
Modern Software Engineering and Research
A pandemic-adapted professional development workshop

Mark Galassi

Space Science and Applications group
Los Alamos National Laboratory

2020-05-16, 2021-01-20
Last built 2021-01-27T13:19:44

(You may redistribute these slides with their LATEX source code under the terms of the
Creative Commons Attribution-ShareAlike 4.0 public license)

Outline

Goals

Outline

Goals

Goals and path
In the educational industrial complex we are required to state our goals before we start.
It might even be a good idea.

Goals
I Have a broad view of University

curriculum, successes and limitations,
state of industry.

I Awareness of grand challenges
in software engineering.

I Awareness of current approaches
to address those challenges.

The meandering path
I My path is largely historical because of

my personal inclination to use history
to give perspective.

I We need perspective so we are not tossed
about by the short-term interest of
industry.

Style
I Slides are placeholders for me to then tell stories.

I hope you will talk and tell stories too.
I But also: I join the modern quest to give a seminar made entirely of xkcd slides.

Outline

Curriculum

Programming Languages
Stories of programming languages
Tour of languages
Insights on languages

The Computer Science Curriculum
From https://teachyourselfcs.com/

Computer programming
Computer Architecture

Algorithms and Data Structures
Discrete Math

Operating Systems
Computer securityNetworking

Databases
Compilers and Languages

Artificial Intelligence
Graphics

https://teachyourselfcs.com/

The Software Engineering curriculum

Margaret Hamilton, who led the MIT team that wrote the Apollo
on-board software in the 1960s, is one of the coiners of the term
“software engineering”.

Most of the computer science department courses.
Less math.
Process and management classes.
ISO’s “Software Engineering Body of Knowledge”
(SWEBOK).

Outline

Curriculum

Programming Languages
Stories of programming languages
Tour of languages
Insights on languages

Grand challenges for programming language design

Terminology
Attitude toward terminology Suspend one’s uncertainty.

Interpreter Slow and flexible.
Compiler Fast: compiles to machine code. And what is that machine code,

with its fabled ones and zeros? See Machine language – 6502

Controlling complexity of large programs
Cutoff at about 100 tounsand lines of code.

Performance
Language features are related to how well you can optimize.

Memory safety
Avoiding memory corruption while keeping high performance.

Outline

Curriculum

Programming Languages
Stories of programming languages
Tour of languages
Insights on languages

The story of programming languages
From https://www.scriptol.com/programming/chronology.php

Prehistory
1840 Analytical Engine (Charles Babbage and Ada

Lovelace)
1943 ENIAC coding system
1947-1949 Assembly language
1955 FLOW-MATIC (Grace Hopper)

The 1950s
1957 FORTRAN (John Backus)
1958 LISP (John McCarthy)
1959 COBOL (CODASYL group)

The 1960s
1960 ALGOL 60
1962 APL
1964 BASIC
1964 Simula
1969 PL/1, B

The 1970s
1970 Pascal
1972 C
1973 FORTH, ML
1975 Scheme
1977 Bourne shell

The 1980s
1980 Smalltalk
1983 Ada
1985 Postscript, C++
1987 Perl
1988 Tcl

The 1990s
1990 Haskell
1991 Python
1995 Java, javascript, Ruby, PHP

The “aughts”
2000 C#
2004 Scala
2006 Rust
2007 Scratch
2009 Go

The 2010s
2010 Julia
2012 Kotlin
2017 WebAssembly

The future (created by
Santa Fe youngsters)
2027 greenchile
2030 joemama
2032 updog

https://www.scriptol.com/programming/chronology.php

The story of programming languages – timeline

The story of programming languages – influence

What do these languages look like?
From http://rosettacode.org/wiki/Loops/For

Rosetta code What we will investigate
We will write the “stars” program which prints
first one, then two, three, four and five stars
on separate lines, so we can discuss the
following about each language: (a) Motivation
and history, (b) Syntax peculiarities and “feel”
archetypes FORTRAN, LISP, COBOL
wide diversity FORTH, Smalltalk, Pascal,

Haskell
currently relevant C, C++, Go, Rust, Python,

R, javascript, sh

http://rosettacode.org/wiki/Loops/For

Outline

Curriculum

Programming Languages
Stories of programming languages
Tour of languages
Insights on languages

Machine language – 6502
Hexadecimal opcodes for a program that calculates 2 + 5
From https://www.atariarchives.org/mlb/chapter2.php

Hex:

1000 A9 02 69 05 8D A0 0F 60

Binary:

1000000000000 10101001 00000010 01101001 00000101 10001101 10100000 00001111 01100000

And yes, that’s what they mean when they say “it’s all ones and zeros.”

https://www.atariarchives.org/mlb/chapter2.php

Assembly language – 6502

1000 A9 02 LDA #$02
1002 69 05 ADC #$05
1004 8D A0 0F STA $0FA0
1007 60 RTS

FORTRAN

CC compile with "gfortran stars.for -o stars_fortran"
CC run with "./stars_fortran"

PROGRAM FORLOOP
INTEGER I, J

DO 20 I = 1, 5
DO 10 J = 1, I

C Print the asterisk.
WRITE (∗,5001) '∗'

10 CONTINUE
C Print a newline.

WRITE (∗,5000) ''
20 CONTINUE

STOP

5000 FORMAT (A)

5001 FORMAT (A, $)

C5001 FORMAT (A, ADVANCE='NO')
END

LISP

;; recursive approach; you can run this with "gcl < stars.lisp"
(defun print-stars (number)
"Print a given number of stars, using recursion"
(if (= number 0)

(progn
(write-char #\∗)
(terpri))

(progn
(write-char #\∗)
(print-stars (1- number)))))

(defun print-triangle (n-rows)
(if (= n-rows 0)

(print-stars n-rows)
(progn
(print-stars n-rows)
(print-triangle (1- n-rows)))))

(print-triangle 5)

COBOL

IDENTIFICATION DIVISION.
∗ compile with "cobc stars.cob -o stars_cobol"
PROGRAM-ID. Display-Triangle.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 Outer-Counter PIC 9.
01 Inner-Counter PIC 9.

PROCEDURE DIVISION.
PERFORM VARYING Outer-Counter FROM 1 BY 1 UNTIL 5 < Outer-Counter

PERFORM VARYING Inner-Counter FROM 1 BY 1
UNTIL Outer-Counter < Inner-Counter

DISPLAY "∗" NO ADVANCING
END-PERFORM

DISPLAY "" ∗> Output a newline
END-PERFORM

GOBACK
.

C

/∗ compile with "gcc stars.c -o stars_c" and run with "./stars_c" ∗/
#include <stdio.h>

int main()
{
int i, j;
for (i = 1; i <= 5; i++) {
for (j = 1; j <= i; j++) {
putchar('∗');

}
putchar('\n');

}
}

Interlude: obfuscated C
From https://www.ioccc.org/years.html#1987

#define iv 4
#define v ;(void
#define XI(xi)int xi[iv∗'V'];
#define L(c,l,i)c(){d(l);m(i);}
#include <stdio.h>
int∗cc,c,i,ix='\t',exit(),X='\n'∗'\d';XI(VI)XI(xi)extern(∗vi[])(),(∗
signal())();char∗V,cm,D['x'],M='\n',I,∗gets();L(MV,V,(c+='d',ix))m(x){v)
signal(X/'I',vi[x]);}d(x)char∗x;{v)write(i,x,i);}L(MC,V,M+I)xv(){c>=i?m(
c/M/M+M):(d(&M),m(cm));}L(mi,V+cm,M)L(md,V,M)MM(){c=c∗M%X;V-=cm;m(ix);}
LXX(){gets(D)||(vi[iv])();c=atoi(D);while(c>=X){c-=X;d("m");}V="ivxlcdm"
+iv;m(ix);}LV(){c-=c;while((i=cc[∗D=getchar()])>-I)i?(c?(c<i&&l(-c-c,
"%d"),l(i,"+%d")):l(i,"(%d")):(c&&l(M,")"),l(∗D,"%c")),c=i;c&&l(X,")"),l
(-i,"%c");m(iv-!(i&I));}L(ml,V,'\f')li(){m(cm+!isatty(i=I));}ii(){m(c=cm
= ++I)v)pipe(VI);cc=xi+cm++;for(V="jWYmDEnX";∗V;V++)xi[∗V^' ']=c,xi[∗V++]
=c,c∗=M,xi[∗V^' ']=xi[∗V]=c>>I;cc[-I]-=ix v)close(∗VI);cc[M]-=M;}main(){
(∗vi)();for(;v)write(VI[I],V,M));}l(xl,lx)char∗lx;{v)printf(lx,xl)v)
fflush(stdout);}L(xx,V+I,(c-=X/cm,ix))int(∗vi[])()={ii,li,LXX,LV,exit,l,
d,l,d,xv,MM,md,MC,ml,MV,xx,xx,xx,xx,MV,mi};

https://www.ioccc.org/years.html#1987

Forth

(run this with "gforth < stars.forth"
: triangle (n --)
1+ 1 do
cr i 0 do [char] ∗ emit loop

loop ;
5 triangle

Smalltalk

"run with gst stars.st"
1 to: 5 do: [:aNumber |
aNumber timesRepeat: ['∗' display].
Character nl display.

]

Pascal

(∗ compile with "fpc stars.p -ostars_pascal", run with "./stars_pascal" ∗)
program stars(output);

var
i, j: integer;

begin
for i := 1 to 5 do
begin
for j := 1 to i do
write('∗');

writeln
end

end.

Haskell

-- | compile with "ghc stars.hs -o stars_haskell" and run with "./stars_haskell"
import Control.Monad

main = do
forM_ [1..5] $ \i -> do
forM_ [1..i] $ \j -> do
putChar '∗'

putChar '\n'

Javascript

// run with "node < stars.js", or change console.log(s) to print(s)
// and you can run with "rhino < stars.js"
var i, j;
for (i = 1; i <= 5; i += 1) {
s = '';
for (j = 0; j < i; j += 1)
s += '∗';

console.log(s);
}

Python

#! /usr/bin/env python3

run this with "python3 stars.py"

for i in range(5):
for j in range(i+1):

print('∗', end="")
print()

R

// run with "R -f stars.R"
for(i in 0:4) {
s <- ""
for(j in 0:i) {
s <- paste(s, "∗", sep="")

}
print(s)

}

Java

// compile with "javac stars.java" and run with "java stars"
public class stars {

public static void main(String[] args) {
for (int i = 0; i < 5; i++) {

for (int j = 0; j <= i; j++) {
System.out.print("∗");

}
System.out.println();

}
}

}

Rust

// compile with "rustc stars.rs -o stars_rust", run with "./stars_rust"
fn main() {

for i in 0..5 {
for _ in 0..=i {

print!("∗");
}

println!();
}

}

Go

// compile with "gccgo stars.go -o stars_go", run with "./stars_go"
package main

import "fmt"

func main() {
for i := 1; i <= 5; i++ {

for j := 1; j <= i; j++ {
fmt.Printf("∗")

}
fmt.Printf("\n")

}
}

sh

to run it just paste it into the shell or type "/bin/sh stars.sh" or
make it executable with "chmod +x stars.sh" and then run it with
"./stars.sh"
for i in `seq 1 5`
do

for j in `seq 1 $i`
do

echo -n "∗"
done
echo

done

Outline

Curriculum

Programming Languages
Stories of programming languages
Tour of languages
Insights on languages

Distilling insight from the tour

Compiled versus interpreted
. . . (discussion) . . .

Broad classes of language syntax styles
. . . (discussion) . . .

Broad classes of language semantic styles
. . . (discussion) . . .

Evolution
Who influences whom? (Frame 13)

Fear and loathing of programming languages – indifference
Brian Kernighan: Why Pascal is Not My Favorite Programming Language
From http://www.lysator.liu.se/c/bwk-on-pascal.html

Early comment
Comparing C and Pascal is rather like comparing a Learjet to a Piper Cub - one is meant for
getting something done while the other is meant for learning - so such comparisons tend to be
somewhat farfetched. . . .

Conclusion, stated in intro
. . . To state my conclusions at the outset: Pascal may be an admirable language for teaching
beginners how to program; I have no first-hand experience with that. It was a considerable
achievement for 1968. It has certainly influenced the design of recent languages, of which Ada
is likely to be the most important. But in its standard form (both current and proposed),
Pascal is not adequate for writing real programs. It is suitable only for small, self-contained
programs that have only trivial interactions with their environment and that make no use of
any software written by anyone else. . . .

http://www.lysator.liu.se/c/bwk-on-pascal.html

Fear and loathing of programming languages – admiration
Naturalmente . . . xkcd: https://xkcd.com/297/

I’ve just received word that the Emperor has dissolved the MIT computer science program permanently.

https://xkcd.com/297/

Fear and loathing in programming languages – love
Naturalmente . . . xkcd: https://xkcd.com/353/

I wrote 20 short programs in Python yesterday. It was wonderful. Perl, I’m leaving you.

https://xkcd.com/353/

Fear and loathing of programming languages – disillusionment
Naturalmente . . . xkcd: https://xkcd.com/1987/

The Python environmental protection agency wants to seal it in a cement chamber, with pictorial messages to
future civilizations warning them about the danger of using sudo to install random Python packages.

https://xkcd.com/1987/

Links - the story of programming languages – visualizations

https://github.com/stereobooster/programming-languages-genealogical-tree
http://svalver.github.io/Proglang/
http://svalver.github.io/Proglang/paradigms.html
https://www.youtube.com/watch?v=ZkP4sv3H6g8
https://www.youtube.com/watch?v=Og847HVwRSI
https://vole.wtf/coder-serial-killer-quiz/
The “extra slides” area has two of those videos embedded.

https://github.com/stereobooster/programming-languages-genealogical-tree
http://svalver.github.io/Proglang/
http://svalver.github.io/Proglang/paradigms.html
https://www.youtube.com/watch?v=ZkP4sv3H6g8
https://www.youtube.com/watch?v=Og847HVwRSI
https://vole.wtf/coder-serial-killer-quiz/

Outline

Pedagogically speaking

Workflow and tools
Automation and efficiency
Editors

Version control

Debugging

The bones of the world

Case study: Beowulf clusters

Licensing, software freedom, open source

My view of what a student should know – IT
Just my view – colored by hiring students in Los Alamos

A cool IT job
I Immediate employment.
I Campus jobs!!
I Sysadmin vs. click jockey.

Some required knowledge
I GNU/Linux hobbyist.
I Broad view of industry - thirst for knowledge.
I Networking with OpenWRT.

The weird sense of duty really good sysadmins have can border on the sociopathic, but it’s nice to know that it
stands between the forces of darkness and your cat blog’s servers.

My view of what a student should know – programming
Just my view – colored by hiring students in Los Alamos

A programmer who loves it
I Research-level knowledge of the industry.-
I Old-time hacker ethic.
I Spend time developing a good

“carpenter’s workshop”.
I Don’t be scared of theory, but be very

practical.

Some required knowledge
I Python, then C, then the hypermoderns.
I Hardware and OS internals.
I Service to science and engineering.
I Breathes the gluing together of UNIX

tools.

The poll of Oxford and Stanford professors

Informally: could you distill ways in which you want “me” to prepare your undergraduates?

Laura F, professor of evolutionary
anthropology
I Master a text editor.
I Learn to touch type.

Jeremy G-F, professor of public health
I Obviously programming.
I But also intuiting how often to come to

me: every day is too often, every two
weeks is not enough.

David G-G, professor of physics
I Obviously programming and math.
I But I find it really makes a difference if

they have some experience with hardware
working on their car, or some other
approach to hardware.

Internship opportunities
What’s there and how to prepare

Opportunities in nothern NM
I Always aim “one up”.
I Los Alamos (11th and up).
I Institute for Computing in

Research (10th and up).
I Santa Fe Institute - largely pulled

out of HS.
I Local industry: OpenEye s/w,

Descartes labs.
I Google summer of code

(undergrade and up).
I Outreachy (undergrad and up).

How to prepare
I Teachers should write them a good letter!
I Effort into cover and resume. Templates at

https://computinginresearch.org/
research-internships/apply/

I Strategize on the application, make cold calls, use
soft skills.

I The importance of writing! “clear thinking <->
clear writing”

I Release source code, even if for small programs.

Examples of praise for resumes
I I immediately noticed the one with Computer Modern fonts (LATEX).
I (Her) resume is adorable, especially the pie chart of "a day in the life."

. . . right about their letters of recommendation; very poorly written. It
isn’t even signed.

https://computinginresearch.org/research-internships/apply/
https://computinginresearch.org/research-internships/apply/

Documentation formats, again
Naturalmente . . . xkcd: https://xkcd.com/1301/

I have never been lied to by data in a .txt file which has been hand-aligned.

https://xkcd.com/1301/

Underrepresented groups
A deadly serious problem

Stats and causes
I I won’t even bother with stats: you know them better than I do.
I The opportunity gap.
I The writing gap.
I Economic needs of the family.
I Stereotype threat: kills many approaches.
I Impostor syndrome.
I The ballad of Melanie Mitchell: electronics.

Approaches
I Geographical segregation of some minorities: miles on your tires. Excellent results from

Monte del Sol and Capital.
I The “retail politics” of outreach to young women. Then make it safe!
I Do not lower the standard or stereotype threat will appear.
I Pay a stipend.

Underrepresented groups – results
In our pipeline:

Serious programming
A 10hr weekend workshop.
I Most workshops are now majority-minority.
I One has been majority female, most are close.
I Not making special individual effort => no young women.
I Organizing the “women in computer science” documentary and panel.

Programming mini-courses
Drop-in 1.5 hours every fortnight for advanced students.
I Most evenings are majority female.
I Minorities well represented.
I Conclusion: we at the advanced level we see no underrepresentation.

Underrepresented groups – results (continued)
In our pipeline:

Working groups
Math and physics working groups for students whose schools move too slowly.
I Intent: prepare students for internships where they need more advanced coursework.

Offset Santa Fe difficulty in access to high level classes.
I Somewhat more participants in math working group are female.
I Most participants in physics working group are young men. Gender gap is present.

Institute for Computing in Research
Pays students to spend part of summer doing research.
I Mentors are trained to look at resumes and renormalize for different access to resume

preparation help.
I Summer 2019 pilot program: 100% from underrepresented groups.
I Summer 2020: majority minority and 44% female.

Impostor Syndrome
Naturalmente . . . xkcd: https://xkcd.com/1954/

It’s actually worst in people who study the Dunning-Kruger effect. We tried to organize a conference on it, but the only people
who would agree to give the keynote were random undergrads.

https://xkcd.com/1954/

Outline

Pedagogically speaking

Workflow and tools
Automation and efficiency
Editors

Version control

Debugging

The bones of the world

Case study: Beowulf clusters

Licensing, software freedom, open source

Outline

Pedagogically speaking

Workflow and tools
Automation and efficiency
Editors

Version control

Debugging

The bones of the world

Case study: Beowulf clusters

Licensing, software freedom, open source

Automation and efficiency
Dave Barry, 1994-02-06

[. . .] How am I able to produce columns with such a high degree of accuracy, day in and day
out, 54 weeks per year?
The answer is: I use a computer. This enables me to be highly efficient. Suppose, for example,
that I need to fill up column space by writing BOOGER BOOGER BOOGER BOOGER
BOOGER. To accomplish this in the old precomputer days, I would have had to type
“BOOGER” five times manually. But now all I have to do is type it once, then simply hold the
left-hand “mouse” button down while “dragging” the “mouse” so that the “cursor” moves over
the text that I wish to “select”; then release the left-hand “mouse” [. . .]

Automation and efficiency .. 2

[. . .] button and position the “cursor” over the “Edit” heading on the “menu bar”; then click
the left-hand “mouse” button to reveal the “edit menu”; then position the “cursor” over the
“Copy” command; then click the left-hand “mouse” button; then move the “cursor” to the
point where I wish to insert the “selected” text, then click the left-hand “mouse” button; then
position the “cursor” over the “Edit” heading on the “menu bar” again; then click the left-hand
“mouse” button to reveal the “edit menu”; then position the “cursor” over the “Paste”
command; then click the left-hand “mouse” button four times; and then, as the French say,
“voila!” (Literally,“My hand hurts!”)

Automation and efficiency - what is the purpose of computers?

My take on the purpose of
computers
The purpose of computers is to
automate repetitive tasks.
The purpose of computers is to automate
repetitive tasks.
The purpose of computers is to automate
repetitive tasks.

The ballad of Jack Thompson
I The magna charta.
I The Idaho retreat.
I Workshop skills.

The maxim, and how to apply it
I Maxim: You should have a running thread in your

mind that is always saying “dude, should you be
automating that?”

I When that bell goes off, have your hacker friend on
speed dial. The way to “make their day” is to ask
their help in automating a task.

I Little by little you become the hacker on other
people’s speed dial, then you have a running thread
in your mind saying “why do I feel so good at this
validation of people asking me for help? Kind of
embarrassing. . . ”

The UNIX way – an example
The !Kung of the Kalahari desert

Getting data
Download the Howell file with data from the bushmen:
wget https://raw.githubusercontent.com/rmcelreath/rethinking/master/data/Howell1.csv

the top of the file looks like:

$ head Howell1.csv
"height";"weight";"age";"male"
151.765;47.8256065;63;1
139.7;36.4858065;63;0
136.525;31.864838;65;0
156.845;53.0419145;41;1
145.415;41.276872;51;0
163.83;62.992589;35;1
149.225;38.2434755;32;0
168.91;55.4799715;27;1
147.955;34.869885;19;0

The UNIX way – asking questions about a text file
Can I look at that file a bit better?

cat Howell1.csv | sed 's/;/ /g'
cat Howell1.csv | sed 's/;/ /g' | less

How many lines?
cat Howell1.csv | wc -l

How many people?
cat Howell1.csv | grep -v height | wc -l

Who are the tallest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 1 | tail -5

Who are the oldest 5 people?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | sort -n -k 3 | tail -5

How many men?
cat Howell1.csv | grep '1$' | wc -l

How many women?
cat Howell1.csv | grep '0$' | wc -l

What is the average age?
cat Howell1.csv | grep -v height | sed 's/;/ /g' | awk '{sum+=$3} END {print "AVG =",sum/NR}'

The UNIX way – example of web scraping

Build up a web scraping filter

Listing 1: Anatomy of a web scraping pipeline
wget -O - https://www.verywellfamily.com/top-1000-baby-girl-names-2757832 | lynx -stdin --dump
wget -O - https://www.verywellfamily.com/top-1000-baby-girl-names-2757832 | lynx -stdin --dump | less
wget -O - https://www.verywellfamily.com/top-1000-baby-girl-names-2757832 | lynx -stdin --dump | grep '. ' |

grep '^ ∗[0-9]'
wget -O - https://www.verywellfamily.com/top-1000-baby-girl-names-2757832 | lynx -stdin --dump | grep '. ' |

grep '^ ∗[0-9]' | grep -v http
wget -O - https://www.verywellfamily.com/top-1000-baby-girl-names-2757832 | lynx -stdin --dump | grep '. ' |

grep '^ ∗[0-9]' | grep -v http | grep -v file: | grep -v about:
wget -O - https://www.verywellfamily.com/top-1000-baby-girl-names-2757832 | lynx -stdin --dump | grep '. ' |

grep '^ ∗[0-9]' | grep -v http | grep -v file: | grep -v about: | grep '[0-9]\.'
NAMES=`wget -O - https://www.verywellfamily.com/top-1000-baby-girl-names-2757832 | lynx -stdin --dump |

grep '. ' | grep '^ ∗[0-9]' | grep -v http | grep -v file: | grep -v about: | grep '[0-9]\.'`
echo $NAMES
now you can go to town on this

The UNIX way – what is it?

Philosophy at the user level
I Your rightful place is in the command line.
I Redirection (< and >) and pipes (|) are wonderful.
I Use many small programs which interact together to form pipelines.
I People breezily say “just use sed and awk” – thanks to the examples above we now know

what they mean.
I Use graphical and integrated utilities with suspicion.
I grep, sed, awk, wc, wget, youtube-dl, . . .

Philosophy at the programmer level
I Don’t write huge programs: write small programs that can be put together as a pipeline.
I Use scripting languages like Python to glue together compiled programs.

Perils of a nerd automating a task
Naturalmente . . . xkcd: https://xkcd.com/1319/

’Automating’ comes from the roots ’auto-’ meaning ’self-’, and ’******, meaning ********.

Command line diversions
Partially from https://www.binarytides.com/linux-fun-commands/

One-line ascii art
echo an example of figlet | figlet
banner "have a nice day"
cowsay hey dude
cowsay -f dragon "Run for cover, I feel a sneeze coming on."
cowsay -l
cowsay -f ghostbusters Who you Gonna Call
sl
fortune
factor 12103 # factoring numbers? can we use this to search for Mersenne primes?
factor `echo "2^7-1" | bc` ; factor `echo "2^11-1" | bc` ; factor `echo "2^13-1" | bc`
pi 50
espeak "Hello Linux, where are the penguins"
telnet towel.blinkenlights.nl

jpeg to ascii
wget https://upload.wikimedia.org/wikipedia/commons/2/23/Dennis_Ritchie_2011.jpg
make your terminal very big and try
jp2a -f Dennis_Ritchie_2011.jpg
jp2a -f --color Dennis_Ritchie_2011.jpg

Dennis Ritchie

Dennis Ritchie who created the
C programming language and
co-created UNIX. Let’s make
ascii art of him.

https://www.binarytides.com/linux-fun-commands/

Outline

Pedagogically speaking

Workflow and tools
Automation and efficiency
Editors

Version control

Debugging

The bones of the world

Case study: Beowulf clusters

Licensing, software freedom, open source

Editor wars
Naturalmente . . . xkcd: https://xkcd.com/378/

Real programmers set the universal constants at the start such that the universe evolves to contain the disk with the data they want.

Emacs vs. vi

Two guys are sitting in a bar, and get talking.
“What’s you IQ?” one asks.
“169” is the reply.
“Wow, amazing — my IQ’s 172. What’re your ideas on Hawking’s latest work on black hole
evaporation?”
And the two get chatting and become lifelong friends.
Further down the bar, two other guys are comparing IQs.
“Mine’s 104”
“Gosh, mine’s 102. What do you think about the latest Cubs game?” And the two become
lifelong friends.
Even further down the bar, two other guys are also comparing IQs.
“Mine’s 53.”
“Wow! Mine’s 54. Do you use emacs or vi?”

Tour of programming editors
. . . and integrated development environments (IDEs)

Editors
I Personal preference: emacs
I Personal preference: vi for quickies.
I Truth is: vim is full-featured and even getting slow!

IDEs
I Eclipse.
I VSCode.
I Smaller ones, like kdevelop.

Outline

Pedagogically speaking

Workflow and tools
Automation and efficiency
Editors

Version control

Debugging

The bones of the world

Case study: Beowulf clusters

Licensing, software freedom, open source

Version control (VC) – generalities

Motivation and history
Importance of tracking changes and
reproducing old versions.
1972 SCCS, Marc Rochkind, Bell Labs
1982 RCS
1990 CVS
2000 Subversion
2005 mercurial
2005 git, Linus Torvalds

“Social networking” VC sites
Web sites that add wikis, bug tracking, other
collaboration features.
1998 sourceware.cygnus.com
1999 sourceforge.net
2008 github
2011 gitlab
2012 bitbucket

Version control – git workflow
From https://docs.gitlab.com/ee/gitlab-basics/start-using-git.html

One time setup
git config --global user.name "FirstName LastName"
git config --global user.email "user@domain.tld"
git config --global --list

One time per project
If you are creating a new project:
git init .
If you are cloning an existing project from somwhere:
git clone git@someplace.tld:/path/to/master/reponame
cd reponame

One time when you add new files
echo "int main() { return 0; }" > trivial.c
git add trivial.c

https://docs.gitlab.com/ee/gitlab-basics/start-using-git.html

Version control – git workflow (continued)
From https://docs.gitlab.com/ee/gitlab-basics/start-using-git.html

Daily work flow
1. git pull ## pulls in what other people have been doing
2. Edit code and save.
3. git commit -a
4. git push ## synchronize out to other people's code

Taking stock
1. git log ## detailed information on what's been happening
2. git tag release-1.5 ## reproducibly define a release

But. . .
Git was created by Linus Torvalds to develop the Linux kernel. It is poorly suited to most
people’s work flows. Still, it is the most used.
Only (and very good) alternative: Mercurial, but much less used.

https://docs.gitlab.com/ee/gitlab-basics/start-using-git.html

Version control – git - be skeptical
Naturalmente . . . xkcd: https://xkcd.com/1597/

If that doesn’t fix it, git.txt contains the phone number of a friend of mine who understands git. Just wait through a few minutes of ’It’s really pretty

simple, just think of branches as...’ and eventually you’ll learn the commands that will fix everything.

https://xkcd.com/1597/

Outline

Pedagogically speaking

Workflow and tools
Automation and efficiency
Editors

Version control

Debugging

The bones of the world

Case study: Beowulf clusters

Licensing, software freedom, open source

The need for debugging
A memory error
Worked example of simple program that blows past the limits on an array.

/∗ compile with "gcc -g -fno-stack-protector mem-trash.c -o mem-trash", run with "./mem-trash" ∗/
#include <stdio.h>
#include <string.h>

int main()
{
char my_string[9];
int important_array[8];
int crucial_value;
int i;

crucial_value = 42;
printf("just set crucial_value to: %d\n", crucial_value);
strcpy(my_string, "this is a string that is longer than what I have allocated for it");
printf("Just set my_string to be <%s>\n", my_string);
printf("After setting my_string, crucial_value is: %d\n", crucial_value);
for (i = 0; i < 8; ++i) {
important_array[i] = i∗i; /∗ fill this important array with the squares of numbers ∗/

}
printf("After setting the array, my_string is <%s>\n", my_string);

}

Output

$./mem-trash
just set crucial_value to: 42
Just set my_string to be <this is a string that is longer than what I have allocated for it>
After setting my_string, crucial_value is: 1920234272
After setting the array, my_string is <this is a st>
Segmentation fault (core dumped)

Source level debugging
gdb for C
Share a terminal session to run this gdb example:
$ gdb mem-trash
(gdb) break main
Breakpoint 1 at 0x652: file mem-trash.c, line 12.
(gdb) run
Starting program: /home/markgalassi/repo/talks/2020-05-sfps-professional-development/mem-trash
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

Breakpoint 1, main () at mem-trash.c:12
12 crucial_value = 42;
(gdb) next
13 printf("just set crucial_value to: %d\n", crucial_value);
(gdb) next
just set crucial_value to: 42
14 strcpy(my_string, "this is a string that is longer than what I have allocated for it");
(gdb) next
15 printf("Just set my_string to be <%s>\n", my_string);
(gdb) next
Just set my_string to be <this is a string that is longer than what I have allocated for it>
16 printf("After setting my_string, crucial_value is: %d\n", crucial_value);
(gdb) print crucial_value
$1 = 1920234272
(gdb) next
After setting my_string, crucial_value is: 1920234272
17 for (i = 0; i < 8; ++i) {
and so forth

So, then, uhmm, what is the path to good code?
After all we have discussed:

Could it be. . .
I Is it a good editor?
I Is it version control?
I Is it continuous integration?
I Is it ninja debugging?
I Is it principled testing?
I Is it the Silicon Valley “ABC principle”?
I Is it recognition that one good programmer is worth 10 average programmers?
I Good management? No management?
I A big team? A small team? Just one hacker?
I Is it a good collaboration server like?
I Is it another software engineering fad?
I Is it all or most of these, plus some other undiscovered ones?

Is there a path to good code?
Naturalmente . . . xkcd: https://xkcd.com/1597/

You can either hang out in the Android Loop or the HURD loop.

https://xkcd.com/1597/

Outline

Pedagogically speaking

Workflow and tools
Automation and efficiency
Editors

Version control

Debugging

The bones of the world

Case study: Beowulf clusters

Licensing, software freedom, open source

What does the world do with computers
The picture is different from what you might think

By number of units: embedded
The data in 2000 CE was that less than 1% of computing power was on desktop/laptop
computers.

By computing power: server farms
Numbers hard to get: cagey cloud computing vendors.
Amazon, Microsoft, Google “bet the farm” on cloud platform - 90% of Microsoft R&D was for
its cloud.

The bones of the world
What do computers actually do in the world? – possible categorization

agricultural machinery

civil infrastructure

personal desktop

factory automation

vehicle control

personal laptop

office desktop

home automation

very small embedded

web server

supercomputers

personal mobile

engineering workstation

networking infrastructure

The bones of the world
What do computers actually do in the world? – home user awareness

agricultural machinery

civil infrastructure

personal desktop

factory automation

vehicle control

personal laptop

office desktop

home automation

very small embedded

web server

supercomputers

personal mobile

engineering workstation

networking infrastructure

The bones of the world
What do computers actually do in the world? – mechanical engineer awareness

agricultural machinery

civil infrastructure

personal desktop

factory automation

vehicle control

personal laptop

office desktop

home automation

very small embedded

web server

supercomputers

personal mobile

engineering workstation

networking infrastructure

The bones of the world
What do computers actually do in the world? – electrical engineer awareness

agricultural machinery

civil infrastructure

personal desktop

factory automation

vehicle control

personal laptop

office desktop

home automation

very small embedded

web server

supercomputers

personal mobile

engineering workstation

networking infrastructure

The bones of the world
What do computers actually do in the world? – scientist awareness

agricultural machinery

civil infrastructure

personal desktop

factory automation

vehicle control

personal laptop

office desktop

home automation

very small embedded

web server

supercomputers

personal mobile

engineering workstation

networking infrastructure

The bones of the world
What do computers actually do in the world? – software engineer awareness

agricultural machinery

civil infrastructure

personal desktop

factory automation

vehicle control

personal laptop

office desktop

home automation

very small embedded

web server

supercomputers

personal mobile

engineering workstation

networking infrastructure

Outline

Pedagogically speaking

Workflow and tools
Automation and efficiency
Editors

Version control

Debugging

The bones of the world

Case study: Beowulf clusters

Licensing, software freedom, open source

Supercomputer hardware type evolution
From https://en.wikipedia.org/wiki/TOP500#/media/File:Processor_families_in_TOP500_supercomputers.svg

https://en.wikipedia.org/wiki/TOP500#/media/File:Processor_families_in_TOP500_supercomputers.svg

Case study: The Roots of Beowulf
From https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

The Roots of Beowulf
James R. Fischer

NASA Goddard Space Flight Center
Code 606

Greenbelt, MD 20771 USA
1-301-286-3465

james.r.fischer@nasa.gov

ABSTRACT
The first Beowulf Linux commodity cluster was constructed at
NASA’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
conditions within Goddard that brought the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This multifaceted story is told here for the first
time from the point of view of NASA project management.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures ---
distributed architectures; C.5.0 [Computer System
Implementation]: General; K.2 [Computing Milieux]: History of
Computing

General Terms
Management

Keywords
Beowulf, cluster, HPCC, NASA, Goddard, Sterling, Becker,
Dorband, Nickolls, Massively Parallel Processor, MPP, MasPar,
SIMD, Blitzen

1. INTRODUCTION
Looking back to the origins of the Beowulf cluster computing
movement in 1993, it is well known that the driving force was
NASA’s stated need for a gigaflops workstation costing less than
$50,000. That is true, but the creative conversations that brought
the necessary ideas together were precipitated by a more basic
need—to share software.

2. THE PRE-BEOWULF COMPUTING
WORLD
A flashback to the pre-Beowulf computing world paints a picture
of limitations. The perspective is NASA centric, Goddard Space

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems
Every system that we could buy ran proprietary system software
on proprietary hardware.
Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.
A facility’s only recourse for software enhancement and problem
resolution was through the original vendor.

2.2 Poor Price/Performance
In 1990, “a high-end workstation can be purchased for the
equivalent of a full-time employee.” [1]
In 1992, some facilities used clusters of workstations to offload
supercomputers and harvest wasted cycles; at Goddard we
salivated at this idea but had few high-end workstations to use.
The very high and rising cost of each new generation of
supercomputer development forced vendors to pass along those
costs to customers. The vendors could inflate their prices because
they were only competing with other vendors doing the same
thing.

2.3 Numerous Performance Choke Points
In 1991, the Intel Touchstone Delta at Caltech was the top
machine in the world, but compilation had to be done on Sun
workstations using proprietary system software that only ran on
Suns.
In 1993, Connection Machine Fortran compile and link
performance averaged about 10 lines per second on the host;
performance was similar for the MasPar used at Goddard. All
development had to be done on the host machine; vendors were
not really solving this problem (maybe they could sell you two
host machines).

2.4 Instability
In 1993, operational metrics recorded by NASA Ames Research
Center for their Intel Paragon reported “Reboots Weekly
Average” (typically 15–30) and “Mean Time to Incidents”
(typically 4–10 hours). Each reboot forced all running jobs to be
restarted, and the reboot for some systems might take 30 minutes.
Since the bigger MIMD machines were usually one-off’s, the OS
developers had to take the entire system away from users into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

20 Years of Beowulf: Workshop in Honor of Thomas Sterling’s 65th

Birthday, October 13–14, 2014, Annapolis, Maryland, USA.
Copyright 2014 ACM [NEED NEW NUMBER] …$15.00.

https://ntrs.nasa.gov/search.jsp?R=20150001285 2020-05-21T09:05:18+00:00Z

. . .

The Roots of Beowulf
James R. Fischer

NASA Goddard Space Flight Center
Code 606

Greenbelt, MD 20771 USA
1-301-286-3465

james.r.fischer@nasa.gov

ABSTRACT
The first Beowulf Linux commodity cluster was constructed at
NASA’s Goddard Space Flight Center in 1994 and its origins are
a part of the folklore of high-end computing. In fact, the
conditions within Goddard that brought the idea into being were
shaped by rich historical roots, strategic pressures brought on by
the ramp up of the Federal High-Performance Computing and
Communications Program, growth of the open software
movement, microprocessor performance trends, and the vision of
key technologists. This multifaceted story is told here for the first
time from the point of view of NASA project management.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures ---
distributed architectures; C.5.0 [Computer System
Implementation]: General; K.2 [Computing Milieux]: History of
Computing

General Terms
Management

Keywords
Beowulf, cluster, HPCC, NASA, Goddard, Sterling, Becker,
Dorband, Nickolls, Massively Parallel Processor, MPP, MasPar,
SIMD, Blitzen

1. INTRODUCTION
Looking back to the origins of the Beowulf cluster computing
movement in 1993, it is well known that the driving force was
NASA’s stated need for a gigaflops workstation costing less than
$50,000. That is true, but the creative conversations that brought
the necessary ideas together were precipitated by a more basic
need—to share software.

2. THE PRE-BEOWULF COMPUTING
WORLD
A flashback to the pre-Beowulf computing world paints a picture
of limitations. The perspective is NASA centric, Goddard Space

Flight Center specifically, but the experience was universal. It is
only 20 years ago, but the impediments facing those who needed
high-end computing are somewhat incomprehensible today if you
were not there and may be best forgotten if you were.

2.1 Proprietary Stove Piped Systems
Every system that we could buy ran proprietary system software
on proprietary hardware.
Competing vendors’ operating environments were, in many cases,
extremely incompatible—changing to a different vendor could be
traumatic.
A facility’s only recourse for software enhancement and problem
resolution was through the original vendor.

2.2 Poor Price/Performance
In 1990, “a high-end workstation can be purchased for the
equivalent of a full-time employee.” [1]
In 1992, some facilities used clusters of workstations to offload
supercomputers and harvest wasted cycles; at Goddard we
salivated at this idea but had few high-end workstations to use.
The very high and rising cost of each new generation of
supercomputer development forced vendors to pass along those
costs to customers. The vendors could inflate their prices because
they were only competing with other vendors doing the same
thing.

2.3 Numerous Performance Choke Points
In 1991, the Intel Touchstone Delta at Caltech was the top
machine in the world, but compilation had to be done on Sun
workstations using proprietary system software that only ran on
Suns.
In 1993, Connection Machine Fortran compile and link
performance averaged about 10 lines per second on the host;
performance was similar for the MasPar used at Goddard. All
development had to be done on the host machine; vendors were
not really solving this problem (maybe they could sell you two
host machines).

2.4 Instability
In 1993, operational metrics recorded by NASA Ames Research
Center for their Intel Paragon reported “Reboots Weekly
Average” (typically 15–30) and “Mean Time to Incidents”
(typically 4–10 hours). Each reboot forced all running jobs to be
restarted, and the reboot for some systems might take 30 minutes.
Since the bigger MIMD machines were usually one-off’s, the OS
developers had to take the entire system away from users into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

20 Years of Beowulf: Workshop in Honor of Thomas Sterling’s 65th

Birthday, October 13–14, 2014, Annapolis, Maryland, USA.
Copyright 2014 ACM [NEED NEW NUMBER] …$15.00.

https://ntrs.nasa.gov/search.jsp?R=20150001285 2020-05-21T09:05:18+00:00Z

Discussion points
I What were the problems in supercomputing, and how did Beowulf and Beowulf Blade clusters address

them?
I How does Beowulf’s arrival fit into the plot in (Frame 85)
I Taking a long view, should you wait for prices to reach a commodity level, or should you work with the

earlier more expensive generations?

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001285.pdf

Outline

Pedagogically speaking

Workflow and tools
Automation and efficiency
Editors

Version control

Debugging

The bones of the world

Case study: Beowulf clusters

Licensing, software freedom, open source

Software freedom
The crisis
I The arcadian state: SHARE (1950s), DECUS (1960s), it was obvious!
I The CMU printer driver, Symbolics, Lisp Machines Inc., and the raiding of the MIT AI lab.

GNU Manifesto, 1983
What’s GNU? Gnu’s Not UNIX!

GNU, which stands for Gnu’s Not Unix, is the name for the complete Unix-compatible software
system which I am writing so that I can give it away free to everyone who can use it. Several
other volunteers are helping me. Contributions of time, money, programs and equipment are
greatly needed.
So far we have an Emacs text editor with Lisp for writing editor commands, a source level
debugger, a yacc-compatible parser generator, a linker, and around 35 utilities. A shell
(command interpreter) is nearly completed. A new portable optimizing C compiler has compiled
itself and may be released this year. An initial kernel exists but many more features are needed
to emulate Unix. When the kernel and compiler are finished, it will be possible to distribute a
GNU system suitable for program development. We will use TeX as our text formatter, . . .

Licensing, copyright, copyleft, and MIT puns
Free as in freedom - cost is the minor issue here.

Licensing concepts
I Difference between copyright and license.
I What if you do not specify a license?
I Amazing the kind of people who get this wrong.
I The four freedoms of free software.
I Licensing of derivative products.
I Copyleft juxtaposed to permissive licensing.
I Historical background for US copyright and patent laws.
I The correct juxtaposition: “free vs. proprietary”, not

“free vs. commercial”: lots of people make very good
money from free software.

Classic licenses
I Public domain.
I GNU General Public License

(GPL).
I GNU Lesser General Public

License (LGPL).
I Berkeley Software

Distribution (BSD) license.
I MIT X11 license.
I Pointless proliferation of

licenses.
I The Creative Commons

milieu.

Ethics, convenience, combativeness

The founding of the free software movement

The open source movement

Milestones
1987 Eric Raymond: “The Cathedral and the

Bazaar” (TCatB).
Key phrase: “Given enough eyeballs, all
bugs are shallow” (Linus’s law).

1998-01 Frank Hecker internal Netscape
whitepaper: make source code free. Cites
TCatB.

1998-02-02 Christine Peterson coins term
“open source”. Goal: communicate
advantages of free s/w to commercial s/w
companies.

1998-02-05 Strategy group at Netscape adopts
term open source.

1998-04-07 O’Reilly “Freeware Summit”
becomes known as “Open Source Summit”.

The movement
I Free Software and Open Source Software:

same referent (body of software).
I Focus on usefulness rather than the ethical

underpinnings.
I Gets around English language ambiguity of

“free” (speech and beer).
I Ends up causing its own ambiguity due to

conflation with various other uses of the
word open.

I Composite terms: FOSS, FLOSS.
I Used almost universally by companies that

release free software (i.e. all companies).

The GNU/Linux operating system

I Linus Torvalds announces a new kernel, 1991-09-17.
I Torvalds Torvalds places Linux under the GNU General Public License.
I Torvalds states “ Making Linux GPL’d was definitely the best thing I ever did.” 1997-09-30
I The Linux kernel brings the last key component to the GNU operating system.

Terminology wars.

1898 – FUD around GNU/Linux
https://archive.nytimes.com/www.nytimes.com/library/tech/98/11/biztech/articles/03memo.html

The “Halloween Documents”This is an archived page. Report a problem

MICROSOFT ON TRIAL
Index of Articles

Forum
Is Microsoft too powerful a
player in the computer
industry?

November 3, 1998

Internal Memo Shows Microsoft
Executives' Concern Over Free
Software

By AMY HARMON and JOHN MARKOFF

n internal memorandum reflecting the views of some of
Microsoft Corp.'s top executives and software

development managers reveals deep concern about the
threat of free software and proposes a number of strategies
for competing against free programs that have recently
been gaining in popularity.

The memo warns that the quality of free software can meet
or exceed that of commercial programs and describes it as a
potentially serious threat to Microsoft.

The document was sent anonymously
last week to Eric Raymond, a key
figure in a loosely knit group of
software developers who
collaboratively create and distribute
free programs ranging from
operating systems to Web browsers.

Microsoft executives acknowledged
on Monday that the document was
authentic.

Edmund Muth, Microsoft's

Internal Memo Shows Microsoft Executives' Con... https://archive.nytimes.com/www.nytimes.com/lib...

1 of 3 5/18/20, 4:28 PM

New York Times, 1998-11-03.

...
Consequently, OSS poses a direct, short-term revenue
and platform threat to Microsoft – particularly in
server space. Additionally, the intrinsic parallelism and
free idea exchange in OSS has benefits that are not
replicable with our current licensing model and
therefore present a long term developer mindshare
threat.

...
[...] the memorandum calls the free software movement
a “long-term credible” threat and warns that employing
a traditional Microsoft marketing strategy known as
“FUD,” an acronym for “fear, uncertainty and doubt,”
will not succeed against the developers of free software.

https://archive.nytimes.com/www.nytimes.com/library/tech/98/11/biztech/articles/03memo.html

The (software) pillars of the earth
Microsoft retreats from its position

ZDNet, 2020-05-18, https://www.theregister.co.uk/2020/05/15/microsoft_brad_smith_open_source/

I Non-penetration: home computers (but soon...), some engineering CAD packages, some
graphical front-ends for operating systems.

I Penetration: all web servers, all departmental serverse, all supercomputerse, all embedded
systems, all phones.

I Two big pillars: gcc and linux kernel.
I Smaller pillars: apache, all version control systems, all programming languages, most web

client-side frameworks.
I The GNU/Linux distributions: terminology.
I The GNU/Linux distributions: flavours (Debian and Red Hat).

https://www.theregister.co.uk/2020/05/15/microsoft_brad_smith_open_source/

Picking what will last – messaging systems
Naturalmente . . . xkcd: https://xkcd.com/1810/

I’m one of the few Instagram users who connects solely through the Unix ’talk’ gateway.

Example: messaging “standards”
Naturalmente . . . xkcd: https://xkcd.com/1810/

Fortunately, the charging one has been solved now that we’ve all standardized on mini-USB. Or is it
micro-USB? ****.

Documentation formats
Naturalmente . . . xkcd: https://xkcd.com/1301/

I have never been lied to by data in a .txt file which has been hand-aligned.

	Frontmatter
	Goals
	Part I, day 1
	Curriculum
	Programming Languages
	Stories of programming languages
	Tour of languages
	Insights on languages

	Part I, day 2
	Pedagogically speaking
	Workflow and tools
	Automation and efficiency
	Editors

	Version control
	Debugging
	The bones of the world
	Case study: Beowulf clusters
	Licensing, software freedom, open source

