Serious Computer Programming for Youth

a Teacher’s Manual for charismatic hackers

10-hour course on programming
with Python on the Linux system

Mark Galassi
Los Alamos National Laboratory

mark@galassi.org

October 11, 2022

Contents

IMotivation and prolegomenal

[lI The hardware and the operating system|
1.1 Having students bring hardware|[.
1.2 Start the mstallationl Lo
1.3 Opening up a computer to demonstrate its parts
(1.4 Lecture on the blackboard|
|I1.4.1 Hardware block diagram|.
[1.4.2 Software functional diagram|.
L After the mstallationf
|2 Start programming in Python|
2.1 Concepts betore we start|.
2.2 Learning to type and learning the editor|
2.3 Reiterating “hello world” and starting loops|
2.4 Introducing strings and lists|
...........................
RA2 Tasts
[2.4.3 Allsortsof types|
[2.5 Start talking about tic-tac-toe|.o
|13 Functions to do tasks, more tic-tac-toe|
[3.1 Structuring the program|
|4 Tic-tac-toe: playing moves|

4.1 Taking input moves from the players|

4.2 Improving flow and robustness|

ii

iv

10
10
13
13
13
14
16

18
20

CONTENTS iii
[Tic-tac-toe: simplest computer play] 28
b1 First found| o 28
b.2 Randomplayl 29

|6 Checking if someone has won| 32
|7 Tic-tac-toe: more intelligent-play| 35
7.1 Detensive playl. oL 35
7.2 Opportunistic play| 37
[7.3 Concluding words|. 37
[A_Life after the coursel 39
IB Notes on installing Linux in class| 40
[B.1 Issues with old/cheap hardware| 40
IB.2 The Asus X561MA laptop| 41
IB.2.1 Preparing a USB memory stick| 41

IB.2.2 Saving off laptop info and restore drive] 42

IB.2.3 Booting from a USB stick| 42

B.2.4 Installing Linux|{. 42

IB.3 The old Mac G4 PowerPC laptop| 43
[B.3.1 Preparing an installation CD| 43

B.3.2 Booting from CD and installingl. 44

B.3.3 Post installationl 44

[C Software Freedoml 46

Motivation and prolegomena

The joy and beauty of serious programming

Computer programming, like music, chess and mathematics, can be tought
to young children. These children can sometimes perform at the same level
as adults in many areas of programming.

Many courses are taught to kids. The ones I have seen are very well
developed and organized. They use a friendly programming environment in
which users see a rapid visual response to their commands and snippets of
code.

Unfortunately these environments do not bridge a crucial gap to pro-
gramming the way it is done by professionals. The language is not one used
for serious programming, the environment does not scale to more complex
software development, and the graphical output, while immediate, does not
then translate into production-level graphical user interfaces. When the stu-
dents are confronted with real technical work, for example in a college or
graduate school internship, they can feel a sense of loss that those tools did
not prepare them for their “real work”.

Important tools for a programmer include at least the followingﬂ

e a deep understanding of how their computer and operating system
work

e mastery of one or more general purpose programming languages

e a strong connection to their tools (most importantly the programming
editor)

e comfort with how the command line brings together a variety of small
tools.

LOf course this list could be arbitrarily long; I will focus on these items for now.

iv

I have carried out various experiments in teaching this more advanced
approach to students, both in the 8- to 12-year-old range and to teenagers.
Some of the attempts have not worked well, but they led me to an approach
which has been quite successful: the students learned the material readily,
and surprised me and others with how quickly they grasped real program-
ming tools.

An important matter comes up when teaching real-world programming,
and this is not a problem unique to kids. It is the problem of understanding
how computers work. When I learned to program in 1980 everyone who
had a computer at home had to understand how it worked and had to put
together several hardware components.

Today both children and adults can use a laptop or tablet computer to
good purpose for several tasks (video conferences, reading mail, accessing
web resources, . ..) without understanding how the computer works or even
what the parts of the hardware and software are.

One analogy I have come up to explain this is that of car ownership.
A person can drive a car with an automatic gear shift and have no idea:
(a) that there are gears with a different ratio between how fast the engine
turns and how fast the wheels turn, (b) how to fix a car if it develops
problems, (c¢) how to design and build a car.

Analogously to meeting kids who don’t know who The Beatles areﬂ to-
day’s computer users might not know the meaning of CPU, RAM, graphics
cards, network controllers, hard disks. Moving up from hardware they might
not know where the operating system fits into a functional diagram of com-
puter hardware and software, or what an editor is. They might not even
know what a “computer program” is.

These are all important things to understand when you write code, so we
will have to start our training by understanding how hardware and software
work under the fancy cover.

This is why the course requires students to find an old computer or
laptop: in the first lesson the students will open up a computer to see
what the parts are inside (with the instructor’s guidance), and they will
install a Linux distribution on their own computer so that they can do
their programming on a machine they have configured, starting from bare
hardware.

And now for the beauty and joy. Serious programming is not only fun:
you can experience the deep joy of creating something or solving a problem.
And research: research involves writing software, so the joy of unlocking

2A rock and roll band from the 1960s and early 1970s.

vi MOTIVATION AND PROLEGOMENA

those mysteries is not available to people who don’t program. We hope to
do some of that in the course, so we should emphasize to the students that
this activity has deep rewards.

Automation of repetitive tasks

People who have programming as a tool in their belt know that the main
function of computer programming is the automation of repetitive tasks.

This is so imporant that there is a mantra which I repeat very often when
I teach: “the purpose of computers is the automation of repetitive tasks”.
When we introduce loops, and at many other times, I have the class repeat
“automation of repetitive tasks”. It eventually becomes a humorous mantra,
with the joke being on the instructor because they repeats themselves so
many times, but the phrase will be remembered.

Here is how to test whether students have understood this. After they
have started using the shell, have them create a bunch of files with a typo:

for i in “seq 0 9°

do

fname=fille_number_$i

echo "the number is $i" > $fname
done

Then tell them “now you realize that you misspelled and wrote fille instead
of file. What will you do about it?”

At this point they will not have the skills to write a script to fix all the
file names, but they can still give this correct answer: “the right way to fix
it is to write a script of some sort.”

At the end of the class you might want to give give them the script that

fixes all the file names. There are many ways to do it — I might do something
like this:

for bad_fname in fille_number_x*

do
good_fname="echo $bad_fname | sed 's/fille_/file_/'"
echo "renaming file from $bad_fname to $good_fname"
mv -i $bad_fname $good_fname

done

vii
Plan

This book has early sections that introduce hardware, then describe how
hardware and software fit together, discuss layers of software from the op-
erating system to application software.

After which we dive into programming in Python. In earlier programs
we type many lines of code in the Python interpreter (at the >>> prompt),
since these are demonstrating isolated bits of the python syntax.

Once we have spent some time getting familiar with python syntax we
dive in to the program we are going to write: one that plays the game of
tic-tac-toe against a human (or against other computer algorithms!) with a
reasonable strategy.

The writing of this program takes the bulk of the time in the workshop.

We start by writing a simple representation of the board, and of how to
modify the board (i.e. making moves). Then we restructure the program
to use functions for all this, and give it a top-down design with a main()
function coming first.

At this point we temporarily let the program lack in a few areas (cheat-
ing is possible, invalid input is possible, ...) so that we can jump in to
“fun” stuff: introducing the first two computer algorithms (“first found”
and “random”).

Then we solve the problems of cheating and incorrect input.

Now, as we move toward smarter algorithms, we take a moment to intro-
duce look-ahead mechanisms. This then lets us write our final algorithms:
the “defensive” and “opportunistic” algorithm.

And here the book and the “planned” part of the course finish. If
there is time left (and there usually is) I will now informally guide the
students through expanding the program to play tournaments of one algo-
rithm against the other, and write up a cross-table of how the algorithms
perform.

Then I conclude with a discussion of “what comes next” — mini courses,
working groups, research internships, ...

It is important to follow the plan and keep a momentum in the class: this
gets the students into a state of mind where they feel the productivity, and
that makes a big difference. This can be difficult in case some students need
a bit more time, but we are aided by a very fortunate property of people
with technical passion: they love to share their knowledge and help others.
At various times during a segment the students will help each other catch

up.

viii MOTIVATION AND PROLEGOMENA

Since serious computing work involves solving real open-ended problems,
rather than “canned” exercises, the instructor should be available during
breaks and between sessions to make sure that everyone can catch up and
be ready for the next class without feeling lost.

But there is a flip side: this course is aimed at students who are self-
motivated and ready to step out of their comfort zones. Some students might
not be ready for this. Because of this I make it clear, when I advertise
the course, that students will have to work hard at learning new ways of
computing. I correspond with the students (or their parents for younger
kids) before the course, and try to make sure that they are not being pressed
in to something they don’t feel like working hard at.

Pandemic adjustments and remote teaching

During the COVID-19 pandemic I quickly shifted to teaching this work-
shop (and all my other materials) remotely. This was enabled by the Jitsi
platform: an excellent videoconference system, based on free/open-source
software. A key feature of Jitsi is that it allows several people to share their
screens at once - a feature we use to debug student code.

I also learned to use the screen drawing tools in my window manager, so
I could quickly annotate and draw around the text in the windows I project.

The setup I use is to have a laptop to my side, and I use the videocamera
there to project myself talking. Then I use my main computer to project its
screen to demonstrate the material. The main computer’s screen has very
high resolution, so I increase the fonts in emacs and in my terminal windows.

The other major pandemic adjustment is in setting up computers. In-
stead of doing it at the start of the session we have to do it remotely. I send
the students instructions on how to do that, and do a lot of coaching on the
telephone to help them set up.

Why use Linux and Python?

The promotional materials point out that the course involves learning to
program in Python on the Linux operating system.
The motivation behind learning the Linux operating system is that:

e Linux is the basis for almost all the computers that “run the world”:
from the servers at Amazon and Google to the supercomputers that
power science, the operating system is almost always Linux

ix

e the Linux operating system is written by programmers for program-
mers: it offers a choice of several delightful programming environments
and puts few barriers in the way of the programmer

e the Linux system is free (as in freedom), and software freedom is im-
portant; but it is also free as in cost: the entire system and its wealth
of tools (for programming and all else) are available free of cost

e the Linux system has been packaged in many ways, some of which
work quite well on very old hardware with less memory,

e Linux is a very strong element on a resume.

The motivation behind teaching Python is:

e it is a pleasant and easy language to learn

e it is also a language used for many industrial-strength applications
e it can be used for a wide variety of interesting programs.

We will be using version 3 of Python (python3) which is now quite
widespread. As I revise this book in 2022 Python2 has finally mostly disap-
peared, so there is no need to discuss how to update programs from python2
to python3.

Preparation for class: venue and materials

If you get a group of kids signed up for the course you need to be ready to
make the class time move at a good pace. If time is lost getting equipment
to work or figuring out the network then you will lose the kids’ attention.

I do a careful preparation of the site: I verify that we have electrical
outlets, that we have hard ethernet as well as wi-fi, that there is a blackboard
or whiteboard, tables, chairs, ...

I also correspond extensively with the kids (or their parents for the
younger kids), making sure that they have obtained a piece of hardware
and finding out what kind of computer it is.

Then I have a couple of boxes of equipment I bring to the classes with
(at least) the following items:

e an ethernet hub with ports for any students who will not have wi-fi

e USB wi-fi adaptors

X MOTIVATION AND PROLEGOMENA

e dry erase markers
e several USB mice

e loaner laptops: a combination of cheap ones I purchased with a grant
for the course, and of old computers the center had sitting around

e CDs and DVDs with several Linux distributions (labeled) (I have
stopped doing that recently: few laptops have CD drives anymore)

e USB flash drives (memory sticks) with several Linux distributions (la-
beled).

I also do a test install of the operating system on at least one of each
model of loaner laptop, and I write down the procedure. The most important
part is probably to figure out how to make that laptop boot from a removable

USB flash drive.

Using, adapting and improving this book

I have written this teacher’s manual in case you want to use it as a starting
point to develop our own course for children. You may obtain a copy of
the source document for this manualﬁ and modifiy it to fit your needs, and
even redistribute your modifications (see Appendix for the license on this
document).

I have not written this book to be a tutorial for students. You, the
reader, are going to be tutoring the children, so this book is written to give
you an outline and many possible details on what to do.

The target audience (that’s still you) is someone who has at least some
small experience programming. In that case the examples in this book will
make sense to you and you will be able to explain them to the kids, even as
you are learning yourself!

There are some areas you will most likely need to adapt, such as Ap-
pendix [Bf which I tailored to the specific hardware we had available in the
classes I taught. You might want to adapt other areas to fit your style or
your audience.

And naturally if you have ideas for improving the course or developing
follow-on courses, please be in touch with me!

3https://bitbucket.org/markgalassi/seriousprogramming-teacher-manual

Lesson 1

The hardware and the
operating system

1.1 Having students bring hardware

An essential part of this course is that the students should install an op-
erating system themselves onto bare metal. This will give them a much
better overall view of what the hardware + software combination that is a
computer is made of.

There are several side benefits: (a) the students are exposed to a free
software environment, (b) people who teach Python classes always grapple
with installing and using Python on widely different systems — we will not
have this problem, (¢) the students become versed in the UNIX and Linux
way of computing and learn some system administration skills.

In announcing the course I urge students to bring in an old computer,
such as “grandparent’s old laptop”. The idea is to encourage them to ask
around: many families will have old computers sitting around, and if not
their neighbors probably do. But even if they do not it is still worth having
students take such initiative. Teachers can also raise grant money to find
laptops for students, and I have found several very usable computers with
the freecycle mailing list.

1.2 Start the installation

Installation instructions for the computers I have used in my course are in
Appendix [B] T have also had very good luck getting members of the local
Linux user group in Santa Fe to come help with the installation. Former

1

2 LESSON 1. THE HARDWARE AND THE OPERATING SYSTEM

students are also often willing and helpful. These volunteers are only needed
at the very start of the course.

It is important to get to this point rather early in the first 2-hour lesson,
since this is rich ground for unpredicted problems. The students might bring
hardware that does not work, or that is so strange that it is hard to install
Linux on it (although that is rare these days). Or they might have brought
something that is more than 10 years old, for which you would need a truly
tiny Linux distribution.

To limit the delays that can come from this I recommend having some
“loaner” laptops available for students to use in class if it turns out that
their computer is just not working. If the installation appears to not be
working then make sure you shift to using your loaner laptops.

As for a choice of distributions: I show up with several CDs/DVDs and
USB memory sticks so that I am ready to install many different styles of
Linux. To help with hardware detection I now mostly use the Ubuntu (long
term support version) and Mint distributions, but this can change as the
Linux distributions evolve.

I also have a couple of USB wi-fi adaptors that are known to work without
special drivers, since certain laptops have built-in wi-fi that requires special
drivers.

In 2022 I stopped putting the time in to working with laptops that have
less than 4 gigabytes of RAM. At this time a web browser uses more than
3 gigabytes even before doing much work, so having less than 4 gigabytes
(even with a low-resource distribution) does not work well.

In class we will mostly use a programming editor and the Python inter-
preter, so the style of desktop doesn’t really matter that much.

The installation can take from a few minutes to half an hour, and we will
use this time to go to the front of the class and discuss computer hardware.
Remote teaching note: when teaching remotely the students do the in-
stallation themselves. I then do a “tech check” with each student where we
spend a few minutes in videoconference to make sure that they can share
their screen, and that they have installed a programming editor (I have them
install emacs).

1.3 Opening up a computer to demonstrate its
parts

This “show and tell” should be done with a desktop computer, preferably a
pretty old one, since the parts are more spread out and easier to identify.

1.3. OPENING UP A COMPUTER TO DEMONSTRATE ITS PARTS 3

The computer should be opened on a desk near the blackboard so that
you can draw a hardware block diagram (see Section at the same time.

You will want to practice opening it up, and learn to identify the com-
ponents.

il
AN
o 7

(a) The computer before we open (b) The back - note opening screws
it up. and connectors.

You should identify the CPU, RAM and peripherals, discussing how they
are connected to the CPU. Sometimes a peripheral is on the same board,
and hence is connected via short solder connections. Other times it’s on a
separate card, plugged in to the “bus” (in most modern PCs it’s a PCI bus).

Here is a basic list of some of the components you might identify:

power supply plugs in to the wall, often has fan, has many colored wires
coming out

backplane/bus where the cards are seated
motherboard the board with the CPU, much of the RAM, ...
CPU the biggest item on the motherboard

RAM the computer’s fastest memory, sits on the motherboard in DIMMs
— mini-cards, short and wide which plug in to the motherboard

graphics find the graphics chipset, either on the motherboard or in a sep-
arate card (it might be useful to bring two different computers)

4 LESSON 1. THE HARDWARE AND THE OPERATING SYSTEM

= A NA

(a) The computer’s innards from the side. (b) Details of motherboard and
memory module daughterboard.

hard disk is usually somewhat separate from the motherboard, with a wide
ribbon cable connecting them in older computers (IDE) or a narrower
cable in newer computers (SATA); has its own power connector as well

optical drive CD/DVD drive, often connected the same way as the hard
disk

network port looks like a telephone jack but wider
serial port trapezoidal connector with 15 or 9 pin sockets

video connector there are so many different types, but for a long time
the standard was called VGA, and the connector is trapezoidal, often
blue, with 9 pin sockets

1.4 Lecture on the blackboard

1.4.1 Hardware block diagram

While you have the “show and tell” computer open (Section you should
draw a block diagram of how the hardware fits together. Many examples of
block diagrams can be found on the web, but they often go into too much
detail. T use a simple block diagram, a bit like the one in Figure

Once you have the hardware block diagram on the blackboard you can
animatedly talk about how each of those components is related to what the
children have seen in their daily life.

1.4. LECTURE ON THE BLACKBOARD 5

Monitor Speakers

network |

Graphics card Network card Soundcard

Keyboard
USBinterface

CPU

Mouse }——" (central processing unit)

Camera

Memory e
MPSPI% Disk Controller

RAM (random access memory)

Figure 1.3: A diagram of the hardware parts of a typical personal computer.

For example: “has anyone here ever seen a movie streaming on the
network, like with Netflix?” and when someone says “yes” you can point to
the portions of the diagram which shows the ethernet port and the graphics
card and the cable that connects to the monitor.

Or: “has anyone here ever looked at a weather forecast?”, at which point
you can point to the CPU and RAM and talk about how those forecasts come
from a lot of very intense calculations inside the CPU.

The goal of this kind of interactive dialogue is to get the students to
feel that they part of the class, and also to make their subconscious sense a
connection between this understanding of the hardware and their every day
experience.

1.4.2 Software functional diagram

Draw a diagram similar to that in Figure|1.4

In explaining this to young people, draw the layers from the inside and
work out. The operating system sits between the hardware and the appli-
cation programs and provides two things:

e An abstraction layer on top of the hardware.

e Protection of memory and other resources from incorrect access by
programs that run simultaneously.

6 LESSON 1. THE HARDWARE AND THE OPERATING SYSTEM

?Y’V‘Cation Pr O8ray,
'S

< SO

(8]

Figure 1.4: A diagram of the layers of software above the hardware.

To make this part interactive you can ask “who can tell me what an
example of an operating system is?” Kids will answer “Windows” or “Mac-
intosh”. I find it useful to point out the importance of free software operating
systems by saying something like “very good”, and then writing down the
list on the blackboard starting with the Linux operating system, and putting

their responses below with the company that sells those operating systems.
For example:

e Linux — used by programmers and on all supercomputers and servers.
e Microsoft Windows — used in many office and gaming computers.
e Apple OS X — used in many Macintosh computers.

and then I give a brief discussion (more will come throughout the course) of
how the Linux system is designed and developed by volunteers with the goal
of offering users a fretﬂ operating system that is not steered by a company’s
marketing agenda.

But then I go on to explain that there are many *embedded* operating
systems: I have the students call out what operating system runs in their
phone - when they say Android I point out that the kernel is a Linux kernel,

lufree” as in “freedom”; see Appendix

1.5. AFTER THE INSTALLATION 7

but it is different from our Linux systems because it has a touch-screen
interface on top of it. I will also ask them to look around and see if there is
a thermostat in the room. If it is programmable then it will have a computer
and operating system in it. Other examples are cars, satellites, airplanes,

Libraries allow higher level ideas to be expressed using basic building
blocks. You can give the example of a task in daily life that involves nu-
merous tiny steps, such as getting milk from the refrigerator. You could ask
someone to get you milk from the refrigerator by saying: “please step for-
ward 2 paces, then turn left 40 degrees, then step forward two more paces,
then put your arm out, then close your fingers around the handle, then pull,

Or you could simply ask someone “please get me milk from the refrigera-
tor”. A library gives you higher level ways of expressing the task, delegating
the small details to the library.

When you get to the “Application Software” layer remember that many
of them don’t know what a “program” is. Or better: they probably know
what a program is, but they don’t know it’s called a program. You can give
them examples of programs they have seen in school or they might have
used at home.

1.5 After the installation

Having finished our lecture on hardware and software architecture, we start
telling the students to bring up a terminal.

Typing at the terminal and at a programming editor will be what we
do all the time, so they need to start getting used to typing commands at
the shell prompt in the terminal. Eventually they will develop a feeling for
what the terminal and the shell are.

The first thing we can do is have them type:

$ tuxtype

The computer will tell them to install it with:

$ sudo apt-get install tuxtype

and they should do that. This is an entertaining “typing tutor” which will
get them in the habit of touch-typing.

I let the students stay in tuxtype until about 5 minutes before the end
of this first 2-hour lesson.

8 LESSON 1. THE HARDWARE AND THE OPERATING SYSTEM

At this point we can finally start programming. Use just a few minutes
before we take our first break to:

e Have them bring up a terminal.

e Have them run “sudo apt-get update” and “sudo apt-get install
python3”

e Have them bring up the Python interpreter by typing “python3” on
the command line

e Have them type their first line of code: print(’hello world’)

This way the kids finish the first lesson having run a brief program.
And then:

>>> for i in range(10):
print(i, i*xi, ixixi)

Then we can take a break.

Lesson 2

Start programming in
Python

2.1 Concepts before we start

There are (at least) two ways of having a computer run your Python pro-
gram: you can type instructions in the Python interpreter, which only works
for a few lines of code, or you can use a text editor (preferably a program-
ming editor) to write the program, save it to a file on disk, and then run
the Python interpreter on that file.

When I teach this I alternate between the two approaches: I might give
a quickie to explore a feature of the language, in which case I will have
students type it into the interpreter. But as the program grows I have them
type it in an editor and execute it from the command line.

This means that the students need to get familiar with a few ideas and
techniques. I start by explaining the following concepts at the blackboard:

o file
e shell

e how you can (and should) use the shell to do things instead of a graph-
ical file manager

e ceditor
in addition to other ideas:
e programming language

e the literal-mindedness of computers

9

10 LESSON 2. START PROGRAMMING IN PYTHON

2.2 Learning to type and learning the editor

Students might not know how to type yet. I have them install the typing
tutor tuxtype with “sudo apt-get install tuxtype”, after which they
can run tuxtype on the command line to practice typing. I don’t have them
spend more than a couple of minutes on it at this time in class, but I tell
slow typists that they need to practice.

I then have students install the programming editor emacs with “sudo
apt-get install emacs” and spend alonger amount of time learning emacs.
This can be done with the emacs tutorial. Initially students will try to rely
on the mouse and the arrow keys, and a proficiency test would be if by the
end of the week they are using native emacs navigation and other approaches
from the tutorial.

Once they are comfortable creating a new file in emacs (C-x C-f) and
saving it to disk (C-x C-s) we are ready to move on to writing code.

2.3 Reiterating “hello world” and starting loops

I write all the codes here on the blackboard during the lecture. I have the
students input them, either at the Python interpreter or in an editor, to
then be run from the command line.

When teaching remotely I have a terminal or emacs window with hugely
magnified fonts and I type the code in directly. In this introductory work-
shop I *never* show already-written code — this is important so that the
students write together with me.

At the command line type “$ python3” and at the python prompt type:

>>> print('hello world')

and then a few more instructions to see how to use Python as a simple
calculator:

>>> T*4

>>> print (7%4)

>>> 125/13.5

>>> import math

>>> math.sqrt (1.7 + 32/17.1)

Then introduce variables with:

>>> x =7
>>>y =4
>>> x*y

>>> print (x*y)

2.3. REITERATING “HELLO WORLD” AND STARTING LOOPS 11

Then move on to something more interesting with:

>>> for i in range(10):
print(i, i*i, iki*i)

where I also ask the students to tell me what has just happened.

This example allows the telling of humorous anecdotes about sadistic
teachers. I mention that in the old days (including my own childhood)
students were often given punishment for being unruly in class. Sometimes
they were unruly because they were too smart for the course material, other
times becuase they were just ill-behaved. A common form of punishment
was to have the child write something repeatedly on the blackboard. My
teacher would make me write 50 times:

I will not disturb in class

Here I might have them write an inline program which prints that out
10 times (so you can still see the for loop in the terminal), and then run it
50 times and then 1000 times. I might also have them update it for modern
times with:

I will not look at my cell phone in class

This brings us to the anecdote of Carl Friedrich Gauss (here I'll ask the
kids “do you have a favorite mathematician superhero?” and run with that
idea for a while...). The legend (possibly apocryphal — who knows what
apocryphal means? what’s a famous apocryphal story?) tells that his math
teacher asked him (and maybe the whole class) to add all the numbers from
1 to 100 so that the teacher could take a break.

The teacher’s break was brief: Gauss answered right away. What is the
answer? If the class does not see it we can demonstrate it: write out 14100
+ 2499 + 3498 and so forth to 49+52 and 50+51. That makes for 50¥100,
which is 5050. More generally, Gauss got:

i . nn+1)
1= —"
i=1 2

So if you are given a repetitive task by a sadistic teacher, how do you
handle it? Two solutions: either you come up with a cool math formula
that lets you calculate it immediately, or you write a computer program to
do it. That’s what we did with our loop.

Now take that looping program and put it in a file called loop.py. The
code in the file will look like:

12 LESSON 2. START PROGRAMMING IN PYTHON

for i in range(10):
print(i, i*i, ikixi)

Listing 2.1: loop.py - first program

and you can run it with

$ python3 loop.py

Then expand on the program (and use i**3 for 3rd power):

import math
for i in range(10):
print(i, i*i, i**3, math.sqrt(i))

Listing 2.2: loop.py - adding code

Students might enjoy changing the 10 to be 100 or even 1000 to see what
happens; some will plug in ridiculous numbers, which gives the teacher the
opportunity to have the students run their CPU hard on a tight loop, put
their ear close to the computer, and listen closely to the whining of the fan.
Then hit control-C and hear the whine stop.

Now show the formula for Fahrenheit and Celcius conversion:

5.0

*90 (2.1)

ZhegC ::<1hegF _'32)

and write the following program and save it to a file called fahr.py:

for degF in range(100):
degC = (degF -32) * 5.0 / 9.0
print (degF, degC)

Listing 2.3: fahr.py

And of course here I point out that “sure, you could take a calculator and
write down all the possible fahrenheit—celcius conversions, but ... [drum roll]
the purpose of computers is to automate repetitive tasks!”

Now let us actually do Gauss’s task the hard way and the easy way. Put
the following into gauss_sum.py:

sum = 0
for i in range(1,101):
sum = sum + i
print('hard way: the sum from 1 to 100 was: ', sum)

sum_gauss = (100 * (100 + 1)) / 2
print('easy way: the sum from 1 to 100 was: ', sum_gauss)

2.4. INTRODUCING STRINGS AND LISTS 13

if sum == sum_gauss:
print('yay! Gauss was right!')
else:

print ('hmmmf! Gauss was wrong!')

Listing 2.4: gauss_sum.py

2.4 Introducing strings and lists

2.4.1 Strings

I write on the board (and have the students type at the Python interpreter)
several tutorial snippets to get students comfortable with strings.

>>> s 'hello!’

>>> t = 'world'

>>> print(s, t)

>>> s + t

Oh cool: I can stop typing print() every time when I'm

typing at the interpreter; from now on we will use print()
in programs, but seldom in examples at the >>> interpreter
prompt

>>> s+ ' "+t

2.4.2 Lists

First I do a “show and tell” with a shopping bag with three different types
of things in it. They could be a pencil, a box of crackers, and a notepad. I
then introduce the list as analogous to the shopping bag: it contains several
elements of different types. (For now I gloss over the fact that a list is
ordered while the shopping bag is typically not ordered.)

I then write on the board (and have the students type at the Python
interpreter) several tutorial snippets to get students comfortable with lists.

>>> mylist = [2.5, 17, 'dude']
>>> print(mylist)

>>> mylist

>>> mylist[0]

>>> mylist[1]

>>> mylist[2]

AAAARGHH: repetitive task alert!!

14 LESSON 2. START PROGRAMMING IN PYTHON

>>> for i in range(3):
print (i, mylist[i])

Now there is a problem with using range(3): what if the list grows? For
example, if you add to the list and then reuse that same loop, you'll end up
in trouble:

>>> mylist.append(42)
>>> mylist.append('the universe')
>>> print (mylist)
>>> for i in range(3):
print(i, mylist[il)

>>> for item in mylist:

. print('item is:', item)

>>> print(len(mylist))

>>> for i in range(len(mylist)):
print(i, mylist[i])

2.4.3 All sorts of types

We have seen a few data types already: integer, floating point number,
string, list. Let’s type some commands at the Python interpreter to get a
better feel for these.

Now I write the following on the blackboard and the students type them
into their pythond interpreter:

>>> type(4)

>>> n = 42

>>> type(n)

>>> type(4.4)

>>> x = 3.141592654

>>> type(x)

>>> type(2.0), type(2)

>>> type('hello world')

>>> s = 'hello world'

>>> type(s)

>>> mylist = [2.5, 17, 'dude']
>>> mylist

>>> type(mylist)

>>> mylist[0]

>>> type(mylist[0])

>>> len(mylist)

>>> type(len(mylist))

>>> mylist

>>> for i in range(len(mylist)):

2.4. INTRODUCING STRINGS AND LISTS 15

print('index:', i, 'list-entry:', mylist[il, 'type:', \
type(mylist[i]))

I then go to another portion of the board and ask “so what different types
of data do we have in Python?” The audience might answer something
like “numbers, strings, lists”. I would then say that it’s a good start, but
to note that there are two different types of numbers: floating point and
integer. This comes up in particular when we print the type of 2 and of 2.0.

For younger kids I would digress briefly to mention that floating point
numbers are the ones with a decimal point, while integers are “whole num-
bers”. It is always an interesting challenge to match terminology between
programming languages and the particular terms a young student’s math
curriculum uses.

Then we can also discuss how to turn strings into integers. We will first
introduce conditionals (if-statements), logic, and booleans (we don’t need
to call them booleans for younger kids).

>>> if 2 > 3:
print('the impossible just happened')

. else:
print('phew: 2 is not greater than 3')

>>>x =7

>>> y =8

>>> if x*y < (x+1)*(y+1);

.. print('that made sense')
>>> x, y
>>> x ==y
>>> x, y
>>>x =y
>>> x, ¥
>>> x ==y

This gives us a chance to talk about the meaning of = (assignment) and ==
(test for equality).
Now we can explore type conversions:

>>> ns = '42'
>>> n = 42

>>> print(n)
>>> print(ns)

>>> n == ns
>>> n, str(n)
>>> str(n) == ns

>>> ns, int(ns)
>>> n == int(ns)

16 LESSON 2. START PROGRAMMING IN PYTHON

These last sequences (and in fact all “type at the interpreter” sequences)
should be accompanied by a lot of discussion:

1. You write one or more expressions on the board.
2. You wait until they have all typed it in the interpreter.

3. You work slowly and carefully with a student who has not spoken up
much recently to discuss what it means.

2.5 Start talking about tic-tac-toe

Our goal is to write a non-trivial program. We will write a program to play
tic-tac-toe. Lessons and [7] will develop the program in detail.

But at the end of this lesson we should start whetting the student’s
appetite by showing how we can use lists and strings to represent a tic-tac-
toe board.

First ask “if you need to represent a row on a tic-tac-toe board, what
would you use?” Then mention that it’s a sequence of three characters:
either an ‘x’ or an ‘o’ or a ¢ ’ (space), and finally get to the choice of a
list. Then we need three rows, so we will use a list of lists.

Let us turn that into code. Type these lines into the interpreter:

>>> row0 = [' ', 'x', 'o']
>>> rowl = [' ', 'o', " ']
>>> row2 = ['x', "', 'x']
>>> board = [row0, rowl, row2]
>>> print(board)
>>> for row in board:

print (row)

Then open a file called board.py in emacs and type in this program:

IOWO = [I v’ va’ vov]
rowl = [\ v’ 'O', [v]
row2 = IXI’ [1’ IXIJ

board = [rowO, rowl, row2]

for row in board:
for cell in row:
print(cell + ' ', end="")
print

Listing 2.5: board.py - first stab

2.5. START TALKING ABOUT TIC-TAC-TOE 17

Students can save the program with C-x C-s and run it by going to their
terminal, the one with the § prompt, and typing:

$ python3 board.py

This will be slightly better than what we got with the trivial loop and
print () statement above, but we can do even better by adding these lines
to the end of the file board.py:

for row in board:
for cell in row:

print('|', end="")

print(cell, end="")
print('[")
print('------—- D)

Listing 2.6: board.py - first stab

then save the file. In the terminal window run the command:

$ python3 board.py

which should give the following ascii output:

With this we stop for the day.

Lesson 3

Functions to do tasks, more
tic-tac-toe

We have written some Python instructions to print out a tic-tac-toe board.
There were about seven lines of code.

Suppose we want to print the board out often. Should we put in those
seven lines of code each time?

The answer is “certainly not” (repeat the mantra on repetitive tasks).
The programming language feature that helps us avoid this duplication is
called a “function” (also called “procedure”, “subroutine” or “method”).

Let us start with simple mathematical functions:

>>> def f(x):
result = x*x
return result

the function takes a variable x, does things to it (in this case squaring it),
and returns another value (the square of x).

Functions don’t always have to be mathematical, nor do they have to
return a value: they could make things happen on your screen. Here is how
we can print a tic-tac-toe board. We will modify board.py:

def print_board(board) :

for row in board:
for cell in row:

print('|', sep="", end="")
print(cell, sep="", end="")
print('|")
print('-——-—---- D)

18

19

row0 = [1 I’ IXI’ lol]
I‘OW]. = [v l, IOI, 1 l]
row2 = ['X', ' 1’ 'X']

board = [row0, rowl, row2]
print_board(board)

Listing 3.1: board.py - with print_board()

We can now look at how to modify the tic-tac-toe board, and then see
how functions help us with that.

Let us say that now it is o’s turn to play and she places an ‘0’ on the
middle square of row two. That would be row 2, column 1. The way we
would do that in Python is by adding this at the end of the previous code
snippet:

...
board[2] [1] = 'o'
print_board(board)

Listing 3.2: board.py - setting a cell

and the “print_board(board)” will show us the new state of the board,
which should now look like:

We now write a function to set a position on the board. The entire
program now looks like:

#! /usr/bin/env python3
def print_board(board):
print (' -——----- ")
for row in board:

for cell in row:

print('|', sep="", end="")
print(cell, sep="", end="")
print('[|")
print('------- ")

def set_cell(board, row, col, val):
board[row] [col] = val

20 LESSON 3. FUNCTIONS TO DO TASKS, MORE TIC-TAC-TOE

IOWO = [I v’ va’ Yol]
rowl = [I v’ 'O', [v]
row2 = [le’ ' l’ le]

board = [row0O, rowl, row2]
print (before:')
print_board(board)
set_cell(board, 2, 1, 'o')
print('after:')
print_board(board)

Listing 3.3: board.py - with print_board and set_cell

The main difference here is that instead of setting the cell with

board[2][1] = 'o!

we use

set_cell(board, 2, 1, 'o')

This does not look like a big savings, but this way of expressing things will
have advantages later.
We are now ready to start playing out moves.

3.1 Structuring the program

With the code we have written in this lesson, starting from Listing [3.3] we
can write a program which plays a sequence of moves and shows the board
after each one.

First a discussion on the overall structure of a program. It’s a good idea
to define a “main function” in which you put the main flow of the program.
This main flow should consist of a sequence of Python instructions, most of
which should be function calls.

The following code shows a small example of this structure:

#! /usr/bin/env python3
def main():
print('£(2.2) is ', £(2.2))
print("£(2.7) is ', £(2.7))
for x in range(5):
print('£(', x, ') is ', £(x))

def f(x):
return x*x

main()

3.1. STRUCTURING THE PROGRAM 21

It’s a good time to discuss the invocation of main() at the end. Point
out that the first two functions were defined but never called. At the end,
after we define all our functions, we call main() to start the program.

Now let’s move on to a structured program that uses set_cell() and
print_board() to play out a sequence of moves.

At this point I usually tell the students that I will come by each of their
computers and help them restructure the program while they work with me.
I talk through the process of moving chunks of text around in the editor,
and end up with the program in Listing This also gives the instructor
a chance to talk through how I use the editor, and to inspire the students
to use the editor effectively.

#! /usr/bin/env python3

def main():
board = new_board()
print_board(board)
make a move as 'x'
set_cell(board, 1, 1, 'x')
print_board(board)
make a move as 'o'
set_cell(board, 0, 1, 'o")
print_board(board)
make a move as 'x'
set_cell(board, 2, 2, 'x')
print_board(board)
make a move as 'o'
set_cell(board, 0, 0, 'o")
print_board(board)

def new_board():
"""Makes a board where all markers are spaces
row0 = [* ', * ', " ']
rowl = [" "', "', " ']
row2 = [l l’ 1 Y’ 1 Y]
board = [row0O, rowl, row2]
return board

mwun

def print_board(board):
""'"prints the current state of the board"""

for row in board:
for cell in row:
print('|', sep="", end="")
print(cell, sep="", end="")
print('[|")

22 LESSON 3. FUNCTIONS TO DO TASKS, MORE TIC-TAC-TOE

def set_cell(board, row, col, val):
board[row] [col] = val

main()

Listing 3.4: board.py - play a sequence of moves

Now is a good time to talk about the idea of “top down programming”.
The program now appears as an English language narrative: the main()
function has a top level description of what the program does, and it almost
reads like an English language narrative of what hte program is doing. Note
that we did not write the program in a top-down manner - I don’t do so
in this course - but it is possible to write the main() function first, leaving
empty stubs for all the functions, and then flesh out the details later. This
allows a programmer to think of the high level narrative first.

One interesting thing to point out about the program in Listing [3.4] is
that the main function can be read (almost) as if it were English, and this
is one of the fantastic things about computer programming: if we structure
our program well, then the program flow is expressed with great clarity.

This ends our lesson, which is one of the easier ones. Things will get
more intense in the final lessons.

Lesson 4

Tic-tac-toe: playing moves

4.1 Taking input moves from the players

Now that we have seen how to program in moves I will tell the students: “you
should be saying ‘but Maaaark, this is just a sequence of pre-programmed
moves; nobody is playing!” ” I then urge them to have patience because we
will now start taking input from players.

First an example of taking input. This can be typed at the interpreter:

>>> row_str = input('row? ')

[it will ask you for imput; you should type a number 0, 1 or 2
students might be confused and hit <enter> again without typing
a number, so it bears some explanation and some retries]

>>> print('the row was:', row_str)

Remember that in Section we discussed that strings (with digits in
them) are different types from numbers. You can see that row_str is a
string and not a number.

You can convert a string to a number with “int (row_str)”:

>>> row_str = input('row? ')

[it will ask you for input; you should type a number 0, 1 or 2]
>>> row = int(row_str)

>>> print('the row was:', row)

>>> print('types:', type(row_str), type(row))

Let us now write a function which accepts a player’s move. We should
create a new program file called ttt.py, starting from board.py. We can
do this at the shell with:

$ cp board.py ttt.py

23

24 LESSON 4. TIC-TAC-TOE: PLAYING MOVES

In emacs we can edit ttt.py instead of board.py in two ways: with C-x
C-f to load the new file, or we can exit emacs (C-x C-c) and then (from the
shell) re-run emacs on the new file:

$ emacs ttt.py

Now we add, between the functions print_board() and set_cell(),
the following:

[...]
def get_move(board, marker):
"""asks the player for a move and sets the appropriate cell"""
row = int(input('row? '))
col = int(input('col? "))
set_cell(board, row, col, marker)

#[...]

This works and we can now rewrite the main program like this:

[...]

def main():
board = new_board()
print_board(board)
player 1 move
get_move(board, 'x')
print_board(board)
player 2 move
get_move(board, 'o')
print_board(board)
player 1 move
get_move(board, 'x')
print_board(board)
player 2 move
get_move(board, 'o')
print_board(board)

#[...]

Listing 4.1: ttt.py with player input

The game now could go as shown in Figure

4.2 Improving flow and robustness

The function we have written works well and our program now is equivalent
to a piece of paper and a pen: it allows two players to input their tic-tac-toe
moves.

This is a good time to ask the students to make a list of complaints
about the program as it is. The list usually ends up looking like this:

4.2. IMPROVING FLOW AND ROBUSTNESS 25

$ python3 ttt.py | Ix] |

I please enter row: O
------- please enter col: O

x| ||
please enter row: 1 =~ —-—-————-
please enter col: 1 | Ix] |
Ll lol | |
| o=l | please enter row: 2

please enter col: 2

please enter row: 2 = ———————
please enter col: 0 | 1=l |

Figure 4.1: A run of the tic-tac-toe program with two players alternating moves.

It does not check that the row and column are correct (i.e. equal to
0, 1 or 2).

It does not check if the cell was already occupied! This allows cheating.

The computer does not play its own moves, so we have not really
improved upon ancient Egyptian technology.

There is no way of determining if the game has finished.

I usually take a poll of which issues the students want to address first.
We usually end up choosing to make the computer play, so we implement
the first two algorithms in Lesson o, after which we return here.

A version of this function which checks on the row and column is:

#[...]

26 LESSON 4. TIC-TAC-TOE: PLAYING MOVES

def get_move(board, marker):
"""asks the player for a move and sets the appropriate cell"""
row, col = -1, -1
while not row in (0,1,2):
row = int(input('please enter row: '))
while not col in (0,1,2):
col = int(input('please enter col: '))
set_cell(board, row, col, marker)

#[...]

Listing 4.2: version of get_move() which ensures that row and col are valid.

In my experience students can have trouble understanding that they have an
editor can can change the existing function (thus typing very little), while
I have to write a lot more on the board. I have seen the students type the
whole thing again, ending up with two copies of the the function, so it is
worth shepherding them through this first significant edit.

We are left with one final problem: the current program allows you to
stomp on an existing cell, so we need to modify get_move() to check for
that:

[...]
def get_move(board, marker):
"""asks the player for a move; player types numbers 0, 1 or 2 for row
and col"""
valid = False
while not valid:
row, col = -1, -1
while not row in [0, 1, 2]:
row = int(input('row? '))
while not col in [0, 1, 2]:
col = int(input('col? '))
if board [row] [col] == ' ':
valid = True
set_cell(board, row, col, marker)

[...]

Listing 4.3: version of get_move() which checks if the cell is free

When I write this last function on the board I start paying attention to
indentation and really pointing out what the levels of loops/logic are. I will
usually take a different color chalk or marker and draw arrows with a head
for each level of indentation, writing 4, 8, 12, ... This is important because
students will often make mistakes in the indentation of their code.

Try it out! See if you can set row or column to be less than 0 or greater
than 2. See if you can stomp on existing cells.

4.2. IMPROVING FLOW AND ROBUSTNESS 27

Before moving on to detecting a winner, let us clean up the flow of the
main program. Our students should have commented on how the main
function has a lot of repetition in taking moves from the players, which is
quite unnecessary. We will use a while loop to clean that up, and our while
loop will for now just run forever:

#[...]
def main():
board = new_board()
print_board(board)
start a loop that takes moves from the players
NOTE: you need to type control-C to exit the program
while True:
get_move (board, 'x')
print_board(board)
move to next player
get_move (board, 'o')
print_board(board)

Listing 4.4: ttt.py - main function cleaned up with a while loop

This is a good time to point out how short and sweet this main function
is: it tells the story. We can also explain how the terminal interrupt char-
acter (control-C) can help them exit this program when it seems to go on
forever.

But while pointing out that this is sweet, we can also point out that
we have done no more than re-invent the paper and pen: we have created
ancient Egyptian technology, and we should feel a burning desire to move
beyond.

Lesson 5

Tic-tac-toe: simplest
computer play

At this point I ask the class what the program most needs. The kids might
suggest the two most important things:

* Determine if there is a winner.

* Have the computer play some moves.

I encourage the kids to start with the second one: programming the
simplest computer algorithms. This is a good idea beacause checking for a
winner is a bit tedious, so it’s a morale booster to see the computer playing
against us.

Still, if the class is really determined, you could first jump to Chapter [6]
and then come back here.

5.1 First found

First we write a very simple algorithm that puts a marker in the first empty
cell it can find.

Here I sometimes will draw the board and tell the class something like
“when I come up with an algorithm I like to play a movie in my mind of
what it’s going to look like” and then I demonstrate visually how the first
found algorithm will walk through the various rows and the cells in each
TOW.

Then we start typing!

We write a function play_computer_first_found():

def play_computer_first_found(board, marker):
"""simplest computer algorithm: put your marker on the first empty

28

5.2. RANDOM PLAY 29

cell you find"""
for row in range(3):
for col in range(3):
if board[row] [coll==' ':
set_cell(board, row, col, marker)
return

Listing 5.1: play_computer_first_found()

We also modify the main loop to play the computer’s move instead of
getting a human move:

#[...]
def main():
board = new_board()
print_board(board)
while True:
ask the player for a move
get_move(board, 'x')
print_board(board)
now play the computer move
play_computer_first_found(board, 'o')
print_board(board)

Listing 5.2: ttt.py - with computer playing moves

This will allow students to play a game against the computer. They
will enjoy it enormously until they realize that the computer is making very
uninteresting moves. This will be fixed in further sections.

The students should be able to quickly devise a strategy to beat the
computer every time. What can make for a good humorous moment is to
ask the students if they can *lose* to this algorithm.

5.2 Random play

Next we will write an algorithm to play a random move for the computer.
We start by showing how Python can generate random numbers:

>>> import random

>>> random.random()

>>> random.random()

>>> random.random()

>>> random.randint (-3, 10)
>>> random.randint (-3, 10)
>>> random.randint (-3, 10)
>>> random.randint (0, 2)

30 LESSON 5. TIC-TAC-TOE: SIMPLEST COMPUTER PLAY

>>> random.randint (0, 2)
>>> random.randint (0, 2)
>>> random.randint (0, 2)
>>> random.randint (0, 2)

The students can keep repeating these calls with the arrow keys until
they are convinced that they have a random sequence. This is also a good
time to discuss what random means. As usual, these more “background”
and “philosophical” discussions should eventually be truncated so that we
can continue the hands-on work.

Next we have a discussion with the students, asking each student to
volunteer ideas on how to have the program place a marker at random.

Since we will be using the random number library, as well as the system
exit function, at the top of our program we put the lines:

#! /usr/bin/env python3

import random

#[...]

Listing 5.3: import statements at top of file

Then we we write our play_computer_random() routine:

def play_computer_random(board, marker):
"""another simple computer algorithm: place your marker in a random
empty location"""
done = False
while not done:
row=random.randint (0, 2)
col=random.randint (0, 2)
if board[row] [coll==' ':
set_cell(board, row, col, marker)
done = True

Listing 5.4: play_computer_random()

now play the computer move
uncomment the line for the algorithm you want to use
#play_computer_first_found(board, 'o')
play_computer_random(board, 'o')
print_board(board)

[...]

Listing 5.5: main() - adapted to allow choice of computer algorithm

5.2. RANDOM PLAY 31

The students can now to play more games against the computer. They
might find it slightly more challenging than playing against the first_found
algorithm.

And if there is a bit of time and you are feeling impish, you can sug-
gest that they have the computer play itself: first-found algorithm against
random algorithm!

Lesson 6

Checking if someone has won

There are many areas of improvement for the entire program. In Chapter
we will add the very important functionality of having the computer play
a more interesting game. But before we get to that we must add some
important smarts: having the computer check if there is a winner, and
hence quit at the right time.

The condition for winning tic-tac-toe is “three in a row”: you need three
of the same symbols in a column or a row or one of the two diagonals.

We will write functions that return True or False if a row has three ‘x’
or three ‘0’ cells. Rows are the easiest since we represent our board as a list
of rows, but we will be able to use this function for columns and diagonals
as well, though we will need to extract them from the board.

def find_winner(board):

"""return winner 'x' or

for row in board:
winner = find3(row)
if winner != ' ':

return winner

for col_no in range(3):
col = extract_col(board, col_no)
winner = find3(col)

'o'", or ' ' if there is no winner yet"""

if winner != ' ':
return winner
winner = find3(extract_slash(board))
if winner != ' ':
return winner
winner = find3(extract_bslash(board))
if winner != ' ':
return winner

return ' '

32

33

Listing 6.1: function that tests if there is a winner

As often happens, this function requires four other functions to be writ-
ten: £ind3(), extract_col(), extract_slash() and extract_bslash().

Here they come. This is a marathon portion of the course (writing a ton
of new code in a hurry), but quite worth it.

def find3(row):
"""sees if the given list has a solid win. note that the list is just

alist of 3 cells, so if you pack a column or diagonal into this

list it will also work to find column and diagonal winners

nmmnn

if row[0] == row[1] and row[1] == row[2]:
return rowl[0]

else:
return ' '

def extract_col(board, col_no):
"""packages the entries for the given column into a list"""
col = [board[0] [col_no], board[1] [col_no], board[2] [col_no]]
return col

def extract_slash(board):
"""packages the entries for the '"slash" diagonal into a list"""

slash = [board[0][2], board[1][1], board[2] [0]]
return slash

def extract_bslash(board):
"""packages the entries for the "backslash" diagonal into a list"""

bslash=[board[0] [0], board[1][1], board[2] [2]]
return bslash

Listing 6.2: functions needed fof find_winner())

And finally, to resolve the issue of ending a game, we also need a function
to see if the board is full:

def board_is_full(board):
"""returns True if the board is full, False otherwise
for row in board:
for cell in row:
if cell==' ':
return False
return True

mwmn

Listing 6.3: ttt.py see if we have a winner in main()

34 LESSON 6. CHECKING IF SOMEONE HAS WON

Now we can modify main() to use this new code and see if there is a
winner.

[...]
def main():
board = new_board()
print_board(board)
while True:
ask the player for a move; note that this line could be
replaced by one of the "play_computer..." functions below
get_move(board, 'x')
print_board(board)
winner = find_winner (board)
if winner != ' ' or board_is_full(board):
break
get_move(board, 'o')
print_board(board)
winner = play_computer_random(board)

if winner != ' ' or board_is_full(board):
break
if winner == ' ':
print('Tie!")
else:
print(‘winner is', winner)
[...]

Listing 6.4: ttt.py see if we have a winner in main()

And we see a big leap forward in our program: it actually has an al-
gorithm that makes a decision! If you play against the computer it should
report victories and ties, and exit.

We can now point out that our program has finally gone even further
beyond acting like paper and pencil: we now have a smart piece of paper
which announces the winner.

At this point I will slow down and ask the students what they think
are the “great adventures of the human mind”. After pointing out quantum
mechanics, and the eradication of smallpox, I will mention that an algorithm
that does something interesting out of lots of little decisions is one of our
great advances.

Lesson 7

Tic-tac-toe: more
intelligent-play

Final stretch: making our computer with some intelligence.

7.1 Defensive play

Now let us add another computer-playing algorithm called play_computer_-
defensive (). This will check to see if the opponent is about to win.
If the opponent is about to win, the computer needs to block it by placing
its own marker on the last available slot on the opponent’s winning slot.
We start with a description of the algorithm (procedure):

1.

2.

Iterate through the three rows one by one.

For that row we go through each cell.

. If that cell is blank then we play a hypothetical opponent move in that

cell.

. See if that hypothetical move lets our opponent win.
. Restore the board by returning that cell to a blank (space).

. If the opponent could win on that square, we put our own marker on

that square to block them.

If we have no defensive moves to play, we default to playing the random
algorithm.

35

36

LESSON 7. TIC-TAC-TOE: MORE INTELLIGENT-PLAY

We will need some “helper functions” to reflect the steps of the algorithm:

def

def

find_win_candidate(board, marker):
"""scan each cell on the board to see if the given marker could
win on that cell. returns a triplet (row, col, marker) if that
marker could win; returns (None, None, None) if there is no
victory chance"""
for row in range(3):
for col in range(3):
if board[row] [col] == ' ':
is_win = check_if_winning move(board, row, col, marker)
if is_win == marker:
return [row, col, is_win]

return [None, None, None]

check_if_winning_move(board, row, col, marker):

"""See if the given cell allows a win by the given marker. Returns
that winning marker if so, otherwise returns a space ' ' """
assert(board[row] [col] == ' ') # only call this on blank cells

temporarily set the cell to this marker

set_cell(board, row, col, marker)

winner = find_winner (board)

restore the cell to a space

set_cell(board, row, col, ' ')
see if there is a winner
if winner == marker:

return winner
return ' '

Listing 7.1: find_win_candidate() - functions to see if someone is about to win

Then we write play_computer_defensive() to use those helper func-

tions:

def play_computer_defensive(board, my_marker):

"""plays a defensive strategy: if there is a threat by the opponent,
we plug it up; otherwise we play the random algorithm"""

opp_marker = 'x' if my_marker == 'o' else 'o'
[row, col, win_candidate] = find_win_candidate(board, opp_marker)
if win_candidate == opp_marker:
set_cell(board, row, col, my_marker)
else:

play_computer_random(board, my_marker)

Listing 7.2: play_computer_defensive()

Finally we set call our new function in main():

#[...]

uncomment the line for the algorithm you want to use

7.2. OPPORTUNISTIC PLAY 37

#play_computer_first_found(board, marker)
#play_computer_random(board, marker)
play_computer_defensive(board, marker)

#[...]

This is a good place to comment on (a) how short and easy it was to write
this function once we had already written all the other helper functions, and
(b) how easy it is to read this function.

7.2 Opportunistic play

Now let us add a computer-playing algorithm called play_computer_opportunistic().
This will check to see if there is a cell where putting our marker would win!
We can use these helper functions from before, using the our own marker
instead of the opponent’s to see if we are about to win. Note that if we don’t
have the opportunity to win we back up to playing the defensive algorithm.

def play_computer_opportunistic(board, marker):
"""plays opportunistically: if we can win we put our marker in that
slot; otherwise we play the defensive algorithm"""
[row, col, win_candidate] = find_win_candidate(board, marker)

if win_candidate == marker:
set_cell(board, row, col, marker)
else:

play_computer_defensive(board, marker)

Listing 7.3: play_computer_opportunistic()

Finally we set call our new function in main():

[...]
uncomment the line for the algorithm you want to use
#play_computer_first_found(board, marker)
#play_computer_random(board, marker)
#play_computer_defensive (board, marker)
play_computer_opportunistic(board, marker)

7.3 Concluding words

The best computer-playing algorithm is much more complex and it involves
some restructuring of the program. At this point I leave it as an exercise
for the students to do with a mentor.

38 LESSON 7. TIC-TAC-TOE: MORE INTELLIGENT-PLAY

The problem is this: to have the computer play an optimal move by
looking ahead at what the opponent might do.

Based on this write a function called play_computer_lookahead (board,
marker) which plays the optimal game of tic-tac-toe.

And with that encouragement to move forward, we can conclude class
by having the students play the various algorithms (first_found, random,
opportunistic, defensive) against each other!

And they should try to predict which algorithm will win.

And as their parents come pick them up, they should try having play_-
computer_opportunistic() play against their parents.

Appendix A

Life after the course

It is important to let the children and parents know that they can corre-
sponde with you after the course. That way they can continue working on
the program and ask questions of they get stuck.

I have taken the approach of also offering in-person help after the course
by pointing families to the New Mexico Linux user group meeting. I go to
many of those meetings, as do other hackers, and we are always willing to
help.

I have also developed a “scientific computing for kids” course which
requires nothing but this course’s material. I have written a teacher’s manual
for it (Galassi 2016)), analogous to this one.

Another continuation would be some lessons on GUI programming, in
particular developing a GUI for this tic-tac-toe game.

39

Appendix B

Notes on installing Linux in
class

B.1 Issues with old/cheap hardware

An old computer can still be quite useful: the Linux operating system is often
much more efficient with hardware resources, so it can give new life to an
old hunk of metal, as long as it is less than about 10 years old. (Computers
more than 10 years old will usually need a more specialized operating system
distribution.)

Still, older computers can have some problems. Mostly these will come
down to:

limited memory This is the biggest problem. Today’s (early 2015) desk-
tops require more than 2GB of RAM or they will not operate very well.
You can install a low memory use distribution, such as LUbuntu, but
the problem really comes down to the web browser: a contemporary
version of full featured browsers like Firefox and Chromium will rapidly
climb up to using several gigabytes of RAM, slowing down your com-
puter dramatically. On Linux systems it is easy to install the Midori
web browser which works on many “fancy” web pages but does not
use too much memory.

limited disk space An old computer might come with a small hard drive.
It turns out that this is seldom a problem: computers less than 10
years old usually have hard disks with more than 5GB of storage, and
that is good enough for our purposes.

40

B.2. THE ASUS X551MA LAPTOP 41

slower CPU This is actually not really a problem: the limited memory
will slow you down much more than an older CPU.

older graphics card Older graphics cards don’t offer some of the fancy
visual effects that are used in contemporary desktops, such as “heads
up display” features. This is not really a limitation: there are dozens
of choices of window manager on a Linux system, and many hackers
prefer the non-compositing window managers which run well on older
graphics cards.

A note on very low RAM: the world of low-memory Linux distributions
is a messy one, with many of them being poorly maintained or fiddly to use.
In spring 2016 I evaluated various alternatives and found Bodhi to be more
usable than the others, but apparently Simplicity Linux is also currently
maintained.

B.2 The Asus X551MA laptop

This is a very inexpensive laptop which offers rather light weight, big screen,
big hard drive (half a terabyte) and plenty of RAM (4GB). The low price is
probably due to the lack of certain features like bluetooth and a DVD drive,
which does not affect software development at all.

B.2.1 Preparing a USB memory stick

This laptop has 4GB of RAM so we can comfortably run a full contemporary
version of a Linux distribution. In my course I just point people to the
Ubuntu Linux distribution.

Download the Ubuntu 14.04 image from http://www.ubuntu. com/download/
desktop

Then take a 2GB (or bigger) memory stick and prepare it on an existing
computer following the instructions at the following URLs, depending on
whether you are coming from:

Linux http://www.ubuntu.com/download/desktop/create-a-usb-stick-on-ubuntu
MS Windows http://www.ubuntu.com/download/desktop/create-a-usb-stick-on-windows

MacOS http://www.ubuntu.com/download/desktop/create-a-usb-stick-on-mac-osx

http://www.ubuntu.com/download/desktop
http://www.ubuntu.com/download/desktop
http://www.ubuntu.com/download/desktop/create-a-usb-stick-on-ubuntu
http://www.ubuntu.com/download/desktop/create-a-usb-stick-on-windows
http://www.ubuntu.com/download/desktop/create-a-usb-stick-on-mac-osx

42 APPENDIX B. NOTES ON INSTALLING LINUX IN CLASS

B.2.2 Saving off laptop info and restore drive

It might be a good idea to save another USB memory stick with the com-
puter’s Windows installation. This is called a “recovery drive”. This is not
because we might want to use Windows (we don’t), but rather in case we
should need to return the computer and thus need it to have its original
operating system.

1. Write down the PC product key. In Windows do Settings -> PC
And Devices -> PC Info and you will see the product key.

2. Make a recovery drive on a 16GB USB memory stick. Note that
the memory stick will be erased. Plug it in and go to Settings ->
Control Panel -> Action Center -> Recovery —> Create recovery
drive

B.2.3 Booting from a USB stick

Recent vintage computers have a “secure boot” feature which is aimed at
making it harder to replace Microsoft Windows on that computer. I have
found that these Asus computers allow you to boot from a memory stick
without problems.

Follow this procedure:

1. Insert the USB drive with Ubuntu Linux 14.04
2. Power on the laptop while holding the ESC key
3. You will get a “boot menu” which allows you to either

e boot Windows
e boot the Ubuntu Linux installation USB memory stick

e enter a setup menu

Choose to boot from the USB memory stick.

B.2.4 Installing Linux

You can select “run Ubuntu without installing” and it will put you into a
working desktop environment.

Here you will have an install icon. You should double-click that icon and
it will start the installation procedure.

B.3. THE OLD MAC G4 POWERPC LAPTOP 43

You can answer most of the questions in the obvious default manner and
it will go well for you.

One place where you might want to change from the default is when it
asks if you want to “install 3rd party software”. Turning this on can install
useful software to play mp3 files and view movies.

One question will be if you want to “download updates while installing”.
In a classroom setting I would not set that option because it can take much
more time to install. It is quite easy to run:

sudo apt-get update
sudo apt-get dist-upgrade

later on.

The trickiest question is about partitioning the hard drive. For our
purposes you should erase all existing partitions and install Linux on the
entire drive.

At this point your computer will reboot into the Linux operating system
and you are ready to go.

B.3 The old Mac G4 PowerPC laptop

These are older, somewhat chunky Apple laptops with a PowerPC processor
instead of an Intel Pentium. Many of these are still around. They are
pretty much unusable with the Mac operating system, which has not been
supported on the PowerPC since 2007, but can still be used with various
Linux distributions.

I experimented with some old G4 laptops and various distributions and
came up with the following recipe. In your searches you will find the Mint
PPC distribution, which I found to take many many hours to install, and
the Ubuntu 12.04 PPC, which I found installed in a reasonable amount of
time. There will certainly be many others as well, but here I will show how
to install the lightweight Ubuntu 12.04 PPC distribution.

B.3.1 Preparing an installation CD

You can download an LUbuntu 12.04 PowerPC image from https://wiki.
ubuntu. com/PowerPCDownloads which will take you to http://cdimage.
ubuntu.com/lubuntu/releases/precise/release

Pick the image with a name like lubuntu-12.04-alternate-powerpc.
iso and download it. Once you have that ISO file you burn it onto a blank
CD.

https://wiki.ubuntu.com/PowerPCDownloads
https://wiki.ubuntu.com/PowerPCDownloads
http://cdimage.ubuntu.com/lubuntu/releases/precise/release
http://cdimage.ubuntu.com/lubuntu/releases/precise/release

44 APPENDIX B. NOTES ON INSTALLING LINUX IN CLASS

B.3.2 Booting from CD and installing
To boot a G4 laptop from the CD you need to:

1. insert the CD
2. power on the computer while holding down the ‘¢’ key

(note that you might need to power the computer on enough to get it to
swallow the CD, and then power it off and turn it on again so you can hold
the ‘¢’ key and boot from CD.)

You are now given the “yaboot prompt” that says boot: and you can
just hit the enter key to start booting.

The installation procedure asks you many questions. You can give the
default answer for most of them, but a few will require a specific response
from you:

keyboard You could look for the Mac keyboard variant, but it will work
fine with the default American keyboard.

network It might not find wi-fi immediately and we might need to install
special wi-fi drivers once the whole system is up. It is OK to install
without a network, or even better to plug it in to a wired ethernet
network.

time zone You should put in your time zone. Here in Santa Fe it will be
US Mountain time.

disk partitioning Choose Guided, use entire disk.

user account Create yourself a login name. I recommend that you pick
something that is all lower case. You can use letters, digits, underscore
and hyphen, but absolutely never use a space in your login name.
Mine, for example, is markgalassi

Of course for your full name you should include a space!

B.3.3 Post installation

You are almost ready to go with a wired ethernet network, but we will
take one last step to get the wi-fi working. We will install the package
firmware-b43-installer with the following instructions:

sudo apt-get update
sudo apt-get firmware-b43-installer

B.3. THE OLD MAC G4 POWERPC LAPTOP 45

At this point, possibly with a final reboot, you should be ready to go
with wi-fi and all.

But these are truly old computers with little memory, so you might
install the Midori browser with:

sudo apt-get install midori

and to use that instead of Firefox if you are always low on RAM.

Appendix C

Software Freedom

A big part of what has made my scientific career pleasant and effective has
been the free software movement. Using software for scientific research,
without the burden of being hostage to a corporation’s marketing plan, is
very liberating.

In the 1980s Richard Stallman founded the GNU project, aimed at pro-
viding a complete free (as in freedom) high quality computing environment.

The operating system and each individual program is offered to users
with full freedom to use, modify and customize (through access to source
code) and redistribute (including redistributing modified copies).

Many thousands of volunteers and paid professionals have contributed
to the free software movement to the point where the machines running the
Linux operating system are now the most important part of the infrastruc-
ture of the computer world.

It is in that spirit that I teach these classes: I want students to learn very
serious programming, but I also want them to know that we can develop
software not just to make a widget for a company to sell, but also because
it can be part of a large effort to improve the high tech world.

In particular, this book is a free (as in freedom, but also free in cost)
manual for anyone who might want to teach similar courses.

This book can be redistributed under the terms of the Creative Commons
Attribution International License. The formal statement is:

This work is licensed under the Creative Commons Attribution 4.0
International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

46

and the full license is:

47

Appendix D

Creative Commons
Attribution-ShareAlike 4.0
International license

Attribution-ShareAlike 4.0 International

Creative Commons Corporation ("Creative Commons") is not a law firm and
does not provide legal services or legal advice. Distribution of
Creative Commons public licenses does not create a lawyer-client or
other relationship. Creative Commons makes its licenses and related
information available on an "as-is" basis. Creative Commons gives no
warranties regarding its licenses, any material licensed under their
terms and conditions, or any related information. Creative Commons
disclaims all liability for damages resulting from their use to the
fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and
conditions that creators and other rights holders may use to share
original works of authorship and other material subject to copyright
and certain other rights specified in the public license below. The
following considerations are for informational purposes only, are not
exhaustive, and do not form part of our licenses.

48

49

Considerations for licensors: Our public licenses are
intended for use by those authorized to give the public
permission to use material in ways otherwise restricted by
copyright and certain other rights. Our licenses are
irrevocable. Licensors should read and understand the terms
and conditions of the license they choose before applying it.
Licensors should also secure all rights necessary before
applying our licenses so that the public can reuse the
material as expected. Licensors should clearly mark any
material not subject to the license. This includes other CC-
licensed material, or material used under an exception or
limitation to copyright. More considerations for licensors:
wiki.creativecommons.org/Considerations_for_licensors

Considerations for the public: By using one of our public
licenses, a licensor grants the public permission to use the
licensed material under specified terms and conditions. If
the licensor’s permission is not necessary for any reason--for
example, because of any applicable exception or limitation to
copyright--then that use is not regulated by the license. Our
licenses grant only permissions under copyright and certain
other rights that a licensor has authority to grant. Use of
the licensed material may still be restricted for other
reasons, including because others have copyright or other
rights in the material. A licensor may make special requests,
such as asking that all changes be marked or described.
Although not required by our licenses, you are encouraged to
respect those requests where reasonable. More considerations
for the public:
wiki.creativecommons.org/Considerations_for_licensees

Creative Commons Attribution-ShareAlike 4.0 International Public
License

By exercising the Licensed Rights (defined below), You accept and agree
to be bound by the terms and conditions of this Creative Commons
Attribution-ShareAlike 4.0 International Public License ("Public

50APPENDIX D. CREATIVE COMMONS ATTRIBUTION-SHAREALIKE 4.0 INTERNATIOI

License"). To the extent this Public License may be interpreted as a
contract, You are granted the Licensed Rights in consideration of Your
acceptance of these terms and conditions, and the Licensor grants You
such rights in consideration of benefits the Licensor receives from
making the Licensed Material available under these terms and
conditions.

Section 1 —-- Definitions.

a. Adapted Material means material subject to Copyright and Similar
Rights that is derived from or based upon the Licensed Material
and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring
permission under the Copyright and Similar Rights held by the
Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording,
Adapted Material is always produced where the Licensed Material is
synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright
and Similar Rights in Your contributions to Adapted Material in
accordance with the terms and conditions of this Public License.

c. BY-SA Compatible License means a license listed at
creativecommons.org/compatiblelicenses, approved by Creative
Commons as essentially the equivalent of this Public License.

d. Copyright and Similar Rights means copyright and/or similar rights
closely related to copyright including, without limitation,
performance, broadcast, sound recording, and Sui Generis Database
Rights, without regard to how the rights are labeled or
categorized. For purposes of this Public License, the rights
specified in Section 2(b)(1)-(2) are not Copyright and Similar
Rights.

e. Effective Technological Measures means those measures that, in the
absence of proper authority, may not be circumvented under laws
fulfilling obligations under Article 11 of the WIPO Copyright
Treaty adopted on December 20, 1996, and/or similar international

o1

agreements.

. Exceptions and Limitations means fair use, fair dealing, and/or
any other exception or limitation to Copyright and Similar Rights
that applies to Your use of the Licensed Material.

. License Elements means the license attributes listed in the name

of a Creative Commons Public License. The License Elements of this
Public License are Attribution and ShareAlike.

. Licensed Material means the artistic or literary work, database,

or other material to which the Licensor applied this Public
License.

i. Licensed Rights means the rights granted to You subject to the

terms and conditions of this Public License, which are limited to
all Copyright and Similar Rights that apply to Your use of the
Licensed Material and that the Licensor has authority to license.

j. Licensor means the individual(s) or entity(ies) granting rights

under this Public License.

Share means to provide material to the public by any means or
process that requires permission under the Licensed Rights, such
as reproduction, public display, public performance, distribution,
dissemination, communication, or importation, and to make material
available to the public including in ways that members of the
public may access the material from a place and at a time
individually chosen by them.

Sui Generis Database Rights means rights other than copyright
resulting from Directive 96/9/EC of the European Parliament and of
the Council of 11 March 1996 on the legal protection of databases,
as amended and/or succeeded, as well as other essentially
equivalent rights anywhere in the world.

. You means the individual or entity exercising the Licensed Rights
under this Public License. Your has a corresponding meaning.

52APPENDIX D. CREATIVE COMMONS ATTRIBUTION-SHAREALIKE 4.0 INTERNATIOI

Section 2 -- Scope.
a. License grant.

1. Subject to the terms and conditions of this Public License,
the Licensor hereby grants You a worldwide, royalty-free,
non-sublicensable, non-exclusive, irrevocable license to
exercise the Licensed Rights in the Licensed Material to:

a. reproduce and Share the Licensed Material, in whole or
in part; and

b. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where
Exceptions and Limitations apply to Your use, this Public
License does not apply, and You do not need to comply with
its terms and conditions.

3. Term. The term of this Public License is specified in Section
6(a).

4. Media and formats; technical modifications allowed. The
Licensor authorizes You to exercise the Licensed Rights in
all media and formats whether now known or hereafter created,
and to make technical modifications necessary to do so. The
Licensor waives and/or agrees not to assert any right or
authority to forbid You from making technical modifications
necessary to exercise the Licensed Rights, including
technical modifications necessary to circumvent Effective
Technological Measures. For purposes of this Public License,
simply making modifications authorized by this Section 2(a)
(4) never produces Adapted Material.

5. Downstream recipients.

a. Offer from the Licensor —-- Licensed Material. Every
recipient of the Licensed Material automatically
receives an offer from the Licensor to exercise the
Licensed Rights under the terms and conditions of this

93

Public License.

b. Additional offer from the Licensor -- Adapted Material.
Every recipient of Adapted Material from You
automatically receives an offer from the Licensor to
exercise the Licensed Rights in the Adapted Material
under the conditions of the Adapter’s License You apply.

c. No downstream restrictions. You may not offer or impose
any additional or different terms or conditions on, or
apply any Effective Technological Measures to, the
Licensed Material if doing so restricts exercise of the
Licensed Rights by any recipient of the Licensed
Material.

6. No endorsement. Nothing in this Public License constitutes or
may be construed as permission to assert or imply that You
are, or that Your use of the Licensed Material is, connected
with, or sponsored, endorsed, or granted official status by,
the Licensor or others designated to receive attribution as
provided in Section 3(a) (1) (A)(1).

b. Other rights.

1. Moral rights, such as the right of integrity, are not
licensed under this Public License, nor are publicity,
privacy, and/or other similar personality rights; however, to
the extent possible, the Licensor waives and/or agrees not to
assert any such rights held by the Licensor to the limited
extent necessary to allow You to exercise the Licensed
Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this
Public License.

3. To the extent possible, the Licensor waives any right to
collect royalties from You for the exercise of the Licensed
Rights, whether directly or through a collecting society
under any voluntary or waivable statutory or compulsory
licensing scheme. In all other cases the Licensor expressly

54APPENDIX D. CREATIVE COMMONS ATTRIBUTION-SHAREALIKE 4.0 INTERNATIOI

reserves any right to collect such royalties.

Section 3 -- License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the
following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified
form), You must:

a. retain the following if it is supplied by the Licensor
with the Licensed Material:

i. identification of the creator(s) of the Licensed
Material and any others designated to receive
attribution, in any reasonable manner requested by
the Licensor (including by pseudonym if
designated) ;

ii. a copyright notice;
iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of
warranties;

v. a URI or hyperlink to the Licensed Material to the
extent reasonably practicable;

b. indicate if You modified the Licensed Material and
retain an indication of any previous modifications; and

c. indicate the Licensed Material is licensed under this
Public License, and include the text of, or the URI or

hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a) (1) in any

b.

95

reasonable manner based on the medium, means, and context in
which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or
hyperlink to a resource that includes the required
information.

3. If requested by the Licensor, You must remove any of the
information required by Section 3(a) (1) (A) to the extent
reasonably practicable.

ShareAlike.

In addition to the conditions in Section 3(a), if You Share
Adapted Material You produce, the following conditions also apply.

1. The Adapter’s License You apply must be a Creative Commons
license with the same License Elements, this version or
later, or a BY-SA Compatible License.

2. You must include the text of, or the URI or hyperlink to, the
Adapter’s License You apply. You may satisfy this condition
in any reasonable manner based on the medium, means, and
context in which You Share Adapted Material.

3. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological
Measures to, Adapted Material that restrict exercise of the
rights granted under the Adapter’s License You apply.

Section 4 —— Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that
apply to Your use of the Licensed Material:

a.

for the avoidance of doubt, Section 2(a) (1) grants You the right
to extract, reuse, reproduce, and Share all or a substantial
portion of the contents of the database;

if You include all or a substantial portion of the database

56APPENDIX D. CREATIVE COMMONS ATTRIBUTION-SHAREALIKE 4.0 INTERNATIOI

contents in a database in which You have Sui Generis Database
Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material,

including for purposes of Section 3(b); and
c. You must comply with the conditions in Section 3(a) if You Share
all or a substantial portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not
replace Your obligations under this Public License where the Licensed
Rights include other Copyright and Similar Rights.

Section 5 -- Disclaimer of Warranties and Limitation of Liability.

a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.

b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.

c. The disclaimer of warranties and limitation of liability provided
above shall be interpreted in a manner that, to the extent
possible, most closely approximates an absolute disclaimer and
waiver of all liability.

o7

Section 6 -- Term and Termination.

a. This Public License applies for the term of the Copyright and
Similar Rights licensed here. However, if You fail to comply with
this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under
Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided
it is cured within 30 days of Your discovery of the
violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any
right the Licensor may have to seek remedies for Your violations
of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the
Licensed Material under separate terms or conditions or stop
distributing the Licensed Material at any time; however, doing so
will not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
License.
Section 7 -- Other Terms and Conditiomns.

a. The Licensor shall not be bound by any additional or different
terms or conditions communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the
Licensed Material not stated herein are separate from and
independent of the terms and conditions of this Public License.

58APPENDIX D. CREATIVE COMMONS ATTRIBUTION-SHAREALIKE 4.0 INTERNATIO!

Section 8 -- Interpretation.

a. For the avoidance of doubt, this Public License does not, and
shall not be interpreted to, reduce, limit, restrict, or impose
conditions on any use of the Licensed Material that could lawfully
be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is
deemed unenforceable, it shall be automatically reformed to the
minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License
without affecting the enforceability of the remaining terms and
conditions.

c. No term or condition of this Public License will be waived and no
failure to comply consented to unless expressly agreed to by the
Licensor.

d. Nothing in this Public License constitutes or may be interpreted
as a limitation upon, or waiver of, any privileges and immunities
that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

Creative Commons is not a party to its public

licenses. Notwithstanding, Creative Commons may elect to apply one of
its public licenses to material it publishes and in those instances
will be considered the \Licensor." The text of the Creative Commons
public licenses is dedicated to the public domain under the CCO Public
Domain Dedication. Except for the limited purpose of indicating that
material is shared under a Creative Commons public license or as
otherwise permitted by the Creative Commons policies published at
creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark "Creative Commons" or any other trademark or logo
of Creative Commons without its prior written comnsent including,
without limitation, in connection with any unauthorized modificatiomns
to any of its public licenses or any other arrangements,

29

understandings, or agreements concerning use of licensed material. For
the avoidance of doubt, this paragraph does not form part of the
public licenses.

Creative Commons may be contacted at creativecommons.org.

	Motivation and prolegomena
	The hardware and the operating system
	Having students bring hardware
	Start the installation
	Opening up a computer to demonstrate its parts
	Lecture on the blackboard
	Hardware block diagram
	Software functional diagram

	After the installation

	Start programming in Python
	Concepts before we start
	Learning to type and learning the editor
	Reiterating ``hello world'' and starting loops
	Introducing strings and lists
	Strings
	Lists
	All sorts of types

	Start talking about tic-tac-toe

	Functions to do tasks, more tic-tac-toe
	Structuring the program

	Tic-tac-toe: playing moves
	Taking input moves from the players
	Improving flow and robustness

	Tic-tac-toe: simplest computer play
	First found
	Random play

	Checking if someone has won
	Tic-tac-toe: more intelligent-play
	Defensive play
	Opportunistic play
	Concluding words

	Life after the course
	Notes on installing Linux in class
	Issues with old/cheap hardware
	The Asus X551MA laptop
	Preparing a USB memory stick
	Saving off laptop info and restore drive
	Booting from a USB stick
	Installing Linux

	The old Mac G4 PowerPC laptop
	Preparing an installation CD
	Booting from CD and installing
	Post installation

	Software Freedom
	Creative Commons Attribution-ShareAlike 4.0 International license

