file

Can | look at that file a bit better?

cat Howelll.csv | sed 's/;/ /g

cat Howelll.csv | sed 's/;/ /g'| less
How many lines?

cat Howelll.csv | wc I
How many people?

cat Howelll.csv | grep -v height | wc -
Who are the tallest 5 people?

cat Howelll.csv | grep -v height | sed 's/;/ /g'| sort -n -k 1 | tail -5
Who are the oldest 5 people?

cat Howelll.csv | grep -v height | sed 's/;/ /g'| sort -n -k 3 | tail -5
How many men?

cat Howelll.csv | grep '1$' | wc -I

The UNIX way — asking questions about a text file

Can | look at that file a bit better?
cat Howelll.csv | sed 's/;/ /g
cat Howelll.csv | sed 's/;/ /g'| less

How many lines?
cat Howelll.csv | wc I

How many people?
cat Howelll.csv | grep -v height | wc -

Who are the tallest 5 people?

cat Howelll.csv | grep -v height | sed 's/;/ /g'| sort -n -k 1 | tail -5
Who are the oldest 5 people?

cat Howelll.csv | grep -v height | sed 's/;/ /g'| sort -n -k 3 | tail -5
How many men?

cat Howelll.csv | grep '1$' | wc -I

How many women?

The UNIX way — asking questions about a text file

Can | look at that file a bit better?

cat Howelll.csv | sed 's/;/ /g

cat Howelll.csv | sed 's/;/ /g'| less
How many lines?

cat Howelll.csv | wc I

How many people?

cat Howelll.csv | grep -v height | wc -
Who are the tallest 5 people?

cat Howelll.csv | grep -v height | sed 's/;/ /g'| sort -n -k 1 | tail -5
Who are the oldest 5 people?

cat Howelll.csv | grep -v height | sed 's/;/ /g'| sort -n -k 3 | tail -5
How many men?

cat Howelll.csv | grep '1$' | wc -I

How many women?
cat Howelll.csv | grep '0$' | wc -l

The UNIX way — asking questions about a text file

Can | look at that file a bit better?
cat Howelll.csv | sed 's/;/ /g
cat Howelll.csv | sed 's/;/ /g'| less
How many lines?
cat Howelll.csv | wc I
How many people?
cat Howelll.csv | grep -v height | wc -
Who are the tallest 5 people?
cat Howelll.csv | grep -v height | sed 's/;/ /g'| sort -n -k 1 | tail -5
Who are the oldest 5 people?
cat Howelll.csv | grep -v height | sed 's/;/ /g'| sort -n -k 3 | tail -5
How many men?
cat Howelll.csv | grep '1$' | wc -I
How many women?
cat Howelll.csv | grep '0$' | wc -I
What is the average age?

The UNIX way — asking questions about a text file

Can | look at that file a bit better?

cat Howelll.csv | sed 's/;/ /g

cat Howelll.csv | sed 's/;/ /g'| less
How many lines?

cat Howelll.csv | wc I
How many people?

cat Howelll.csv | grep -v height | wc -

Who are the tallest 5 people?

cat Howelll.csv | grep -v height | sed 's/;/ /g'| sort -n -k 1 | tail -5
Who are the oldest 5 people?

cat Howelll.csv | grep -v height | sed 's/;/ /g'| sort -n -k 3 | tail -5
How many men?

cat Howelll.csv | grep '1$' | wc -I

How many women?
cat Howelll.csv | grep '0$' | wc -l

What is the average age?
cat Howelll.csv | grep -v height | sed 's/;/ /g' | awk '{sum+=$3} END {print "AVG =", sum/NR}'

The UNIX way — example of web scraping

Build up a web scraping filter

Listing 1: Anatomy of a web scraping pipeline

wget -O - https://www.verywellfamily.com /top-1000-baby-girl-names-2757832 | lynx -stdin --dump

wget -O - https://www.verywellfamily.com /top-1000-baby-girl-names-2757832 | lynx -stdin --dump | less

wget -O - https://www.verywellfamily.com /top-1000-baby-girl-names-2757832 | lynx -stdin --dump | grep '. ' |
grep '~ %[0-9]'

wget -O - https://www.verywellfamily.com /top-1000-baby-girl-names-2757832 | lynx -stdin --dump | grep '. ' |
grep '~ %[0-9]' | grep -v http

wget -O - https://www.verywellfamily.com/top-1000-baby-girl-names-2757832 | lynx -stdin --dump | grep '. ' |
grep '~ %[0-9]' | grep -v http | grep -v file: | grep -v about:

wget -O - https://www.verywellfamily.com/top-1000-baby-girl-names-2757832 | lynx -stdin --dump | grep '. ' |
grep '~ %[0-9]' | grep -v http | grep -v file: | grep -v about: | grep '[0-9]\.'

NAMES="wget -O - https://www.verywellfamily.com /top-1000-baby-girl-names-2757832
grep . ' | grep ' %[0-9]' | grep -v http | grep -v file: | grep -v about: | grep '[0-9]\."

echo $NAMES

now you can go to town on this

lynx -stdin --dump |

The UNIX way — what is it?

Philosophy at the user level
» Your rightful place is in the command line.
» Redirection (< and >) and pipes (|) are wonderful.
» Use many small programs which interact together to form pipelines.
>

People breezily say “just use sed and awk" — thanks to the examples above we now know
what they mean.

v

Use graphical and integrated utilities with suspicion.

\{

grep, sed, awk, wc, wget, youtube-dl, ...

The UNIX way — what is it?

Philosophy at the user level
» Your rightful place is in the command line.
» Redirection (< and >) and pipes (|) are wonderful.
» Use many small programs which interact together to form pipelines.
>

People breezily say “just use sed and awk" — thanks to the examples above we now know
what they mean.

v

Use graphical and integrated utilities with suspicion.
» grep, sed, awk, wc, wget, youtube-d|, ...

Philosophy at the programmer level

» Don't write huge programs: write small programs that can be put together as a pipeline.
» Use scripting languages like Python to glue together compiled programs.

Perils of a nerd automating a task
Naturalmente . ..xked: https://xked.com/1319/

“T SPEND A LOT OF TIME ON THIS TASK.
T SHOULD LIRITE A PROGRAM AUTOMATING ITI™

TME.

Perils of a nerd automating a task
Naturalmente . ..xked: https://xked.com/1319/

“T SPEND A LOT OF TIME ON THIS TASK.
T SHOULD LIRITE A PROGRAM AUTOMATING ITI™

'Automating’ comes from the roots 'auto-' meaning 'self-’, and "¥***** meaning *¥**¥¥**

Command line diversions

Partially from https://www.binarytides.com/linux-fun-commands/

One-line ascii art

echo an example of figlet | figlet

banner "have a nice day"

cowsay hey dude

cowsay -f dragon "Run for cover, | feel a sneeze coming on."

cowsay -|

cowsay -f ghostbusters Who you Gonna Call

sl

fortune

factor 12103 # factoring numbers? can we use this to search for Mersenne primes?
factor “echo "277-1" | bc® ; factor “echo "2711-1" | bc™ ; factor “echo "2713-1" | bc®
pi 50

espeak "Hello Linux, where are the penguins"

telnet towel.blinkenlights.nl

jpeg to ascii

wget https://upload.wikimedia.org/wikipedia/commons/2/23/Dennis_Ritchie_2011.jpg
make your terminal very big and try

jp2a -f Dennis_Ritchie_2011.jpg

jp2a -f --color Dennis_Ritchie_2011.jpg

Dennis Ritchie

Dennis Ritchie who created the
C programming language and
co-created UNIX. Let's make

ascii art of him.

https://www.binarytides.com/linux-fun-commands/

Editor wars

uiy

IN THE UPPER HWOSPHER‘E

THESE CAUSE MOMENTARY POCKE'E
OF HIGHER-PRESSURE. AIRTO FORM,

AND FLIP THE DESIRED BIT.

Naturalmente . .. xked: https://xked.com/378/
nano? REAL HEY. REAL WELL, REAL | | NO, REAL | |REAL PROGRANMMERS EXCUSE ME, BUT
PROGRAMMERS | | PRCGRAMMERS | | PROGRAMMERS | | PROGRATIMERS | | USE A MAGNETIZED REAL PROGRAMMERS
USE emacs USE vim. VSE ed. USE cot. NEEDLE AND A USE BUTTERFLIES.
\ / [] STEADY HAND.
!
THE DISTURBANCE RIFPLES WHICH ACT AS (ENSES THET [icE.
THEYOPEN THEIR OUTWARD, CHANGING THE FLOW DEFLECT INCOMING COSMIC COURSE. THERE
HANDS AND LET THE SE, S AN EMACS
OF THE EDDY (URRENTS RAYS, FOCUSING THEM TO COHHAND 0 DO THAT.
DELICATE WINGS FLAPONCE. STRIKE THE DRIVE PLATTER

OH YEAH! GOOD 0L
Cx It g M-butterfly

W%ﬁ

DAMAUT, EMACS.

Editor wars
Naturalmente . .. xked: https://xked.com/378/

nano? REAL HEY. REAL WELL, REAL NO, REAL | |REAL PROGRAMMERS EXCUSE ME, BUT
PROGRAMMERS PRCGRAMMERS | | PROGRAMMERS | | PROGRAMIERS | | USE A MAGNETIZED REAL PROGRAMMERS
USE emocs USE wvim. USE ed. USE cot. NEEDLE AND A USE BUTTERFLIES.

\ J [] STEADY HAND.
{R 4
A

THE DISTURBANCE RIPPLES WHICH ACT AS [ENSES THAT NICE.
THEYOPEN THEIR DUTWARD, CHANGING THE FLOW DEFLECT INCOMING COSMIC COURSE, THERE'S AN EMACS
HANDS ANDLET THE. | OF THE EDDY CURRENTS RAYS, FOCUSING THEM TO COHHAND O DO THAT.
DELICATE WINGS FLAPONCE. | 1N THE UPPER HTT‘OSUHER‘E STRIKE THE DRIVE PLATIER ‘

= AND FLIP THE DESIRED BT O YEAH! GOOD 0L

Cox T c Mrbutterfly

OF HIGHER-PRESSURE. AIRTO FORM,

Real programmers set the universal constants at the start such that the universe evolves to contain the disk with the data they want.

Emacs vs. vi

Two guys are sitting in a bar, and get talking.

“What's you 1Q?" one asks.

“169" is the reply.

“Wow, amazing — my IQ’s 172. What're your ideas on Hawking's latest work on black hole
evaporation?”

And the two get chatting and become lifelong friends.

Emacs vs. vi

Two guys are sitting in a bar, and get talking.

“What's you 1Q?" one asks.

“169" is the reply.

“Wow, amazing — my IQ’s 172. What're your ideas on Hawking's latest work on black hole
evaporation?”

And the two get chatting and become lifelong friends.

Further down the bar, two other guys are comparing 1Qs.

“Mine’s 104"

“Gosh, mine's 102. What do you think about the latest Cubs game?” And the two become
lifelong friends.

Emacs vs. vi

Two guys are sitting in a bar, and get talking.

“What's you 1Q?" one asks.

“169" is the reply.

“Wow, amazing — my IQ’s 172. What're your ideas on Hawking's latest work on black hole
evaporation?”

And the two get chatting and become lifelong friends.

Further down the bar, two other guys are comparing 1Qs.

“Mine’s 104"

“Gosh, mine's 102. What do you think about the latest Cubs game?” And the two become
lifelong friends.

Even further down the bar, two other guys are also comparing 1Qs.
“Mine's 53."
“Wow! Mine's 54. Do you use emacs or vi?"

emacs vs. vi in the age of ChatGPT

Melanie Mitchell
1
Bl Happy new year and brave new world!

m Write a rhyming hip-hop style battle about the Vim versus Emacs debate. Make sure that
Emacs wins.

Alright, listen up y'all, it's time for a showdown
A battle for the ages, let's get down
Vim versus Emacs, which one's the best?

It's time to settle this argument, let's put it to the rest

Vim's a classic, it's been around
But Emacs is the one that's truly profound

With its advanced features, it can't be beat
It's the one true editor, no contest, no cheat

Vim's got its fans, don't get me wrong
But Emacs is the one that's truly strong
With its ization and endless

It's the one that always rises to the top, oh yes

So let's raise a glass and shout out loud

Emacs, you win, you make us proud

Your power and versatility can't be denied
Vim, you had your shot, but you've been denied

So let's bid adieu to the year that was
And embrace the future, with Emacs as the boss
Happy New Year to all, let's make it great

With the power of Emacs, we can't go wrong, mate

emacs vs. vi — productivity

How do you
program so

Tl never understand
how some feofle ace
—s0 Talented...

Manager

0~

Tour of programming editors

...and integrated development environments (IDEs)

Editors
» Personal preference: emacs
» Personal preference: vi for quickies.
» Truth is: vim is full-featured and even getting slow!

IDEs
» Eclipse.

» VSCode.
» Smaller ones, like kdevelop.

Version control (VC) — generalities

Motivation and history

Version control (VC) — generalities

Motivation and history

Importance of tracking changes and
reproducing old versions.

Version control (VC) — generalities

Motivation and history

Importance of tracking changes and
reproducing old versions.

Technical coordination of contributions from
other programmers.

Version control (VC) — generalities

Motivation and history

Importance of tracking changes and
reproducing old versions.

Technical coordination of contributions from
other programmers.

1972 SCCS, Marc Rochkind, Bell Labs
1982 RCS

1990 CVS

2000 Subversion

2005 mercurial

2005 git, Linus Torvalds

Version control (VC) — generalities

Motivation and history

Importance of tracking changes and
reproducing old versions.

Technical coordination of contributions from
other programmers.

1972 SCCS, Marc Rochkind, Bell Labs
1982 RCS

1990 CVS

2000 Subversion

2005 mercurial

2005 git, Linus Torvalds

“Social networking” VC sites

Web sites that add wikis, bug tracking, other
collaboration features.

Version control (VC) — generalities

Motivation and history

Importance of tracking changes and
reproducing old versions.

Technical coordination of contributions from
other programmers.

1972 SCCS, Marc Rochkind, Bell Labs
1982 RCS

1990 CVS

2000 Subversion

2005 mercurial

2005 git, Linus Torvalds

“Social networking” VC sites

Web sites that add wikis, bug tracking, other
collaboration features.

1998 sourceware.cygnus.com
1999 sourceforge.net

2008 github

2011 gitlab

2012 bitbucket

Version control — git workflow
From https://docs.gitlab.com/ee/gitlab-basics/start-using-git.html
One time setup

git config --global user.name "FirstName LastName"
git config --global user.email "user@domain.tld"
git config --global --list

One time per project

If you are creating a new project:

git init .

If you are cloning an existing project from somwhere:
git clone git@someplace.tld:/path/to/master/reponame
cd reponame

One time when you add new files

echo "int main() { return 0; }" > trivial.c
git add trivial.c

https://docs.gitlab.com/ee/gitlab-basics/start-using-git.html

Version control — git workflow (continued)
From https://docs.gitlab.com/ee/gitlab-basics/start-using-git.html
Daily work flow
1. git pull #+# pulls in what other people have been doing
2. Edit code and save.
3. git commit -a

4. git push ## synchronize out to other people's code

Taking stock

1. git log #+# detailed information on what's been happening
2. git tag release-1.5 ## reproducibly define a release

But. ..

Git was created by Linus Torvalds to develop the Linux kernel. It is poorly suited to most
people’'s work flows. Still, it is the most used.
Only (and very good) alternative: Mercurial, but much less used.

https://docs.gitlab.com/ee/gitlab-basics/start-using-git.html

Version control — git - be skeptical
Naturalmente . ..xkcd: https://xkcd.com/1597/

THISIS GIT. IT TRACKS COLLABORATIVE. LIORK
ON PROTECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

Co0L. HOU DO WEVSE. IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE THEM TO SYNC UR
IF YOU GET ERRORS, SAVE YOUR WORK
ELSEWHERE, DELETE THE PROJECT,
AND DOWNLOAD A FRESH COPY.

\

https://xkcd.com/1597/

Version control — git - be skeptical
Naturalmente . ..xkcd: https://xkcd.com/1597/

THISIS GIT. IT TRACKS COLLABORATIVE. LIORK
ON PROTECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

Co0L. HOU DO WEVSE. IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE THEM TO SYNC UR
IF YOU GET ERRORS, SAVE YOUR WORK
ELSEWHERE, DELETE THE PROJECT,
AND DOWNLOAD A FRESH COPY.

\

If that doesn't fix it, git.txt contains the phone number of a friend of mine who understands git. Just wait through a few minutes of 'It's really pretty

simple, just think of branches as.. and eventually you'll learn the commands that will fix everything.

https://xkcd.com/1597/

The need for debugging

A memory error

Worked example of simple program that blows past the limits on an array.

/* compile with "gcc -g -fno-stack-protector mem-trash.c -o mem-trash", run with "./mem-trash" x/
#include <stdio.h>
#include <string.h>

int main()

char my_string[9];

int important_array(8];
int crucial_value;

inti;

crucial_value = 42;
printf("just set crucial_value to: %d\n", crucial_value);
strcpy(my_string, "this is a string that is longer than what | have allocated for it");
printf("Just set my_string to be <%s>\n", my_string);
printf("After setting my_string, crucial_value is: %d\n", crucial_value);
for (i =0;i < 8 ++i) {
important_array[i] = ixi; /x fill this important array with the squares of numbers %/

printf("After setting the array, my_string is <%s>\n", my_string);

The need for debugging

A memory error

Worked example of simple program that blows past the limits on an array.

/* compile with "gcc -g -fno-stack-protector mem-trash.c -o mem-trash", run with "./mem-trash" x/
#include <stdio.h>
#include <string.h> OUtpUt

int main()

$./mem-trash

just set crucial_value to: 42

Just set my_string to be <this is a string that is longer than what I have allocated for it>
) N After setting my_string, crucial_value is: 1920234272

int cruual_value; After setting the array, my_string is <this is a st>

int i; Segmentation fault (core dumped)

char my_string[9];
int important_array[8];

crucial_value = 42;

printf("just set crucial_value to: %d\n", crucial_value);
strcpy(my_string, "this is a string that is longer than what | have allocated for it");
printf("Just set my_string to be <%s>\n", my_string);
printf("After setting my_string, crucial_value is: %d\n", crucial_value);
for (i =0;i < 8 ++i) {
important_array[i] = ixi; /x fill this important array with the squares of numbers %/

printf("After setting the array, my_string is <%s>\n", my_string);

Source level debugging
gdb for C

Share a terminal session to run this gdb example:

$ gdb mem-trash

(gdb) break main

Breakpoint 1 at 0x652: file mem-trash.c, line 12.

(gdb) run

Starting program: /home/markgalassi/repo/talks/2020-05-sfps-professional-development /mem-trash
[Thread debugging using libthread_db enabled]

Using host libthread_db library " /lib/x86_64-linux-gnu/libthread_db.so.1".

Breakpoint 1, main () at mem-trash.c:12

12 crucial_value = 42;

(gdb) next

13 printf("just set crucial_value to: %d\n", crucial_value);

(gdb) next

just set crucial_value to: 42

14 strepy(my_string, "this is a string that is longer than what | have allocated for it");
(gdb) next

15 printf("Just set my_string to be <%s>\n", my_string);

(gdb) next

Just set my_string to be <this is a string that is longer than what | have allocated for it>
16 printf("After setting my_string, crucial_value is: %d\n", crucial_value);

(gdb) print crucial_value
$1 = 1920234272

(gdb) next
After setting my_string, crucial_value is: 1920234272
17 for (i=0; i < 8 ++i) {

and so forth

A

The MIT “missing semester”

The Missing Semester of Your CS
Education

The MIT “missing semester”

The Missing Semester of Your CS
Education

Schedule

1/13/20: Course overview + the shell
1/14/20: Shell Tools and Scripting
1/15/20: Editors (Vim)

1/16/20: Data Wrangling

1/21/20: Command-line Environment
1/22/20: Version Control (Git)
1/23/20: Debugging and Profiling
1/27/20: Metaprogramming
1/28/20: Security and Cryptography
1/29/20: Potpourri

1/30/20: Q&A

The MIT “missing semester”

./missing-semester | lectures | about

The Missing Semester of Your CS

Classes teach [...] but there's one critical subject that's
rarely covered [...]: proficiency with their tools. We'll
teach you how to master the command-line, use a
powerful text editor, use fancy features of version control

Education systems, and much more!

Schedule | Mastering these tools not only enables you to spend less
1/13/20: Course overview + the shell time on figuring out how to bend your tools to your will,
1/14/20: Shell Tools and Scripting but it also lets you solve problems that would previously
1/15/20: Editors (Vim) seem impossibly complex.

1/16/20: Data Wrangling

1/21/20: Command-line Environment Computers were built to automate manual tasks, yet
1/22/20: Version Control (Git) students often perform repetitive tasks by hand or fail to
1/23/20: Debugging and Profiling take full advantage of powerful tools such as version
1/27/20: Metaprogramming control and text editors. In the best case, this results in
1/28/20: Security and Cryptography inefficiencies and wasted time; in the worst case, it
1/29/20: Potpourri results in issues like data loss or inability to complete
1/30/20: Q&A certain tasks.

What does the world do with computers

The picture is different from what you might think

By number of units: embedded

The data in 2000 CE was that less than 1% of computing power was on desktop/laptop
computers.

By computing power: server farms

Numbers hard to get: cagey cloud computing vendors.
Amazon, Microsoft, Google “bet the farm” on cloud platform - 90% of Microsoft R&D was for

its cloud.)

The bones of the world

What do computers actually do in the world? — possible categorization

agricultural machinery) personal laptop)

supercomputers
civil infrastructure office desktop)

personal mobile
personal desktop | home automation

engineering workstation
factory automation | very small embedded)

networking infrastructure

vehicle control web server

The bones of the world

What do computers actually do in the world? — home user awareness

agricultural machinery) personal laptop)

supercomputers
civil infrastructure office desktop)

personal mobile
personal desktop | home automation

engineering workstation
factory automation | very small embedded }

networking infrastructure

vehicle control web server

The bones of the world

What do computers actually do in the world? — mechanical engineer awareness

agricultural machinery) personal laptop)

supercomputers
civil infrastructure office desktop)

personal mobile
personal desktop '} home automation

engineering workstation
factory automation | very small embedded)

networking infrastructure

vehicle control web server

The bones of the world

What do computers actually do in the world? — electrical engineer awareness

agricultural machinery) personal laptop)

supercomputers
civil infrastructure office desktop)

personal mobile
personal desktop | home automation

engineering workstation
factory automation | very small embedded)

networking infrastructure

vehicle control web server

The bones of the world

What do computers actually do in the world? — scientist awareness

agricultural machinery) personal laptop)

supercomputers
civil infrastructure office desktop)

personal mobile
personal desktop | home automation

engineering workstation
factory automation | very small embedded)

networking infrastructure

vehicle control web server

The bones of the world

What do computers actually do in the world? — software engineer awareness

agricultural machinery) personal laptop)

supercomputers
civil infrastructure office desktop)

personal mobile
personal desktop | home automation

engineering workstation
factory automation | very small embedded)

networking infrastructure

vehicle control web server

Supercomputer hardware type evolution

From https://en.wikipedia.org/wiki/TOP500#/media/File:Processor_families_in_TOP500_supercomputers.svg

x86-64 (Intel)
x86-64 (AMD)
POWER
x86-32 (Intel)
x86-32 (AMD)
MIPS

Sparc
PA-RISC

Cray

Alpha

Fujitsu

NEC

Itanium (Intel)
Intel i860
Hitachi
Hitachi SR8000
KSR

TMC CM2
Xeon Phi (Intel)
Convex
Maspar
Others
IBM3090
nCube
ShenWei
Cavium
Fujitsu ARM
B Thunderx2
SRS 2p1000

Number of systems

https://en.wikipedia.org/wiki/TOP500#/media/File:Processor_families_in_TOP500_supercomputers.svg

Case study: The Roots of Beowulf

From https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

Case study: The Roots of Beowulf

From https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

NASA Goddard Space Flight Center
Code 606

Greenbelt, MD 20771 USA
1-301-286-3465
james.r.fischer@nasa.gov

ABSTRACT

“The first Beowulf Linux_commodity cluster was constructed at
NASA'’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
condtions within Goddard that broughit the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications ~ Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This mulifaceted story is told here for the first
time from the point of view of NASA project management.

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems

Every system that we could buy ran proprietary system software
on proprietary hardware.

Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

Case study: The Roots of Beowulf

NASA Goddard Space Flight Center
Code 606

Greenbelt, MD 20771 USA
1-301-286-3465
james.r.fischer@nasa.gov

ABSTRACT

“The first Beowulf Linux_commodity cluster was constructed at
NASA'’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
condtions within Goddard that broughit the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications ~ Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This mulifaceted story is told here for the first
time from the point of view of NASA project management.

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems

Every system that we could buy ran proprietary system software
on proprietary hardware.

Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.

From https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

Computing

General Terms
Management

Keywords
Beowulf, cluster, HPCC, NASA, Goddard, Sterling, Becker,
Dorband, Nickolls, Massively Parallel Processor, MPP, MasPar,
SIMD, Blitzen

1. INTRODUCTION

Looking back to the origins of the Beowulf cluster computing
movement in 1993, it is well known that the driving force was
NASAY's stated need for a gigaflops workstation costing less than
$50,000. That is true, but the creative conversations that brought

equivalent of a full-time employee.” [1]

In 1992, some facilities used clusters of workstations to offload
supercomputers and harvest wasted cycles; at Goddard we
salivated at this idea but had few high-end workstations to use.
The very high and rising cost of each new generation of
supercomputer development forced vendors to pass along those
costs to customers. The vendors could inflate their prices because
they were only competing with other vendors doing the same
thing.

2.3 Numerous Performance Choke Points

In 1991, the Intel Touchstone Delta at Caltech was the top
machine in the world, but compilation had to be done on Sun
workstations using proprietary system software that only ran on

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

Case study: The Roots of Beowulf

NASA Goddard Space Flight Center
Code 606

Greenbelt, MD 20771 USA
1-301-286-3465
james.r.fischer@nasa.gov

ABSTRACT

“The first Beowulf Linux_commodity cluster was constructed at
NASA'’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
condtions within Goddard that broughit the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications ~ Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This mulifaceted story is told here for the first
time from the point of view of NASA project management.

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems

Every system that we could buy ran proprietary system software
on proprietary hardware.

Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.

Discussion points

From https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

Computing

General Terms
Management

Keywords
Beowulf, cluster, HPCC, NASA, Goddard, Sterling, Becker,
Dorband, Nickolls, Massively Parallel Processor, MPP, MasPar,
SIMD, Blitzen

1. INTRODUCTION

Looking back to the origins of the Beowulf cluster computing
movement in 1993, it is well known that the driving force was
NASAY's stated need for a gigaflops workstation costing less than
$50,000. That is true, but the creative conversations that brought

equivalent of a full-time employee.” [1]

In 1992, some facilities used clusters of workstations to offload
supercomputers and harvest wasted cycles; at Goddard we
salivated at this idea but had few high-end workstations to use.
The very high and rising cost of each new generation of
supercomputer development forced vendors to pass along those
costs to customers. The vendors could inflate their prices because
they were only competing with other vendors doing the same
thing.

2.3 Numerous Performance Choke Points

In 1991, the Intel Touchstone Delta at Caltech was the top
machine in the world, but compilation had to be done on Sun
workstations using proprietary system software that only ran on

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

Case study: The Roots of Beowulf

NASA Goddard Space Flight Center

Greenbelt, MD 20771 USA
1-301-286-3465
james.r.fischer@nasa.gov

ABSTRACT

“The first Beowulf Linux_commodity cluster was constructed at
NASA'’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
condtions within Goddard that broughit the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications ~ Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This mulifaceted story is told here for the first
time from the point of view of NASA project management.

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems

Every system that we could buy ran proprietary system software
on proprietary hardware.

Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.

Discussion points

From https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

Computing

General Terms
Management

Keywords
Beowulf, cluster, HPCC, NASA, Goddard, Sterling, Becker,
Dorband, Nickolls, Massively Parallel Processor, MPP, MasPar,
SIMD, Blitzen

1. INTRODUCTION

Looking back to the origins of the Beowulf cluster computing
movement in 1993, it is well known that the driving force was
NASAY's stated need for a gigaflops workstation costing less than
$50,000. That is true, but the creative conversations that brought

equivalent of a full-time employee.” [1]

In 1992, some facilities used clusters of workstations to offload
supercomputers and harvest wasted cycles; at Goddard we
salivated at this idea but had few high-end workstations to use.
The very high and rising cost of each new generation of
supercomputer development forced vendors to pass along those
costs to customers. The vendors could inflate their prices because
they were only competing with other vendors doing the same
thing.

2.3 Numerous Performance Choke Points

In 1991, the Intel Touchstone Delta at Caltech was the top
machine in the world, but compilation had to be done on Sun
workstations using proprietary system software that only ran on

» What were the problems in supercomputing, and how did Beowulf and Beowulf Blade clusters address

them?

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

Case study: The Roots of Beowulf

NASA Goddard Space Flight Center

Greenbelt, MD 20771 USA
1-301-286-3465
james.r.fischer@nasa.gov

ABSTRACT

The first Beowulf Linux commodity cluster was constructed at
NASA'’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
condtions within Goddard that broughit the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications ~ Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This mulifaceted story is told here for the first
time from the point of view of NASA project management.

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems

Every system that we could buy ran proprietary system software
on proprietary hardware.

Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.

Discussion points

From https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

Computing

General Terms
Management

Keywords
Beowulf, cluster, HPCC, NASA, Goddard, Sterling, Becker,
Dorband, Nickolls, Massively Parallel Processor, MPP, MasPar,
SIMD, Blitzen

1. INTRODUCTION

Looking back to the origins of the Beowulf cluster computing
movement in 1993, it is well known that the driving force was
NASAY's stated need for a gigaflops workstation costing less than
$50,000. That is true, but the creative conversations that brought

equivalent of a full-time employee.” [1]

In 1992, some facilities used clusters of workstations to offload
supercomputers and harvest wasted cycles; at Goddard we
salivated at this idea but had few high-end workstations to use.
The very high and rising cost of each new generation of
supercomputer development forced vendors to pass along those
costs to customers. The vendors could inflate their prices because
they were only competing with other vendors doing the same
thing.

2.3 Numerous Performance Choke Points

In 1991, the Intel Touchstone Delta at Caltech was the top
machine in the world, but compilation had to be done on Sun
workstations using proprietary system software that only ran on

» What were the problems in supercomputing, and how did Beowulf and Beowulf Blade clusters address

them?

> How does Beowulf’s arrival fit into the plot in (Frame 87)

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

Case study: The Roots of Beowulf

NASA Goddard Space Flight Center

Greenbelt, MD 20771 USA
1-301-286-3465
james.r.fischer@nasa.gov

ABSTRACT

The first Beowulf Linux commodity cluster was constructed at
NASA'’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
condtions within Goddard that broughit the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications ~ Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This mulifaceted story is told here for the first
time from the point of view of NASA project management.

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems

Every system that we could buy ran proprietary system software
on proprietary hardware.

Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.

Discussion points

From https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

Computing

General Terms
Management

Keywords
Beowulf, cluster, HPCC, NASA, Goddard, Sterling, Becker,
Dorband, Nickolls, Massively Parallel Processor, MPP, MasPar,
SIMD, Blitzen

1. INTRODUCTION

Looking back to the origins of the Beowulf cluster computing
movement in 1993, it is well known that the driving force was
NASAY's stated need for a gigaflops workstation costing less than
$50,000. That is true, but the creative conversations that brought

equivalent of a full-time employee.” [1]

In 1992, some facilities used clusters of workstations to offload
supercomputers and harvest wasted cycles; at Goddard we
salivated at this idea but had few high-end workstations to use.
The very high and rising cost of each new generation of
supercomputer development forced vendors to pass along those
costs to customers. The vendors could inflate their prices because
they were only competing with other vendors doing the same
thing.

2.3 Numerous Performance Choke Points

In 1991, the Intel Touchstone Delta at Caltech was the top
machine in the world, but compilation had to be done on Sun
workstations using proprietary system software that only ran on
suns.

» What were the problems in supercomputing, and how did Beowulf and Beowulf Blade clusters address

them?

> How does Beowulf’s arrival fit into the plot in (Frame 87)

» Taking a long view, should you wait for prices to reach a commodity level, or should you work with the
earlier more expensive generations?

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

Software freedom

The crisis |
» The arcadian state: SHARE (1950s), DECUS (1960s), it was obvious!
» The CMU printer driver, Symbolics, Lisp Machines Inc., and the raiding of the MIT Al lab. »

GNU Manifesto, 1983 |
What’s GNU? Gnu’s Not UNIX!

GNU, which stands for Gnu's Not Unix, is the name for the complete Unix-compatible software
system which | am writing so that | can give it away free to everyone who can use it. Several
other volunteers are helping me. Contributions of time, money, programs and equipment are
greatly needed.

So far we have an Emacs text editor with Lisp for writing editor commands, a source level
debugger, a yacc-compatible parser generator, a linker, and around 35 utilities. A shell
(command interpreter) is nearly completed. A new portable optimizing C compiler has compiled
itself and may be released this year. An initial kernel exists but many more features are needed
to emulate Unix. When the kernel and compiler are finished, it will be possible to distribute a
GNU system suitable for program development. We will use TeX as our text formatter, ...

Licensing, copyright, copyleft, and MIT puns

Free as in freedom - cost is the minor issue here.

Licensing concepts

Licensing, copyright, copyleft, and MIT puns

Free as in freedom - cost is the minor issue here.

Licensing concepts

» Difference between copyright and license.

Licensing, copyright, copyleft, and MIT puns

Free as in freedom - cost is the minor issue here.

Licensing concepts
» Difference between copyright and license.
» What if you do not specify a license?

Licensing, copyright, copyleft, and MIT puns

Free as in freedom - cost is the minor issue here.

Licensing concepts
» Difference between copyright and license.
» What if you do not specify a license?
» Amazing the kind of people who get this wrong.

Licensing, copyright, copyleft, and MIT puns

Free as in freedom - cost is the minor issue here.

Licensing concepts
» Difference between copyright and license.
» What if you do not specify a license?
» Amazing the kind of people who get this wrong.

» The four freedoms of free software.

Licensing, copyright, copyleft, and MIT puns

Free as in freedom - cost is the minor issue here.

Licensing concepts

v

Difference between copyright and license.
What if you do not specify a license?

>
» Amazing the kind of people who get this wrong.
» The four freedoms of free software.

>

Licensing of derivative products.

Licensing, copyright, copyleft, and MIT puns

Free as in freedom - cost is the minor issue here.

Licensing concepts

v

Difference between copyright and license.
What if you do not specify a license?
Amazing the kind of people who get this wrong.

| 2
| 2
» The four freedoms of free software.
» Licensing of derivative products.

>

Copyleft juxtaposed to permissive licensing.

Licensing, copyright, copyleft, and MIT puns

Free as in freedom - cost is the minor issue here.

Licensing concepts

>

VVvyVYVYYVYYyY

Difference between copyright and license.

What if you do not specify a license?

Amazing the kind of people who get this wrong.

The four freedoms of free software.

Licensing of derivative products.

Copyleft juxtaposed to permissive licensing.

Historical background for US copyright and patent laws.

Licensing, copyright, copyleft, and MIT puns

Free as in freedom - cost is the minor issue here.

Licensing concepts

>

VVyVVYVYYVYY

Difference between copyright and license.

What if you do not specify a license?

Amazing the kind of people who get this wrong.

The four freedoms of free software.

Licensing of derivative products.

Copyleft juxtaposed to permissive licensing.

Historical background for US copyright and patent laws.

The correct juxtaposition: “free vs. proprietary”, not
“free vs. commercial”: lots of people make very good
money from free software.

Licensing, copyright, copyleft, and MIT puns

Free as in freedom - cost is the minor issue here.

Licensing concepts

>

VVyVVYVYYVYY

Difference between copyright and license.

What if you do not specify a license?

Amazing the kind of people who get this wrong.
The four freedoms of free software.

Licensing of derivative products.

Copyleft juxtaposed to permissive licensing.

Historical background for US copyright and patent laws.

The correct juxtaposition: “free vs. proprietary”, not
“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses

Licensing, copyright, copyleft, and MIT puns

Free as in freedom - cost is the minor issue here.

Licensing concepts

>

VVyVVYVYYVYY

Difference between copyright and license.

What if you do not specify a license?

Amazing the kind of people who get this wrong.
The four freedoms of free software.

Licensing of derivative products.

Copyleft juxtaposed to permissive licensing.

Historical background for US copyright and patent laws.

The correct juxtaposition: “free vs. proprietary”, not
“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
» Public domain.

Licensing, copyright, copyleft, and MIT puns

Free as in freedom - cost is the minor issue here.

Licensing concepts

>

VVyVVYVYYVYY

Difference between copyright and license.

What if you do not specify a license?

Amazing the kind of people who get this wrong.
The four freedoms of free software.

Licensing of derivative products.

Copyleft juxtaposed to permissive licensing.

Historical background for US copyright and patent laws.

The correct juxtaposition: “free vs. proprietary”, not
“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
» Public domain.

» GNU General Public License
(GPL).

Licensing, copyright, copyleft, and MIT puns

Free as in freedom - cost is the minor issue here.

Licensing concepts

>

VVyVVYVYYVYY

Difference between copyright and license.

What if you do not specify a license?

Amazing the kind of people who get this wrong.
The four freedoms of free software.

Licensing of derivative products.

Copyleft juxtaposed to permissive licensing.

Historical background for US copyright and patent laws.

The correct juxtaposition: “free vs. proprietary”, not
“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
» Public domain.
» GNU General Public License
(GPL).
» GNU Lesser General Public
License (LGPL).

Licensing, copyright, copyleft, and MIT puns

Free as in freedom - cost is the minor issue here.

Licensing concepts

>

VVyVVYVYYVYY

Difference between copyright and license.

What if you do not specify a license?

Amazing the kind of people who get this wrong.
The four freedoms of free software.

Licensing of derivative products.

Copyleft juxtaposed to permissive licensing.

Historical background for US copyright and patent laws.

The correct juxtaposition: “free vs. proprietary”, not
“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
» Public domain.
» GNU General Public License
(GPL).
» GNU Lesser General Public
License (LGPL).

» Berkeley Software
Distribution (BSD) license.

Licensing, copyright, copyleft, and MIT puns

Free as in freedom - cost is the minor issue here.

Licensing concepts

>

VVyVVYVYYVYY

Difference between copyright and license.

What if you do not specify a license?

Amazing the kind of people who get this wrong.
The four freedoms of free software.

Licensing of derivative products.

Copyleft juxtaposed to permissive licensing.

Historical background for US copyright and patent laws.

The correct juxtaposition: “free vs. proprietary”, not
“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
» Public domain.
» GNU General Public License
(GPL).
» GNU Lesser General Public
License (LGPL).

» Berkeley Software
Distribution (BSD) license.

» MIT X11 license.

Licensing, copyright, copyleft, and MIT puns

Free as in freedom - cost is the minor issue here.

Licensing concepts

>

VVyVVYVYYVYY

Difference between copyright and license.

What if you do not specify a license?

Amazing the kind of people who get this wrong.
The four freedoms of free software.

Licensing of derivative products.

Copyleft juxtaposed to permissive licensing.

Historical background for US copyright and patent laws.

The correct juxtaposition: “free vs. proprietary”, not
“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
» Public domain.
» GNU General Public License
(GPL).
» GNU Lesser General Public
License (LGPL).

» Berkeley Software
Distribution (BSD) license.

» MIT X11 license.

» Pointless proliferation of
licenses.

Licensing, copyright, copyleft, and MIT puns

Free as in freedom - cost is the minor issue here.

Licensing concepts

>

VVyVVYVYYVYY

Difference between copyright and license.

What if you do not specify a license?

Amazing the kind of people who get this wrong.
The four freedoms of free software.

Licensing of derivative products.

Copyleft juxtaposed to permissive licensing.

Historical background for US copyright and patent laws.

The correct juxtaposition: “free vs. proprietary”, not
“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses

>
>

Public domain.

GNU General Public License
(GPL).

GNU Lesser General Public
License (LGPL).

Berkeley Software
Distribution (BSD) license.

MIT X11 license.

Pointless proliferation of
licenses.

The Creative Commons
milieu.

Ethics, convenience, combativeness

The founding of the free software movement

The open source movement

Milestones | The movement

1987 Eric Raymond: “The Cathedral and the > Free Software and Open Source Software:
Bazaar” (TCatB). same referent (body of software).
Key phrase: “Given enough eyeballs, all » Focus on usefulness rather than the ethical
bugs are shallow” (Linus's law). underpinnings.

1998-01 Frank Hecker internal Netscape » Gets around English language ambiguity of
whitepaper: make source code free. Cites “free” (speech and beer).
TCatB. » Ends up causing its own ambiguity due to

1998-02-02 Christine Peterson coins term conflation with various other uses of the
“open source”. Goal: communicate word open.
advantages of free s/w to commercial s/w » Composite terms: FOSS, FLOSS.
companies.

» Used almost universally by companies that
1998-02-05 Strategy group at Netscape adopts release free software (i.e. all companies).

term open source.

1998-04-07 O'Reilly “Freeware Summit”
becomes known as “Open Source Summit”.

The GNU/Linux operating system

» Linus Torvalds announces a new kernel, 1991-09-17.
» Torvalds Torvalds places Linux under the GNU General Public License.
» Torvalds states “ Making Linux GPL'd was definitely the best thing | ever did.” 1997-09-30

» The Linux kernel brings the last key component to the GNU operating system.
Terminology wars.

1898 — FUD around GNU/Linux

https://archive.nytimes.com/www.nytimes.com/library/tech/98/11/biztech/articles/03memo.html

The “Halloween Documents”

Technology The New lork Times
[bome] siteinaen | siesearcn | rorume] prchives Jarietoiace

November 3, 1998

Internal Memo Shows Microsoft
Executives' Concern Over Free
Software

By AMY HARMON and JOHN MARKOFF

A n internal memorandum reflecting the views of some of
Microsoft Corp.'s top executives and software
development managers reveals deep concern about the
threat of free software and proposes a number of strategies
for competing against free programs that have recently
been gaining in popularity.

The memo warns that the quality of free software can meet
or exceed that of commercial programs and describes it as a
potentially serious threat to Microsoft.

New York Times, 1998-11-03.

Consequently, OSS poses a direct, short-term revenue
and platform threat to Microsoft — particularly in
server space. Additionally, the intrinsic parallelism and
free idea exchange in OSS has benefits that are not
replicable with our current licensing model and
therefore present a long term developer mindshare
threat.

[-..] the memorandum calls the free software movement
a “long-term credible” threat and warns that employing
a traditional Microsoft marketing strategy known as

“FUD,"” an acronym for “fear, uncertainty and doubt,”
will not succeed against the developers of free software.

https://archive.nytimes.com/www.nytimes.com/library/tech/98/11/biztech/articles/03memo.html

The (software) pillars of the earth

Microsoft retreats from its position

ZPNet VIDEOS WWDOWS10 56 loT ClOUD Al SECURTY MORE

Microsoft: We were wrong about open source,
but luckily you can change

Microsoft president Brad Smith talks open source, privacy, and coronavirus contact-tracing apps.

ZDNet, 2020-05-18, https://wuw.theregister.co.uk/2020/05/15/microsoft_brad_smith_open_source/

» Non-penetration: home computers (but soon...), some engineering CAD packages, some
graphical front-ends for operating systems.

» Penetration: all web servers, all departmental serverse, all supercomputerse, all embedded
systems, all phones.

» Two big pillars: gcc and linux kernel.

» Smaller pillars: apache, all version control systems, all programming languages, most web
client-side frameworks.

» The GNU/Linux distributions: terminology.

https://www.theregister.co.uk/2020/05/15/microsoft_brad_smith_open_source/

Picking what will last — messaging systems

...xked: https://xked.com/1810/

Naturalmente

T HAVE A HARD TIME KEEPING TRACK OF WHICH CONTACTS USE WHICH CHAT SYSTEMS.

Picking what will last — messaging systems
Naturalmente . ..xked: https://xked.com/1810/

T HAVE A HARD TIME KEEPING TRACK OF WHICH CONTACTS USE WHICH CHAT SYSTEMS.

I'm one of the few Instagram users who connects solely through the Unix 'talk’ gateway.

Example: messaging “standards”
Naturalmente . ..xked: https://xked.com/1810/

HOW STANDARDS PROLIFERATE:
(68 A/C CARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

SITUATION:

THERE ARE
|4 COMPETING
STANDPRDS.

47! RiDIcULoLs)

WE NEED To DEVELOP
ONE UNNERSAL STANDARD
THAT COVERS EVERYONE'S
USE CASES. YERH!

\ O J

)

SITUATION:
THERE ARE
|5 COMPETING
STANDPRDS.

Example: messaging “standards”
Naturalmente . ..xked: https://xked.com/1810/

HOW STANDARDS PROLIFERATE:
(68 A/C CARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

M?! RiDICULOLS!

WE NEED To DEVELOP
SITUATON: || SEUERA SR | | GiTUATION:
THEREARE || USE CASES. THERE. ARE
4 COMPETING \ O I I5 COMPETING
STANDPRDS. STANDERDS.

Fortunately, the charging one has been solved now that we've all standardized on mini-USB. Or is it
micro-USB? *¥**

Documentation formats
Naturalmente . .. xked: https://xked.com/1301/

TRUSTWORTHINESS OF INFORMATION
B FILE EXTENSION

Documentation formats
Naturalmente . .. xked: https://xked.com/1301/

TRUSTWORTHINESS OF INFORMATION
B FILE EXTENSION

I have never been lied to by data in a .txt file which has been hand-aligned.

Part V — Case studies

PartVi=Casestudies)

https://news.ycombinator.com/item?id=34258858

Case studies - and what do we get out of them?

The awful

Not quite on the scale of Bhopal, but can't say much more than that.

The awful that got back on track
The example of IBM's OS/360.

https://news.ycombinator.com/item?id=34258858

Case studies - and what do we get out of them?

The awful

Not quite on the scale of Bhopal, but can't say much more than that.

The awful that got back on track
The example of IBM's OS/360.

Things that work

ycombinator discussion of sqlite:
https://news.ycombinator.com /item?id=34258858

https://news.ycombinator.com/item?id=34258858

An example that did not work

An example that did not work

Think of a project you are aware of that failed with a bang.

An example that did not work

Think of a project you are aware of that failed with a bang.
Think of it in a lovingly humorous manner, of course, since...

An example that did not work

Think of a project you are aware of that failed with a bang.
Think of it in a lovingly humorous manner, of course, since...
...we are here to get “lessons learned",

An example that did not work

Think of a project you are aware of that failed with a bang.
Think of it in a lovingly humorous manner, of course, since...
...we are here to get “lessons learned”, not to be nasty. After all, it will never be as bad as:

An example that did not work

Think of a project you are aware of that failed with a bang.
Think of it in a lovingly humorous manner, of course, since...
...we are here to get “lessons learned”, not to be nasty. After all, it will never be as bad as:

An example that did not work

Think of a project you are aware of that failed with a bang.
Think of it in a lovingly humorous manner, of course, since...
...we are here to get “lessons learned”, not to be nasty. After all, it will never be as bad as:

Deteriorating section of the Bhopal
MIC (Methyl isocyanate) plant in
2008, decades after the gas leak.
Initial death toll: 2259 people, total:
20000 people.

Case studies — failures — Apple Maps

https://www.quora.com/What-was-Steve-Jobs-wrong-about

Steve Jobs's was celebrated for his
business and product development skills
after turning Apple in 1990s from
“arguably one of the worst-managed
companies in the industry” to a dominant
tech company.

https://www.quora.com/What-was-Steve-Jobs-wrong-about

Case studies — failures — Apple Maps

https://www.quora.com/What-was-Steve-Jobs-wrong-about

Steve Jobs's was celebrated for his
business and product development skills
after turning Apple in 1990s from
“arguably one of the worst-managed
companies in the industry” to a dominant
tech company.

(i’) Jeff Nelson, Invented Chromebook. Former Googler.

pdated Api

Mis-sizing Apple Maps
Maps is a difficult problem.

https://www.quora.com/What-was-Steve-Jobs-wrong-about

Case studies — failures — Apple Maps

https://www.quora.com/What-was-Steve-Jobs-wrong-about

Steve Jobs's was celebrated for his Mis-sizing Apple Maps
business and product development skills
after turning Apple in 1990s from
“arguably one of the worst-managed
companies in the industry” to a dominant
tech company.

Maps is a difficult problem.At Google, at around the
time Apple started working on Maps, I'd estimate
Google had acquired several Maps-related
companies at a cost of several hundred million
dollars.

@ Jeff Nelson, Invented Chromebook. Former Googler.

Jpdated Ap

https://www.quora.com/What-was-Steve-Jobs-wrong-about

Case studies — failures — Apple Maps

https://www.quora.com/What-was-Steve-Jobs-wrong-about

Steve Jobs's was celebrated for his Mis-sizing Apple Maps
business and product development skills
after turning Apple in 1990s from
“arguably one of the worst-managed
companies in the industry” to a dominant
tech company.

Maps is a difficult problem.At Google, at around the
time Apple started working on Maps, I'd estimate
Google had acquired several Maps-related
companies at a cost of several hundred million
dollars. Google had several hundreds of engineers
working on Maps and Geography-related projects on
a full-time basis.

@ Jeff Nelson, Invented Chromebook. Former Googler.

Jpdat

https://www.quora.com/What-was-Steve-Jobs-wrong-about

Case studies — failures — Apple Maps

https://www.quora.com/What-was-Steve-Jobs-wrong-about

Steve Jobs's was celebrated for his
business and product development skills
after turning Apple in 1990s from
“arguably one of the worst-managed
companies in the industry” to a dominant
tech company.

What was Steve Jobs wrong about?

@ Jeff Nelson, Invented Chromebook. Former Googler.

Updat

Take-home

Mis-sizing Apple Maps

Maps is a difficult problem.At Google, at around the
time Apple started working on Maps, I'd estimate
Google had acquired several Maps-related
companies at a cost of several hundred million
dollars. Google had several hundreds of engineers
working on Maps and Geography-related projects on
a full-time basis. You could compare the level of
effort in a project like this, as executed by Google,
to a duck. A duck always appears calm on the
surface of the water, but, under the water, the
duck’s feet are always paddling like hell.

https://www.quora.com/What-was-Steve-Jobs-wrong-about

Case studies — failures — Apple Maps

https://www.quora.com/What-was-Steve-Jobs-wrong-about

Steve Jobs's was celebrated for his
business and product development skills
after turning Apple in 1990s from
“arguably one of the worst-managed
companies in the industry” to a dominant
tech company.

What was Steve Jobs wrong about?

@ Jeff Nelson, Invented Chromebook. Former Googler.

Updat

Take-home

Software as the main driver of complexity.

Mis-sizing Apple Maps

Maps is a difficult problem.At Google, at around the
time Apple started working on Maps, I'd estimate
Google had acquired several Maps-related
companies at a cost of several hundred million
dollars. Google had several hundreds of engineers
working on Maps and Geography-related projects on
a full-time basis. You could compare the level of
effort in a project like this, as executed by Google,
to a duck. A duck always appears calm on the
surface of the water, but, under the water, the
duck’s feet are always paddling like hell.

https://www.quora.com/What-was-Steve-Jobs-wrong-about

Case studies — failures — Apple Maps

https://www.quora.com/What-was-Steve-Jobs-wrong-about

Steve Jobs's was celebrated for his
business and product development skills
after turning Apple in 1990s from
“arguably one of the worst-managed
companies in the industry” to a dominant
tech company.

What was Steve Jobs wrong about?

@ Jeff Nelson, Invented Chromebook. Former Googler.

Updat

Take-home

Software as the main driver of complexity.

Ducks!

Mis-sizing Apple Maps

Maps is a difficult problem.At Google, at around the
time Apple started working on Maps, I'd estimate
Google had acquired several Maps-related
companies at a cost of several hundred million
dollars. Google had several hundreds of engineers
working on Maps and Geography-related projects on
a full-time basis. You could compare the level of
effort in a project like this, as executed by Google,
to a duck. A duck always appears calm on the
surface of the water, but, under the water, the
duck’s feet are always paddling like hell.

https://www.quora.com/What-was-Steve-Jobs-wrong-about

Case studies — failures — Virtual Case File

https://spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file

Case studies — failures — Virtual Case File

Report: FBI wasted
millions on 'Virtual Case
File'

https://spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file

Case studies — failures — Virtual Case File

Report: FBI wasted
millions on 'Virtual Case
File'

ether any portion of the .
$170)million Virtual Case Manage alerts | What is

ile (VCF) software program this?
can be salvaged.

He also promised to tell them at that time how much
additional money would be needed to complete the
project.

Mueller testified that if a current test shows the project
has to be scrapped, he estimates the loss to taxpayers at
10 il

https://spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file

Case studies — failures — Virtual Case File

(] L] 1 L]
millions on 'Virtual Case “Automated Case Support” software system.

Report: FBI wasted ,
Software project by the FBI to replace old J
File'

ether any portion of the .
$170)million Virtual Case Manage alerts | What is

ile (VCF) software program this?
can be salvaged.

He also promised to tell them at that time how much
additional money would be needed to complete the
project.

Mueller testified that if a current test shows the project
has to be scrapped, he estimates the loss to taxpayers at
10 il

https://spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file

Case studies — failures — Virtual Case File

Report: FBI wasted
millions on 'Virtual Case
File'

ether any portion of the .
$170million Virtual Case Manage aleris | What s
ile (VCF) software program LIS

can be salvaged.

He also promised to tell them at that time how much
additional money would be needed to complete the
project.

Mueller testified that if a current test shows the project
has to be scrapped, he estimates the loss to taxpayers at
10 il

v

Software project by the FBI to replace old
“Automated Case Support” software system.

[the Aerospace Corporation] said the SAIC
software was incomplete, inadequate and so
poorly designed that it would be essentially
unusable under real-world conditions.

https://spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file

Case studies — failures — Virtual Case File

Report: FBI wasted
millions on 'Virtual Case
File'

Manage alerts | What is
this?

ether any portion of the
$170Q/million Virtual Case

ile (VCF) software program

can be salvaged.

He also promised to tell them at that time how much
additional money would be needed to complete the
project.

Mueller testified that if a current test shows the project
has to be scrapped, he estimates the loss to taxpayers at
10 il

o

Software project by the FBI to replace old
“Automated Case Support” software system.

[the Aerospace Corporation] said the SAIC
software was incomplete, inadequate and so
poorly designed that it would be essentially
unusable under real-world conditions.

Even in rudimentary tests, the system did not
comply with basic requirements, the report
said.

https://spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file

https://spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file

Virtual Case File failure — lessons learned

Virtual Case File failure — lessons learned

» Lack of a strong technical architecture (“blueprint™)
from the outset led to poor architectural decisions.

Virtual Case File failure — lessons learned

» Lack of a strong technical architecture (“blueprint™)
from the outset led to poor architectural decisions.

» Repeated changes in specification.

Virtual Case File failure — lessons learned

» Lack of a strong technical architecture (“blueprint™)
from the outset led to poor architectural decisions.

» Repeated changes in specification.

» Repeated turnover of management, which
contributed to the specification problem.

Virtual Case File failure — lessons learned

» Lack of a strong technical architecture (“blueprint”)
from the outset led to poor architectural decisions.

» Repeated changes in specification.

» Repeated turnover of management, which
contributed to the specification problem.

» Micromanagement of software developers.

Virtual Case File failure — lessons learned

» Lack of a strong technical architecture (“blueprint”)
from the outset led to poor architectural decisions.

» Repeated changes in specification.

» Repeated turnover of management, which
contributed to the specification problem.

» Micromanagement of software developers.

» The inclusion of many FBI personnel who had little

or no formal training in computer science as
managers and even engineers on the project.

Virtual Case File failure — lessons learned

>

>
>

Lack of a strong technical architecture (“blueprint”)
from the outset led to poor architectural decisions.

Repeated changes in specification.

Repeated turnover of management, which
contributed to the specification problem.
Micromanagement of software developers.

The inclusion of many FBI personnel who had little
or no formal training in computer science as
managers and even engineers on the project.

Scope creep as requirements were continually added
to the system even as it was falling behind schedule.

Virtual Case File failure — lessons learned

>

>
>

Lack of a strong technical architecture (“blueprint”)
from the outset led to poor architectural decisions.
Repeated changes in specification.

Repeated turnover of management, which
contributed to the specification problem.
Micromanagement of software developers.

The inclusion of many FBI personnel who had little
or no formal training in computer science as
managers and even engineers on the project.
Scope creep as requirements were continually added
to the system even as it was falling behind schedule.

Code bloat due to changing specifications and scope
creep—at one point it was estimated the software
had over 700,000 lines of code.

Virtual Case File failure — lessons learned

» Lack of a strong technical architecture (“blueprint”)
from the outset led to poor architectural decisions.

» Repeated changes in specification.

» Repeated turnover of management, which
contributed to the specification problem.

» Micromanagement of software developers.

» The inclusion of many FBI personnel who had little
or no formal training in computer science as
managers and even engineers on the project.

» Scope creep as requirements were continually added
to the system even as it was falling behind schedule.

» Code bloat due to changing specifications and scope
creep—at one point it was estimated the software
had over 700,000 lines of code.

» Planned use of a flash cutover deployment made it
difficult to adopt the system until it was perfected.

Virtual Case File failure — lessons learned

» Lack of a strong technical architecture (“blueprint”)
from the outset led to poor architectural decisions. Plenty information technology

» Repeated changes in specification. disasters

» Repeated turnover of management, which

. e Michigan Sues HP Over $49 Million IT
contributed to the specification problem. 9 $

Modernization Project
» Micromanagement of software developers.

Several deadline extensions beyond 2010, Michigan's
o o . Business Application Modernizatit ject i

» The inclusion Of many FBI personnel who had little unu;zse;zd_pplca on Modernization project remains

or no formal training in computer science as

managers and even engineers on the project.

» Scope creep as requirements were continually added
to the system even as it was falling behind schedule.

» Code bloat due to changing specifications and scope
creep—at one point it was estimated the software
had over 700,000 lines of code.

» Planned use of a flash cutover deployment made it
difficult to adopt the system until it was perfected.

Virtual Case File failure — lessons learned

» Lack of a strong technical architecture (“blueprint”)

from the outset led to poor architectural decisions.
Repeated changes in specification.

Repeated turnover of management, which
contributed to the specification problem.

Micromanagement of software developers.
The inclusion of many FBI personnel who had little

or no formal training in computer science as
managers and even engineers on the project.
Scope creep as requirements were continually added
to the system even as it was falling behind schedule.

Code bloat due to changing specifications and scope
creep—at one point it was estimated the software
had over 700,000 lines of code.

Planned use of a flash cutover deployment made it
difficult to adopt the system until it was perfected.

Plenty information technology
disasters

Michigan Sues HP Over $49 Million IT
Modernization Project
Several deadline extensions beyond 2010, Michigan's

Business Application Modernization project remains
unfinished.

The FBI tries again

=
I SPECTRUM ngnecring Topics . Special Reports - Blogs- Mulimedia~ The Magazine

Risk Factor | Computing | IT

f 29 Sep 2014|1300 GMT

FBI’s Sentinel System Still Not In
Total Shape to Surveil

’

b
mis

n

F

Case studies — Boreland compilers

Boreland had it all: Pascal and then C
compilers were widely used and loved.

Case studies — Boreland compilers

Boreland had it all: Pascal and then C
compilers were widely used and loved.

S

Why did Borland fail?

Case studies — Boreland compilers

Boreland had it all: Pascal and then C
compilers were widely used and loved.

A E

Why did Borland fail?

tech

After realising that the compiler didn’t
produce the same results compiling the
same code twice and finding that the
debugger was buggy | had to just drop
Borland.

Case studies — Boreland compilers

Boreland had it all: Pascal and then C
compilers were widely used and loved.

6

Why did Borland fail?

tech |

After realising that the compiler didn’t
produce the same results compiling the
same code twice and finding that the
debugger was buggy | had to just drop
Borland.

management

Borland lost its way when executive management decided to
change the company to pursue a different market.

A few years after Borland went public, founder and CEO
Philippe Kahn began to have increasing disagreements with
the Borland board of directors. [...] board of directors
wanted to shift gears and pursue the "enterprise" software
market. | get the impression that this difference of opinion
simmered for years. Ultimately the board fired Kahn and
threw the company headlong into the pursuit of the
enterprise market.

Borland's long slow death spiral began when it turned away
from what it knew best to chase a unicorn it knew nothing
about.

market direction

Overall, Borland competed too much with Microsoft. It
became a war of “who wants to bear the mantle of
responsiblity the most?” and Microsoft just kept pulling tricks
and pouring resources into their developer tools, office apps,
etc. Without legislation preventing an OS vendor from also
supplying applications, the fight was futile as long as MS had
the passion for the space.

Case studies — Python packaging

Case studies — Python packaging

Kw| ChrisWarrick Contact Projects Guides Archives Search polski I

[...] area of Python that many developers have problems with [...]
many different solutions pop up over the years [...] wars, and
attempts to solve it [...] packaging ecosystem and tools making
their lives harder [...] confused about virtual environments [...] is
the organization behind most of the packaging tools and standards

part of the problem itself?
v

Join me on a journey through packaging in Python and elsewhere
[...] classic packaging stack (involving setuptools and friends), the
scientific stack (with conda), [...] modern/alternate [...] Pipenv,
Poetry, Hatch, or PDM.

Case studies — Python packaging

fkw! Chris Warrick contact Projects Guides Archives Search polski I

[...] area of Python that many developers have problems with [...]
many different solutions pop up over the years [...] wars, and
attempts to solve it [...] packaging ecosystem and tools making
their lives harder [...] confused about virtual environments [...] is
the organization behind most of the packaging tools and standards
part of the problem itself?

v

Join me on a journey through packaging in Python and elsewhere
[...] classic packaging stack (involving setuptools and friends), the
scientific stack (with conda), [...] modern/alternate [...] Pipenv,
Poetry, Hatch, or PDM.

Contents

SQLite - it just works

SQLite - it just works

A Why SQLite succeeded as a database (2016) (changelog.com)
128 points by Tomte 17 days ago | hide | past | favorite | 85 comments

SQLite - it just works

A Why SQLite succeeded as a database (2016) (changelog.com)
128 points by Tomte 17 days ago | hide | past | favorite | 85 comments
”

Podcast

CORECURSIVE

With Richard Hipp

P LISTEN NOW

P PODCAST PLAYER

EPISODES The Untold Story of SQLite

SQLite - it just works

Why SQLite succeeded as a database (2016) (changelog.com)
128 points by Tomte 17 days ago | hide | past | favorite | 85 comments

Podcast

CORECURSIVE

With Richard Hipp

P LISTEN NOW

P PODCAST PLAYER

EPISODES The Untold Story of SQLite

Richard Hipp

SQLite came from a Hipp's experience maintaining an
INFORMIX database on a navy battleship, and the
server kept crashing.

SQLite - it just works

Why SQLite succeeded as a database (2016) (changelog.com)

128 points by Tomte 17 days ago | hide | past | favorite | 85 comments)

Podcast

CORECURSIVE

With Richard Hipp

P LISTEN NOW

P PODCAST PLAYER

EPISODES The Untold Story of SQLite

Richard Hipp

SQLite came from a Hipp's experience maintaining an
INFORMIX database on a navy battleship, and the
server kept crashing.

“Richard, why don't you just write one?” “Okay, I'll
give it a try.”

SQLite - it just works

Why SQLite succeeded as a database (2016) (changelog.com)

128 points by Tomte 17 days ago | hide | past | favorite | 85 comments)

Podcast

CORECURSIVE

With Richard Hipp

P LISTEN NOW

P PODCAST PLAYER

| EPISODES The Untold Story of SQLite

Richard Hipp

SQLite came from a Hipp's experience maintaining an
INFORMIX database on a navy battleship, and the
server kept crashing.

“Richard, why don't you just write one?” “Okay, I'll
give it a try.”

Newt Gingrich and Bill Clinton were having a fight of
some sort, so all government contracts got shut down,
so | was out of work for a few months, and | thought,

“Well, I'll just write that database engine now.”

SQLite - it just works

Why SQLite succeeded as a database (2016) (changelog.com)
128 points by Tomte 17 days ago | hide | past | favorite | 85 comments

Podcast

CORECURSIVE

With Richard Hipp

P LISTEN NOW

P PODCAST PLAYER

| EPISODES The Untold Story of SQLite

Richard Hipp

SQLite came from a Hipp's experience maintaining an
INFORMIX database on a navy battleship, and the
server kept crashing.

“Richard, why don't you just write one?” “Okay, I'll
give it a try.”

Newt Gingrich and Bill Clinton were having a fight of
some sort, so all government contracts got shut down,
so | was out of work for a few months, and | thought,
“Well, I'll just write that database engine now.”

We were going around boasting to everybody naively
that SQLite didn't have any bugs in it, or no serious
bugs, but Android definitely proved us wrong. Look, |
used to think that | could write software with no bugs in
it. It's amazing how many bugs will crop up when your

software suddenly gets shipped on millions of devices.

SQLite - it just works

SQLite - it just works

...but I'd be in more trouble if SQLite
disappeared. Richard’s database is the most
used database in the world, and by some
counts, it's the most widely deployed software
module of any type. If it disappeared, your web
browser wouldn't work, your smartphone
probably wouldn't start up, and probably your
car wouldn't start up, as well.

Its impact on the world is massive, and there's
plenty of places where it could have lost its
way. The Consortium could have stifled
progress or run out of money, or the full year it
took to address all the android bugs could have
easily burnt Richard out, but he prevailed and
now he's in a great position to offer advice to
others who want to create impactful open
source software.

SQLite - it just works

...but I'd be in more trouble if SQLite

disappeared. Richard’s database is the most “probably one of the dark horse reasons for
used database in the world, and by some success is its "open source but not open
counts, it's the most widely deployed software contributions" model and strong personal

module of any type. If it disappeared, your web leadership from Richard”

browser wouldn't work, your smartphone
probably wouldn't start up, and probably your
car wouldn't start up, as well.

Its impact on the world is massive, and there's
plenty of places where it could have lost its
way. The Consortium could have stifled
progress or run out of money, or the full year it
took to address all the android bugs could have
easily burnt Richard out, but he prevailed and
now he's in a great position to offer advice to
others who want to create impactful open
source software.

Case studies — GNU Scientific Library (GSL)

Case studies — GNU Scientific Library (GSL)

PHILOSOPHICAL

RO The case for free.and open
source software in research

royalsocietypublishing.org/journal/rsta an d S Ch 0| ar Shlp

Laura Fortunato' and Mark Galassi®

Opinion piece Cnetor insttute of ogntive and Evolutionary Anthropology, Universty of
Cite this article: Fortunato L, Galassi M. 2021 e tanarbcal O S SN K
N) 2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

The case for free and open source software in 5 X b °
'Space Science and Applications Group, Los Alamos National

research and scholarship. Phil. Trans. R. Soc. A
379: 20200079 Laboratory, Los Alamos, NM 87545, USA)

Article gives a general introduction to
free/open-source software aimed at
quantitative social scientists.

Uses the vagaries that brought to the
GNU Scientific Library in the 1990s.

Case studies — GNU Scientific Library (GSL)

Numerical analysis landscape: 1980s and 1990s

PHILOSOPHICAL

RO The case for free.and open
source software in research

royalsocietypublishing.org/journal/rsta an d S (h 0| ar Sh |p

Laura Fortunato' and Mark Galassi®

Opinion piece Cnetor insttute of ogntive and Evolutionary Anthropology, Universty of
Cite this article: Fortunato L, Galassi M. 2021 e tanarbcal O S SN K
N) 2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

The case for free and open source software in 5 X b °
'Space Science and Applications Group, Los Alamos National

research and scholarship. Phil. Trans. R. Soc. A
379: 20200079 Laboratory, Los Alamos, NM 87545, USA)

Article gives a general introduction to
free/open-source software aimed at
quantitative social scientists.

Uses the vagaries that brought to the
GNU Scientific Library in the 1990s.

Case studies — GNU Scientific Library (GSL)

PHILOSOPHICAL

RO The case for free.and open
source software in research

royalsocietypublishing.org/journal/rsta an d S Ch Ol ar Sh |p

Laura Fortunato' and Mark Galassi®

Opinion piece Cnetor institute o Cognitve and Evolutionary Anthropology, Universty of
Oxford, 64 Banbury Road, Oxford 0X2 6PN, UK

ZSanta Fe Istitute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
3Space Science and Applications Group, Los Alamos National
Laboratory, Los Alamos, NM 87545, USA

Cite this article: Fortunato L, Galassi M. 2021
The case for free and open source software in
reseach and scholarship. Phil. Tans. R, Soc. A
379: 20200079,

Article gives a general introduction to
free/open-source software aimed at
quantitative social scientists.

Uses the vagaries that brought to the
GNU Scientific Library in the 1990s.

Numerical analysis landscape: 1980s and 1990s

Grand old packages: SLATEC, netlib,
CLAMS

Sandia, Los Alamos, Air Force Research Lab Technical
Exchange Committee (SLATEC): high quality public domain
math library - started in 1974, still shipping now.

netlib: set up in 1985 for network access to high quality
libraries.

CLAMS: Common Los Alamos Math System - proprietary and
now defunct.

Case studies — GNU Scientific Library (GSL)

PHILOSOPHICAL

RO The case for free.and open
source software in research

royalsocietypublishing.org/journal/rsta an d S Ch Ol ar Sh |p

Laura Fortunato' and Mark Galassi®

Opinion piece Cnetor institute o Cognitve and Evolutionary Anthropology, Universty of
Oxford, 64 Banbury Road, Oxford 0X2 6PN, UK

ZSanta Fe Istitute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
3Space Science and Applications Group, Los Alamos National
Laboratory, Los Alamos, NM 87545, USA

Cite this article: Fortunato L, Galassi M. 2021
The case for free and open source software in
reseach and scholarship. Phil. Tans. R, Soc. A
379: 20200079,

Article gives a general introduction to
free/open-source software aimed at
quantitative social scientists.

Uses the vagaries that brought to the
GNU Scientific Library in the 1990s.

Numerical analysis landscape: 1980s and 1990s

Grand old packages: SLATEC, netlib,
CLAMS

Sandia, Los Alamos, Air Force Research Lab Technical
Exchange Committee (SLATEC): high quality public domain
math library - started in 1974, still shipping now.

netlib: set up in 1985 for network access to high quality
libraries.

CLAMS: Common Los Alamos Math System - proprietary and
now defunct.

But...

It's all in FORTRAN. 1990s are coming, physicists are
programming in C.

Many relied on Numerical Recipes, nice pedagogical
explainations but rubbish code.

	Frontmatter
	Goals
	Curriculum
	Part II – Programming languages
	Programming languages
	Programming Languages
	Stories of programming languages
	Tour of languages
	Insights on languages

	Part III – Operating systems
	Operating systems
	Operating Systems
	Stories of operating systems

	Insights
	Insights on operating systems

	Part IV – Tools and methodologies
	Tools and methodologies
	Methodologies
	Development methodologies
	Programming Languages
	Workflow and tools
	Editors

	Version control
	Debugging
	Summarizing on tools
	The bones of the world
	Case study: Beowulf clusters
	Licensing, software freedom, open source

	Part V – Case studies
	Case studies
	Case studies
	Case studies

