.. _chap-more-taylor-series: ******************** More taylor series ******************** .. _sec-starting-to-study-exponentials: Exponentials ============ The number :math:`e`: base for natural exponentials and logarithms ------------------------------------------------------------------ In earlier lessons we discussed the exponential function at length. Here we discuss some of the reasons for which we consider Euler's number :math:`e` to be the "natural" base for exponentials and logarithms, analogously to how radians are the natural unit of measure for circles. Part of this is a visual exploration of :math:`e^x` and an graphical look at its slope, to then conclude that: .. math:: \frac{d e^x}{dx} = e^x which is not true for other bases, like :math:`2^x` and :math:`10^x` We can also mention that: .. math:: e = \lim_{n \rightarrow \infty} \left(1 + \frac{1}{n}\right)^n and calculate it for values of n like 1, 10, 100, 1000, 10000, ... We can also calculate :math:`e` with: .. math:: e = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots = \sum_{k=0}^{\infty} \frac{1}{k!} \approx 2.71828182846 but the justification for that will only come when we show how to calculate the Taylor series for :math:`e^x`. .. caution:: It is also worth mentioning that difference communities in math, science, and engineering use :math:`\log(x)` to mean the *natural* logarithm (base :math:`e`). Other communities will use :math:`\log(x)` to mean the *base 10* logarithm, and they say :math:`\ln(x)` for the natural logarithm. I use the former approach, and the various programming language libraries (C, Python, ...) do the same. But we take a break from these notes as we get to use a proper text book to explore exponentials and logarithms in more detail. The Taylor series for :math:`e^x` -- visually --------------------------------------------- First we look at it visually. We will want to plot terms in the following way in gnuplot and geogebra and desmos: .. code-block:: console $ gnuplot ## then the following lines have the prompt gnuplot> and we type: reset set grid set xrange [-1:3] set terminal qt linewidth 3 plot exp(x) lw 2 replot 1 replot 1 + x replot 1 + x + x**2 / 2! replot 1 + x + x**2 / 2! + x**3 / 3! replot 1 + x + x**2 / 2! + x**3 / 3! + x**4 / 4! replot 1 + x + x**2 / 2! + x**3 / 3! + x**4 / 4! + x**5 / 5! replot 1 + x + x**2 / 2! + x**3 / 3! + x**4 / 4! + x**5 / 5! + x**6 / 6! In geogebra or desmos: :: e^x 1 1 + x 1 + x + x**2 / 2! 1 + x + x**2 / 2! + x**3 / 3! 1 + x + x**2 / 2! + x**3 / 3! + x**4 / 4! 1 + x + x**2 / 2! + x**3 / 3! + x**4 / 4! + x**5 / 5! 1 + x + x**2 / 2! + x**3 / 3! + x**4 / 4! + x**5 / 5! + x**6 / 6! The Taylor series for :math:`e^x` -- calculating the coefficients ----------------------------------------------------------------- Remembering that :math:`\frac{de^x}{dx} = e^x` we can calculate: .. math:: \frac{d^k e^x}{dx^k} \bigg \rvert_{x = 0} = e^0 = 1 which gives us Taylor coefficients :math:`a_k = \frac{1}{k!}` and the series looks like: .. math:: e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} Miscellaneous Taylor expansions =============================== Logarithms: .. math:: log(1 - x) = -\sum_{k=1}^{\infty} \frac{x^k}{k} \\ log(1 + x) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k} the first when :math:`|x| < 1`, the second when :math:`-1 < x \leq 1` Note that when you plot these logarithmic functions you will need to double check that your plotting program uses :math:`log()` for *natural* logarithms. Some plotting programs use :math:`\ln()` for natural logarithms. Geometric series: .. math:: :nowrap: \begin{eqnarray} \frac{1}{1-x} = & \sum_{k=0}^{\infty} & x^k \\ \frac{1}{(1-x)^2} = & \sum_{k=1}^{\infty} & k x^{k-1} \\ \frac{1}{(1-x)^3} = & \sum_{k=2}^{\infty} & \frac{(k-1)k}{2} x^{k-2} \end{eqnarray} when :math:`|x| < 1` Some square root expansions =========================== Square root functions can get complicated. For example, the relativistic formula for the rest *plus* kinetic energy of an object with mass :math:`m_0` is .. math:: E_{\rm total} = \frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}} This has the famous Lorenz gamma factor: .. math:: \gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} We sometimes use a shorthand :math:`\beta = v/c`, where :math:`\beta` is the velocity expressed as a *fraction of the speed of light*, and get: .. math:: \gamma = \frac{1}{\sqrt{1 - \beta^2}} The first few terms in the taylor series expansion in :math:`\beta` are (see the Cupcake Physics link in the resources chapter for details): .. .. math:: \gamma \;\; = \; & 1 & + \frac{1}{2}\beta^2 & + & \frac{3}{8}\beta^4 & + & \frac{5}{16}\beta^6 & + & \frac{35}{128}\beta^8 \dots\\ = \; & 1 & + \frac{1}{2}\frac{v^2}{c^2} & + & \frac{3}{8}\frac{v^4}{c^4} & + & \frac{5}{16}\frac{v^6}{c^6} & + & \frac{35}{128}\frac{v^8}{c^8}\dots .. math:: :nowrap: \begin{eqnarray} \gamma \;\; = \; & 1 + \frac{1}{2}\beta^2 + \frac{3}{8}\beta^4 + \frac{5}{16}\beta^6 + \frac{35}{128}\beta^8 \dots\\ = \; & 1 + \frac{1}{2}\frac{v^2}{c^2} + \frac{3}{8}\frac{v^4}{c^4} + \frac{5}{16}\frac{v^6}{c^6} + & \frac{35}{128}\frac{v^8}{c^8}\dots \end{eqnarray} Putting this back into the formula for energy we get: .. math:: E_\textrm{total} = \; \frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}} = \; m_0 c^2 + \frac{1}{2} m_0 v^2 + \dots For low values of :math:`v^2/c^2` (i.e. :math:`v` much slower than the speed of light) we have: .. math:: E_{\rm total} = m_0 c^2 + \frac{1}{2} m_0 v^2 + \dots We can read off the terms and realize that the total energy is equal to the famous rest mass :math:`E_{\rm rest} = m_0 c^2` plus the kinetic energy :math:`\frac{1}{2} m_0 v^2 + \dots`: .. math:: E_{\rm total} = E_{\rm rest} + E_{\rm kinetic} = m_0 c^2 + \frac{1}{2} m_0 v^2 + \frac{3}{8} m_0 \frac{v^4}{c^2} \dots Let us explore the Lorenz gamma factor for values of :math:`v` in the whole range from 0 to :math:`c`: :: $ gnuplot ## then the following lines have the prompt gnuplot> and we type: reset set grid set ylabel '\gamma' set xlabel '\beta (v/c)' set xrange [0:1] set terminal qt linewidth 3 plot 1 / sqrt(1 - x**2) Or in a web-based graphing calculator: :: 1 / (1 - x^2)^(1/2) .. _fig-lorenz_factor: .. figure:: lorenz_factor.* :width: 60% The lorenz factor as a function of :math:`\beta = v/c`. Note how it is close to 1 for most of the run, but grows out of control when :math:`v` approaches the speed of light :math:`c`. What insight does this give us on the energy of an object as it approaches the speed of light? Note that the formulae for length and time are: .. math:: L = \frac{1}{\gamma} L_0 \\ \Delta t' = \gamma \Delta t so the behavior of :math:`\gamma` as a function of :math:`\beta` (and thus :math:`v`) also affects length and time. Now let us look at the polynomial approximates in :math:`\beta`: :: $ gnuplot ## then the following lines have the prompt gnuplot> and we type: reset set grid set ylabel '\gamma' set xlabel '\beta (v^2/c^2)' set xrange [0:0.0001] set terminal qt linewidth 3 plot 1 / (1 - x**2) replot 1 replot 1 + (1.0/2) * x**2 replot 1 + (1.0/2) * x**2 + (3.0/8) * x**4 replot 1 + (1.0/2) * x**2 + (3.0/8) * x**4 + (5.0/16) * x**6