

Serious Programming - small courses

	Date:

	Nov 06, 2023

	Author:

	Mark Galassi <mark@galassi.org>

	Author:

	Leina Gries <leinagries@gmail.com>

	Author:

	Sophia Mulholland <smulholland505@gmail.com>

	Author:

	Almond Heil <almondheil@gmail.com>

Contents:

	1. Motivation and plan
	1.1. Notes for teachers

	1.2. Acknowledgements

	1.3. Status of the book

	1.4. Footnotes

	2. Starting out: data files and first plots
	2.1. Motivation, prerequisites, plan

	2.2. Very first data plots with gnuplot

	2.3. Plotting functions with gnuplot

	2.4. Reading and writing files, in brief

	2.5. Generating our own data to plot

	2.6. The broad landscape of plotting software

	2.7. Data formats

	2.8. Simple surface plots

	2.9. Topics we have covered

	3. Intermediate plotting
	3.1. A worked example

	3.2. Histograms

	3.3. Matplotlib

	3.4. A histogram snippet to conclude

	4. A tour of functions
	4.1. Motivation, Prerequisites, Plan

	4.2. Linear Functions

	4.3. Polynomials
	4.3.1. Derivatives

	4.4. Higher order polynomials

	4.5. Inverse functions

	4.6. Elementary transcendental functions
	4.6.1. Exponentials

	4.6.2. Trigonometric function

	4.7. Gaussian distribution

	5. Growth – checked and not
	5.1. Motivation, prerequisites, plan
	5.1.1. Motivation

	5.1.2. Prerequisites

	5.1.3. Plan

	5.2. Pure exponential growth

	5.3. Checked growth
	5.3.1. Checked by lack of resources

	5.3.2. Checked by competition with other species

	5.4. Simple predator-prey interactions
	5.4.1. The Lotka-Volterra equations

	6. Advanced plotting
	6.1. Our setup

	6.2. A first line plot

	6.3. Polishing line plots

	6.4. Increasing the challenge: parametrized solutions

	6.5. Adding a dimension: surface plots

	6.6. Adding a dimension: color
	6.6.1. Spetrograms

	6.6.2. Spectrograms for standard acoustic files

	6.6.3. Ideas for further exploration

	6.7. Loops in gnuplot

	6.8. Adding a dimension: animation
	6.8.1. Animation in gnuplot

	6.8.2. Animation in matplotlib

	6.9. Further reading

	7. Fitting functions to data
	7.1. Motivation, Prerequisites, Plan

	7.2. Examples to get started

	7.3. Straight line fits
	7.3.1. Our goal

	7.3.2. Stepping back: just two points

	7.3.3. Let’s plot that line with our data

	7.3.4. Physical interpretation of the line fit

	7.4. Proper line fitting

	7.5. Using Python’s scientific libraries to fit lines

	7.6. When to not try a linear fit

	7.7. Fitting curves
	7.7.1. Polynomial fits

	7.7.2. Overfitting

	7.7.3. Fitting arbitrary functions

	7.8. Topics for further study
	7.8.1. Interpolation and extrapolation

	7.8.2. How high should the degree of the polynomial be?

	8. Case studies in data
	8.1. Population data from the web
	8.1.1. Exercises

	9. Special numbers: \(\pi\)
	9.1. Motivation, prerequisites, plan
	9.1.1. Motivation

	9.1.2. Prerequisites

	9.1.3. Plan

	9.2. A collection of factoids

	9.3. Calculating \(\pi\): ancient history

	9.4. Calculating \(\pi\): monte carlo method

	9.5. Calculating \(\pi\): series that converge to \(\pi\)
	9.5.1. Madhava-Leibniz series

	9.5.2. “Efficient” infinite series

	9.5.3. Formulae based on the Riemann zeta function

	9.6. Relationships between special numbers

	10. A workshop on programming by yourself (!)

	11. Random number basics
	11.1. Prerequisites

	11.2. Motivation

	11.3. Types of distributions

	11.4. Further reading

	12. Randomness and Disorder
	12.1. Experiment: burn a match

	12.2. Experiment: ink in water

	12.3. Discussion on “ink in water” experiment

	12.4. Flipping a single coin

	12.5. Review: random numbers in Pythyon

	12.6. Experiment: flipping a single virtual coin
	12.6.1. Just the flips

	12.6.2. Long-running average of single coin flips

	12.7. Flipping multiple coins

	12.8. Experiment: flipping virtual coins

	12.9. Experiment: back to physical coins - disorder

	12.10. The drunk fencer

	12.11. The drunkard’s walk

	12.12. Matplotlib animation of a random walk

	12.13. Making a movie from walk frames
	12.13.1. Reviewing graphics and animation

	12.13.2. Making individual frames of the random walk

	12.14. Discussion

	12.15. Further reading and videos

	13. Random Processes
	13.1. Motivation, prerequisites, plan

	13.2. Reviewing random number generation

	13.3. Poisson processes
	13.3.1. A pure poisson process

	13.3.2. An angry lightning goddess

	13.3.3. Vicious glow-worms

	13.4. Brownian motion

	13.5. Further reading

	13.6. Progression of record peaks

	13.7. The gambler’s fallacy

	13.8. The gambler’s ruin

	13.9. Link to other chapters

	14. Power laws, Zipf, Benford, …
	14.1. Motivation, prerequisites, plan

	14.2. A brief refresher on log-log plots

	14.3. Zipf’s law

	14.4. What are “power laws”?

	14.5. Deadly conflicts

	14.6. Benford’s law

	14.7. Pareto’s principle

	14.8. Olber’s paradox

	15. Pushing toward calculus
	15.1. Motivation and plan

	15.2. Prerequisites

	15.3. Limits, the infinitely big, and the infinitesimally small

	15.4. Continuous functions

	15.5. Convergence and divergence

	15.6. Weird mixes

	15.7. Limits of some functions

	15.8. The limit of a series

	15.9. The most important application: derivatives

	15.10. Visualizing derivatives with an animation

	16. Numerical integration
	16.1. The integral

	16.2. Calculating the integral numerically

	16.3. Improving the numerical approximation

	16.4. Stepping back from numerical integration back to analytical work

	17. Differential Equations
	17.1. Motivation, Prerequisites, Plan

	17.2. Derivatives
	17.2.1. Why?

	17.3. Definitions

	17.4. An Example

	17.5. Population Growth
	17.5.1. But what does the derivative tell us?

	17.6. Euler’s Method

	17.7. Second Order Differential equations

	17.8. Falling Body
	17.8.1. Adding Air Resistance to Falling Body

	17.9. The harmonic oscillator
	17.9.1. The simple harmonic oscillator

	17.9.2. The damped harmonic oscillator

	17.9.3. The non-linear pendulum

	18. Ecology
	18.1. Motivation, Prerequisites, Plan

	18.2. Factors that come up in modeling population ecology

	18.3. Exponential growth

	18.4. History of the human population on earth

	18.5. The logistic function

	18.6. The Lotka-Volterra differential equations

	18.7. Further reading

	19. Biology – phylogeny
	19.1. Motivation, prerequisites, plan
	19.1.1. Motivation

	19.1.2. Prerequisites

	19.1.3. Plan

	19.2. Start with a video and then make a simple table

	19.3. Terminology

	19.4. NEW - Installing necessary packages

	19.5. NEW - first steps with biopython

	19.6. OLD - Installing necessary packages

	19.7. Preparing a tree by hand

	19.8. Inferring a tree
	19.8.1. An example input file provided by ete3

	19.9. Other sequence analysis resources

	19.10. Linguistics datasets
	19.10.1. lingpy.org

	19.10.2. elinguistics.com

	19.10.3. Others

	19.11. Evolution of programming languages

	20. Recursion
	20.1. Motivation, prerequisites, plan

	20.2. Visual examples

	20.3. Word examples

	20.4. Components of a recursive definition
	20.4.1. Simple math

	20.4.2. Programming simple math recursion

	20.4.3. Recursion with data structures

	20.5. Visualizing what the recursion is doing

	20.6. Towers of Hanoi

	20.7. Should we really use recursion in programming?

	21. Programming topics: sorting
	21.1. Motivation, prerequisites, plan

	21.2. Experiment: a game of cards

	21.3. Intuition to algorithm on card sorting

	21.4. Writing up the algorithm in Python

	21.5. Profiling the algorithm
	21.5.1. Modify the program to print information

	21.5.2. Run the program and make plots

	21.5.3. How do we understand these plots?

	21.5.4. Exercises

	21.6. Computational complexity

	21.7. Further reading

	22. Birthday paradox
	22.1. To get started

	22.2. A practical demonstration

	22.3. The theory

	22.4. Take-home

	23. Graphical user interfaces
	23.1. A chat about sources of input in a GUI

	23.2. Widgets and widget sets

	23.3. The simplest programs
	23.3.1. The programs

	23.3.2. Packers: more than just one button

	23.3.3. A tour of widgets

	23.4. Following a tutorial

	23.5. Cellular automata on a canvas
	23.5.1. A simply drawing of the CA

	23.5.2. Adding controls to the program

	23.6. Conway’s game of life

	23.7. Tic-tac-toe with buttons

	23.8. A glance at PySimpleGUI

	23.9. Other resources

	24. Drawing on a canvas
	24.1. Simplest canvas

	24.2. Simplest animation
	24.2.1. Exercises

	25. The Traveling Salesman
	25.1. Cities and path lengths

	25.2. Solving the Traveling Salesman Problem
	25.2.1. A digression on optimization

	25.2.2. Generating and visualizing lists of cities

	25.2.3. Animating the drawing of cities

	25.3. Improvements to the route
	25.3.1. Before you start

	25.3.2. Impossibile to compute the optimal solution

	25.3.3. Greedy algorithm

	25.3.4. A digression on hill climbing

	25.3.5. Hill climbing for the traveling salesman problem

	25.3.6. Further study

	25.4. Where do you go from search

	26. Basic Agent-Based Modeling
	26.1. Motivation, Prerequisites, and Plan

	26.2. Conceptualizing the model
	26.2.1. Agent-Based Modeling Concepts

	26.2.2. Object-Oriented Programming Concepts

	26.3. Classes and steps

	26.4. Space and movement

	26.5. Visualization

	26.6. Interactions between agents

	26.7. Data collection & plotting
	26.7.1. Collecting data from the code

	26.7.2. Plotting from the command line

	26.7.3. Plotting as the live model runs

	26.8. Source code

	26.9. Making an SIR model

	26.10. Further reading

	27. Emergent behavior
	27.1. Motivation, prerequisites, plan

	27.2. Before you start

	27.3. Write the simple_ca.py program which implements a cellular automaton

	27.4. Conway’s game of life

	27.5. Install and run the golly program

	27.6. Further study
	27.6.1. Play with the simple_ca.py program

	27.7. Further reading

	28. Web scraping
	28.1. Motivation, prerequisites, plan

	28.2. What does a web page look like underneath? (HTML)

	28.3. Command line scraping with wget

	28.4. Scraping from a Python program

	28.5. Finding neat scientific data sets

	28.6. Beautiful Soup

	29. Getting to philosophy
	29.1. Motivation, prerequisites, plan

	29.2. Parsing simple web pages

	29.3. Making vertex and edge graphs

	29.4. A program to get to philosophy

	29.5. When things go wrong

	29.6. When we simply don’t “get to philosophy”

	30. Music basics
	30.1. Motivation, prerequisites, plan

	30.2. What is sound?

	30.3. How is sound generated?

	30.4. Measuring and recording

	30.5. What is music

	30.6. Understanding what we plot in an amplitude plot

	30.7. How does the GNU/Linux microphone work?

	30.8. Generating your own musical tone
	30.8.1. A single tone

	30.8.2. From notes to frequencies

	30.9. File formats

	30.10. Converting our ascii music .dat files to other formats

	30.11. Effects filters

	31. Collecting mp3s
	31.1. Purpose: turn audio from youtube into mp3s

	31.2. preparation/prerequisites

	31.3. Get the video

	31.4. Verify that it’s a good video file

	31.5. Extracting the audio portion

	31.6. Tagging the mp3 file

	31.7. A shortcut to the mp3

	32. Computer art
	32.1. Understanding photos and images
	32.1.1. Discussion of graphics formats

	32.1.2. Photo collection management

	32.1.3. Image manipulation: command line and GUI

	32.2. metapixel and photomosaics

	32.3. ASCII art

	32.4. Evolutionary art

	32.5. Image manipulation from your own Python program
	32.5.1. Geometric transformations

	32.5.2. Filters and enhancement

	32.6. Topics for further study

	33. Image filtering
	33.1. Motivation, prerequisites, plan
	33.1.1. Motivation

	33.1.2. Prerequisites

	33.1.3. Plan

	33.2. Manipulating images with command line programs

	33.3. How computers store images, disk and memory

	33.4. First example: blurring and other effects with PIL

	33.5. The cycle of training and running an AI system

	33.6. Miscellaneous examples in various areas
	33.6.1. Astronomy example with scipy image kit

	33.6.2. Extracting the portion of a scan which has text

	33.6.3. Thresholding

	33.7. Learning OpenCV
	33.7.1. numpy and opencv

	33.7.2. Image manipulation with OpenCV

	33.8. Using tensorflow with ImageAI to find objects
	33.8.1. ImageAI + tensorflow from Fritz AI article

	33.8.2. ImageAI + tensorflow from towarddatascience

	33.9. Using tensorflow from their own tutorials
	33.9.1. The tutorial from tensorflow.org

	33.9.2. For more on training the network

	33.9.3. The most complete tutorial on preparing training sets and doing the training

	34. Cryptography
	34.1. Preliminary: ASCII values

	34.2. Weak crypto
	34.2.1. A simple Caesar encryptor

	34.2.2. Substitution ciphers

	34.2.3. A “literary” substitution cypher

	34.2.4. Preparing to attack substitution cyphers: frequency analysis

	34.2.5. Applying the frequency analysis to a message

	34.3. Strong crypto
	34.3.1. Binary numbers, XOR, hiding the byte

	34.3.2. Manipulating bits in python

	34.3.3. Revisiting random number generators

	34.3.4. Implementing tougher encryption

	34.3.5. Decrypting this tougher encryption

	34.4. Further reading
	34.4.1. Technical details

	34.4.2. Historical

	34.4.3. Videos

	35. Other languages - Go
	35.1. Hello World in Go

	35.2. Writing a Go program with command line arguments

	35.3. Goroutines and channels

	35.4. More complicated Go program

	36. Appendix: An itinerary for guest lectures
	36.1. Motivation for linking computing and scholarship

	36.2. A tour of topics

	37. Appendix: How to build the book
	37.1. Motivation, prerequisites, plan

	37.2. The tools needed

	37.3. Version control: cloning the repository (you only do this once)

	37.4. Building the book

	37.5. Making and committing changes (your day-to-day)

	38. Appendix: How to add a chapter
	38.1. Anatomy of the chapter

	38.2. The chapter: Title

	38.3. The chapter: frontmatter

	38.4. The chapter: The problem
	38.4.1. A basic equation

	38.4.2. Some terminology

	38.4.3. But wait! Two solutions??

	38.5. The chapter: Plots

	38.6. The chapter: The quadratic formula

	38.7. The chapter: Numerical approximation

	38.8. The chapter: Applications
	38.8.1. Physics: falling bodies

	38.8.2. Geometry: areas and the Dido problem

	38.9. Exercises for the chapter

	38.10. Further study

	39. Appendix: Project proposals
	39.1. Social sciences
	39.1.1. Optimal stopping and life/business

	39.1.2. Multi-armed bandits and exploration vs. exploitation

	39.1.3. Deadly conflicts

	39.1.4. Quantifying overfitting in personal decisions

	39.1.5. Just about anything from Gwern Branwen

	39.2. Sports
	39.2.1. Time series for improvement on records

	39.2.2. Optimal tournament structure

	39.2.3. Soccer analytics

	39.3. Physical sciences
	39.3.1. Brownian motion

	39.4. Life sciences
	39.4.1. Datasets for phylogenetic analysis

	39.4.2. Predator-prey ecology: equations and agents

	39.4.3. Infectious disease modeling

	39.5. Mathematics
	39.5.1. puzzles

	39.5.2. On the role of intuition in mathematics

	39.5.3. Monty Hall’s door problem

	39.5.4. Random walks

	39.5.5. Runge-kutta method

	39.5.6. Sync and the Kuramoto model

	39.5.7. Analysis of chess

	39.6. Computer science and information technology
	39.6.1. Situational awareness of your network

	39.7. Humanities and the arts
	39.7.1. Music generation: tone beyond sin waves

	39.7.2. Music generation: add stereo

	39.7.3. Further explorations into Zipf’s law

	39.7.4. Analyzing wordle

	39.7.5. Can generative AI make art or music with a simple project?

	40. Appendix: Proposed chapters
	40.1. A tour of datasets

	40.2. Molecules in three dimensions

	40.3. Zeros of polynomials and other functions

	40.4. Artificial life

	40.5. Genetic algorithms

	40.6. Fourier Analysis

	40.7. Simpson’s paradox

	41. Copying and legal matters
	41.1. Copyright

	41.2. License for the book

	41.3. License for code samples

	41.4. CC BY-SA 4.0 license

	41.5. GNU General Public License

Indices and tables

	Index

	Module Index

	Search Page

[Bac77]
J Backus. Musical note to frequency conversion chart. http://www.audiology.org/sites/default/files/ChasinConversionChart.pdf, 1977. Accessed: 2016-05-06.

[Bir15]
Alistair Bird. Apiological: mathematical speculations about bees (part 3: travelling salesman). http://aperiodical.com/2015/03/apiological-part-3/, 2015. Accessed: 2015-03-19.

[Gal15]
Mark Galassi. Hacking Camp Teacher's Manual. web, 2015.

[Gal16]
Mark Galassi. Scientific Computing for Kids. web, 2016.

[Gra12]
Christopher M Graney. Doubting, testing, and confirming galileo: a translation of giovanni battista riccioli's experiments regarding the motion of a falling body, as reported in his 1651 almagestum novum. arXiv preprint arXiv:1204.3267, 2012.

[Pin11]
Steven Pinker. The better angels of our nature: Why violence has declined. Penguin, 2011.

[RR10]
Carmen M Reinhart and Kenneth S Rogoff. Growth in a time of debt (digest summary). American Economic Review, 100(2):573–578, 2010.

[ZJZ+16]
Caiping Zhang, Jiuchun Jiang, Linjing Zhang, Sijia Liu, Leyi Wang, and Poh Chiang Loh. A generalized soc-ocv model for lithium-ion batteries and the soc estimation for lnmco battery. Energies, 9(11):900, 2016.

Copyright (C) 2017-2022 Mark Galassi, Leina Gries, Sophia
Mulholland, Almond Heil.

This work is licensed under the Creative Commons
Attribution-ShareAlike 4.0 International License. To view a copy
of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

1. Motivation and plan

Section author: Mark Galassi <mark@galassi.org>

I cannot imagine a career more wonderful than that of a scientist.

The day-to-day work in science today involves using computers at all
times. Scientists who master their computers and can program them with
agility will enjoy the job the most, and are often in great demand:
they can carry out unique new research. Young aspiring scientists who
are not told this are being misled.

With an excellent group of young students, I have developed a series
of lessons on scientific computing, aimed at kids who have already
taken my “Serious Programming For Kids” course
[Gal15]. I have two goals with these
lessons:

	introduce the tools and tricks for scientific computing, and

	take a tour of diverse scientific problems that demonstrate “realy
interesting” things you can do with some programming knowledge.

These mini-courses teach scientific computing using Python on the
GNU/Linux operating system. There are other possible choices of
programming language and operating system, and some of them are
adequate, but there are specific reasons for which I chose Python and
GNU/Linux. Some are given in the “Serious Programming for Kids”
teacher’s manual, but here are some other reasons which are specific
to scientific work:

	Scientific software often matures into sophisticated programs which
need to be executed on production computers and in a reproducible
manner. For this the use of a free/open-source operating system and
language interpreter are crucial.

	Much scientific infrastructure is available as an integral part of
the GNU/Linux distributions. For example, on a current Debian
GNU/Linux or Ubuntu or Fedora distribution you will find the GNU
Scientific Library, astropy, scipy, a remarkable number of R science
packages. These packages are “just there” as part of the operating
system. This comes in part from the fact that the GNU/Linux
operating system is developed by hackers for hackers: programming is
a seamless part of such systems.

	Python spread rapidly soon after its initial development. Thanks to
some key early developers coming from physics, astronomy and biology
research groups, it was rapidly adopted by the scientific
community. The result is that a vast collection of high quality
scientific libraries are available in Python.

	Many research projects have very long lives, and the software is
used for years after it is first written. My opinion, and that of
many who observe the world of scientific computing, is that programs
written in Python on a GNU/Linux system will still run many years
from now [1]

	Reproducibility again: using proprietary software in scientific
research makes it impossible to reproduce or verify a result: there
is undisclosed code being executed!

	Reproducibility and verifiability also dictate that scientific
software should be able to run in batch mode, rather than through
a graphical user interface (GUI). A GUI is not necessarily a bad
thing, but after initial exploration of data with a GUI, the
scientist needs to then generate a batch program to reproduce her
results.

1.1. Notes for teachers

This is a teacher’s manual for the mini courses. In the 10-hour
“Serious Programming for Yough” workshop which introduces Python from
scratch, I teach at a blackboard (or whiteboard nowadays).

This course is quite different: it is for students who have already
taken the 10-hour workshop, and already have a laptop ready and
running a GNU/Linux distribution.

The format is 1.5 hours, and I lecture with a projector or large TV
screen, working on examples in emacs or in the command line.

While I lecture I have the students load the HTML version of this
book, usually from a web site to which I sync this book – at this
time I use http://markgalassi.bitbucket.io/ – this allows them to
paste in code samples if they are too long to type.

I usually project a couple of terminals (one for python snippets, one
for shell commands), a browser window with the relevant chapter of
this book, and the emacs editor. This allows the students to see how
I work on the examples.

The lecturing style should be one of quickly getting a juicy example up
on their screens: something that gives visible results for the students.
Then step back a bit to make sure they understood how we got to it, and
then quickly on to the next example.

Once they have worked some juicy examples, it’s time to lean back and
have a broader discussion of the meaning of certain things, and to
discuss the insight we got from an example. You can lace this with
your favorite lecture on historical and philosophical aspects of
what’s in this chapter, but you should then quickly pivot back to more
work. This “get back to work and roll up your sleeves” is a crucial
part of what we do.

Understanding this material is hard work for the students: I have
developed this course to include serious material they might otherwise
not learn until college, so I often ask the students to “suspend their
not understanding” [2] and just latch on to one or two things they
can remember. For example I introduce Fourier Analysis in
Section 40.6, and when I give that lecture I
frequently repeat “remember: it is OK to not understand most of this,
but repeat after me the one thing I want you to understand: all these
signals look like wild jumbles, but they are made up of simple waves
which let us understand part of their musical nature.”

In broad strokes you can think of two main categories of scientific
computing effort: analyzing data from experiments, and simulating your
own physical situation with a computer program that generates fake (but,
we hope, realistic) experimental data. We will look at both of these
types, and introduce the words: experiments and simulation as we go
through the examples.

The way in which kids approach computers today (clicking and touching)
allows them to not understand some concepts which are very important
for scientific programming (and in fact any kind of
programming). Because of this we must first get comformtable with the
following concepts:

	What is a data file.

	How to plot a data file.

	How to write a program which takes a data file, does some processing
of the data, and writes out another file with the processed data.

Once we have these skills we can:

	Tell the story of that plot.

	Generate simulated data.

	Retrieve data from online sources.

	Record data from an experiment.

	Analyze data to go beyond that initial story.

1.2. Acknowledgements

Thanks to Laura Fortunato and David Palmer for discussing this
curriculum with me in detail before I developed it. Thanks to
Jonathan Haack who has assisted me in teaching these courses and has
given me feedback.

Thanks to my excellent Santa Fe students Lucas Blakeslee, Althea
Foster, Alex Odom, Neha Sunkara, Rosa Birkner-Glidden, Miles
Teng-Levy, Rowan Nadon, Teagan Boyes-Wetzel, Oisin O’Connell, Abby
Wilson, Juan de la Riva, who have taken the course regularly and
helped me develop it.

Most of all thanks to students and co-authors Leina Gries, Sophia
Mulholland, Joaquin Bas for close collaboration on the book and for
writing parts of it.

1.3. Status of the book

Some chapters are largely complete and just need polishing and
proofreading; some have just a title; some are partially written.

Until the status is a bit more uniform, I will be putting a
“readiness” status note at the top of the chapter. If you do not see
such a status note then the chapter is probably not complete!

There is also an appendix on proposed chapters:
Section 40.

1.4. Footnotes

[1]
Programs written in the C programming language on a GNU/Linux system
will be even more stable, thanks to the maturity and stability of the
C standard. C is also a delightful and powerful language, but it is
not in the scope of what I teach to younger kids. Only a few
examples, those that need the higher speed of C, will be in C.

[2]
A pun on Coleridge’s “suspension of disbelief” – with topics of great
complexity it is important for students to be flexible about
temporarily accepting a building block that they don’t undersand so
that they can keep with the flow.

2. Starting out: data files and first plots

[status: mostly-complete-needs-polishing-and-proofreading]

2.1. Motivation, prerequisites, plan

Data plotting and data visualization is the key

2.2. Very first data plots with gnuplot

Our first goal is to become comfortable with data files and with
plotting. We first get the students to renew their acquaintance with
creating files with an editor and make a file with some hand-crafted
data.

Use your favorite editor (possibly emacs for those who have taken
my previous course, but vi or gedit should also work) to open
a file called simpledata.dat

Enter two columns of simple data into this file. For example:

1970 16.7
1980 17.2
1990 17.5
2000 18.2
2010 19.8
2020 20.1
2030 22.7
2060 28

Then save it, and enter gnuplot to plot this data:

$ sudo apt-get install gnuplot-x11
$ gnuplot
gnuplot> plot 'simpledata.dat'

[image: ../_images/simpledata.svg]
Figure 2.2.1 First example of data plot.

then have the students plot the data with slightly different options in
gnuplot:

$ gnuplot
gnuplot> plot 'simpledata.dat' with lines
gnuplot> set xlabel 'this is the "x" axis'
gnuplot> set ylabel 'this is the "y" axis'
gnuplot> plot 'simpledata.dat' with linespoints

2.3. Plotting functions with gnuplot

More examples of using gnuplot. We don’t assume knowledge of
trigonometry from younger students, so we tell the story as “this is
the sin function, which you will learn about some day; it plots these
waves.”

On the other hand the polynomial \(y = x^3 - 3x\) should be within
their reach: I might call on the class to tell me “what’s
\(-10^3\) and \(-2^3\), \(2^3\), and \(10^3\)” - this
establishes that the plot goes down on the left hand side, and up on
the right hand side. The interesting play in the middle can be
narrated by showing that \((1/2)^3\) is smaller than \(3 *
(1/2)\), so that the negative term dominates briefly (see
Figure 2.3.1)..

gnuplot> plot sin(x)
gnuplot> plot x*x*x - 3*x
gnuplot> plot x**3 - 3*x
note that this last one did show a dip in the middle,
but zooming in on the range from -3 to 3 shows the
interesting features in the middle of the plot. This
plot has two flat points (one local maximum and one
local minimum), rather than one saddle point.
gnuplot> plot [-3:3] x**3 - 3*x

If I am getting a good mathematical vibe from the classroom I will
briefly step into calculus territory and ask students to predict the
local max and min for \(y = x^3 - 3x\). I will then quickly show
them that

\[\frac{d(x^3 - 3x)}{dx} = 3 x^2 - 3\]

and using the quadratic formula

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}} { 2a }\]

we get \(\pm 6 / 6 = \pm 1\), which is exactly where the local max
and min are located (see Figure 2.3.1).

You can now set the grid in the plot and see if this calculation matches
the plot:

Listing 2.3.1 Instructions to plot a simple function and its
derivative, in this case the function \(f(x) = x^3 -
3 x\) and its derivative \(df(x)/dx = 3 x^2 - 3\).

##CAPTION: Simple line plot.
set grid
while we're at it also show the derivative:
plot [-3:3] x**3 - 3*x, 3*x**2 - 3

The two plots, superimposed in Figure 2.3.1, show that
where the derivative function (\(3x^2-3\)) is zero, the original
function (\(x^3-3x\)) has its flat point. This can be presented,
especially to older kids, in a rapid way that conveys “you don’t have
to understand this, but if you have heard about slopes then note that
the second curve shows the slope of the first one…” For the younger
kids we can emphasize that the figure shows two functions and looks
intriguing.

[image: ../_images/simplefunction.svg]
Figure 2.3.1 A simple plot of the function \(y = x^3 - 3x\) and its
derivative \(y = 3x^2 - 3\).

Visualizing functions like this is cool and it can be useful during the
exploratory phase of a research project, but it seldom comes up in the
bulk of the work and in the final scientific write-up. We will now move
on to tasks which come up quite frequently.

2.4. Reading and writing files, in brief

First let us make sure we know a couple of shell commands to look at a
file. Here I usually will take a portion of the board and write a boxed
inset “cheat sheet” with some useful shell commands. [4]

Since we already have a file called simpledata.dat which we
created earlier, let us look at three shell commands that give us a
quick glance at what’s in that file: head, tail and less.

$ head simpledata.dat
$ tail simpledata.dat
$ less simpledata.dat
(when using less be sure to quit with 'q')

These are simple ways to peek at a file, and will work with any text
file. You should always remember these commands.

Next we will look at how to read a file in a Python program. This is a
crucial pattern and we will use it a lot. Type in the program
reader.py shown in Listing 2.4.1 and run it to see
what happens.

Listing 2.4.1 reader.py – Reads a simple set of 2-column data

#! /usr/bin/env python3

"""show a simple paradigm for reading a file with two columns of
data"""

def main():
 fname = 'simpledata.dat' # the file we wrote out by hand
 dataset = read_file(fname)
 print('I just read file %s with %d lines' % (fname, len(dataset)))
 print('I will now print the first 10 lines')
 N = min(10, len(dataset))
 for i in range(N):
 print(dataset[i])

def read_file(fname):
 dataset = []
 f = open(fname, 'r')
 for line in f.readlines():
 words = line.split()
 x = float(words[0])
 y = float(words[1])
 dataset.append((x, y))
 f.close()
 return dataset

main()

Remember that after writing and saving the program you do the following
to make it executable and then run it:

$ chmod +x reader.py
$./reader.py

Finally let us see how to write files to disk. We will extend to do an
easy manipulation of the file simpledata.dat and then write it
back out to a new file simpledata.dat.sums. This new program will
be called simple-writer.py, so we need to copy it first:

$ cp reader.py simple-writer.py

and edit simple-writer.py to look like
Listing 2.4.2.

Listing 2.4.2 simple-writer.py – Reads a simple set of 2-column data
and sums the second column and then writes out line with
(x y sumy).

#! /usr/bin/env python3

"""show a simple paradigm for writing a file after reading it and
adding some content to it"""

def main():
 fname = 'simpledata.dat' # the file we wrote out by hand
 dataset = read_file(fname)
 print('I just read file %s with %d lines' % (fname, len(dataset)))
 print('I will now print the first 10 lines')
 for i in range(10):
 print(dataset[i])
 print('I will now modify the data')
 summed_data = append_sums(dataset)
 write_file(fname + '.sums', summed_data)
 print('I wrote the modified data to %s' % (fname + '.sums'))

def read_file(fname):
 dataset = []
 f = open(fname, 'r')
 for line in f.readlines():
 words = line.split()
 x = float(words[0])
 y = float(words[1])
 dataset.append((x, y))
 return dataset

def append_sums(dataset):
 sum_y = 0
 summed_data = []
 for pair in dataset:
 sum_y = sum_y + pair[1]
 triplet = (pair[0], pair[1], sum_y)
 summed_data.append(triplet)
 return summed_data

def write_file(fname, dataset):
 f = open(fname, 'w')
 for triplet in dataset:
 f.write('%g %g %g\n' % triplet)
 f.close()

main()

At this point we are comfortable with basic programming patterns for
reading and writing data. This is very important: this kind of file
manipulation is one of the big steps in becoming a confident programmer.
This is a good time to make the kids familiar with the terminology
“input/output” (I/O).

2.5. Generating our own data to plot

Now we look at an example of writing a python program to generate some
data which we will then plot. Initially this just feels like silly
data: it calculates the \(sin\) function for many opints and
prints out the values. There is a reason to start with this very
simple model: it will allow us (in the more advanced course on Fourier
analysis) to give clear cut examples of deeper data anlysis. We will
not be lazy: in the more advanced courses we will look at real signals
instead of the toy ones.

Start with the python3 command line and let us see the few lines
of code that generate \(sin\) wave data:

Listing 2.5.1 simplewave.py – simple \(sin\) wave generator. You
can run it with python3 simplewave.py

#! /usr/bin/env python3

"""Generate a simpole sine wave"""

import math

for i in range(20):
 x = i/10.0
 signal = math.sin(x)
 print('%g %g' % (x, signal))

0 0
0.1 0.0998334
0.2 0.198669
0.3 0.29552
0.4 0.389418
0.5 0.479426
0.6 0.564642
0.7 0.644218
0.8 0.717356
0.9 0.783327
1 0.841471
1.1 0.891207
1.2 0.932039
1.3 0.963558
1.4 0.98545
1.5 0.997495
1.6 0.999574
1.7 0.991665
1.8 0.973848
1.9 0.9463

Comments on this:

	This just prints values to the terminal, so we limited it to some 20
values of \(x\). When we write it to a file for plotting we will
do much more.

	The classic for loop generates a sequence of integers, which
does not do well at all for plotting: we want to space our \(x\)
values much more tightly to get a nice plot, so we divide the
integer i by 10.0 to get finely spaced values of \(x\).

Let us now put this into a file called simplewave-write.py

Listing 2.5.2 simplewave-write.py – simple \(sin\) wave generator,
writes output to a file called simplewave-write.dat

#! /usr/bin/env python3

import math

def main():
 out_fname = 'simplewave-write.dat'
 f = open(out_fname, 'w')
 for i in range(200):
 x = i/10.0
 signal = math.sin(x)
 f.write('%g %g\n' % (x, signal))
 f.close()
 print('finished writing file %s' % out_fname)

main()

We run the program and do a quick scan of its output with:

$ python3 simplewave-write.py
$ ls -l simplewave-write.dat
$ head simplewave-write.dat
$ tail simplewave-write.dat

and when we have seen the first and last few lines of the output file we
realize we can plot it (after going back to our gnuplot window) with:

Listing 2.5.3 Instructions to plot the output of
simplewave-write.py

##CAPTION: Plot the simple sin wave from a file.
set grid
plot 'simplewave-write.dat' using 1:2 with linespoints

[image: ../_images/simplewave-write.svg]
Figure 2.5.1 Plot of simplewave-write.dat which was output by our simple
wave generator.

Describing what this program does is rather straightforward, and it can
be compared to the gnuplot instruction plot sin(x).

At this point, at the blackboard, I will suggest to the students a
couple of edits they “should have already tried on their own”:

	See what happens if we don’t divide \(i/100.0\): try both
x = i (for this use range(7)) and some intermediate value
x = i/4.0 (for this use range(28)). Note the loss of
resolution.

	Use python’s sys.argv to take the file name as a command line
argument.

We then show a cleaner version of this program which adds some comments,
makes clear what the \(sin\) period is, and uses some robust
proramming paradigms such as using command line arguments.

Listing 2.5.4 simplewave-cleaner.py – More elaborate version of
simplewave-write.py

#! /usr/bin/env python3

"""
Generate samples of a simple sin() wave and save them to a
file. The file has two columns of data separated by white
space. To run the program and plot its output try:
$ python3 generate-sin-cleaner.py 'sin_output.dat'
$ gnuplot
gnuplot> plot 'sin_output.dat' using 1:2 with lines
"""

import math
import sys

def main():
 out_fname = 'simplewave-write.dat' # default output filename
 if len(sys.argv) == 2:
 out_fname = sys.argv[1]
 elif len(sys.argv) > 2:
 print('error: program takes at most one argument')
 sys.exit(1)

 f = open(out_fname, 'w')
 for i in range(700):
 x = i/100.0
 signal = math.sin(x)
 f.write('%g %g\n' % (x, signal))
 f.close()
 print('finished writing file %s' % out_fname)

main()

Note that the comments also tell you how to run a program and
visualize the output. This use of comments to explain behavior is an
important detail, even for small programs.

In the more advanced course on Fourier analysis we will revisit this
simple program and make it generate more complex waveforms.

2.6. The broad landscape of plotting software

Now that we have seen some examples, let us talk broadly about plotting
software, since you will soon be bombarded with people telling you about
their favorites.

By now we know well that in the free software world there is often a
dizzying variety of tools to do any task, with fans advocating each
approach. Gnuplot is full-featured, stable, actively maintained and
ubiquitous so I have chosen it, there are several other valid choices.

There are at least three main categories of plotting tools:

	The “just a plotting program” kind,

	The “plotting program with some data analysis that grew into a full
programming language”,

	The “plotting library for a well-established programming language”.

Gnuplot is clearly one of the first, R and Octave the second, Python
with Matplotlib and Cern’s Root are examples of the third.

Often it comes down to where a particular scientist did her early
research work: a boss will tell you to “use this tool because it’s what
I use”. I recommend forming a broad knowlege of scientific tools so that
you can use the most appropriate tool instead of the tool that makes
your boss comfortable. You will often find that astrophysicists often
use Python with matplotlib, particle physicists use Cern’s Root,
biologists use R or Python, social scientists who do much statistical
work use R. You shoud always know the tool your community uses (if it’s
a free software tool), as well as some others which might be more
appropriate.

There are many proprietary plotting packages. I advocate against the use
of proprietary software, and it is certainly unacceptable to do science
with proprietary tools, but I will mention a couple of packages so that
when you come across users you will be able to categorize and compare
them and offer an effective free software approach to the same problem.

CricketGraph, often used in the 1990s, was a light-weight plotting
program, later supplanted by KaleidaGraph. I would recommend gnuplot as
a good way of doing what those programs did.

Matlab and IDL are simple plotting and data analysis programs that grew
out of control and added an ad-hoc programming language to the package.
The languages were never meant for large software applications, but are
often used to write very large programs. It is interesting to note that
these programs always start with the stated intention of not requiring a
scientist to know how to program, but they end up channeling scientists
into using an ill-designed language for large programs.

Matlab and IDL programs can be written in a much cleaner way using
Python for the programming parts, and the matplotlib plotting library
for graphics.

There is a final outlier in the proprietary data analysis world, which
is the “using a spreadsheet to do data analysis” approach, often with
the proprietary Excel spreadsheet. There is no saving grace to this
approach: apart from technical concerns with the validity of the
numerical subroutines, there is also the complete lack of
reproducibility of a person moving a mouse around over cells. One of
the most embarrassing cases of incorrect analysis was in a much-cited
Economics paper about debt rations in European countries
[RR10]. The analysis was done with an Excel
spreadsheet, and some readers concluded that the authors selected the
wrong range of data with a mouse movement. There is no reproducibility
when mouse movements are part of the data analysis. The economics
article was disgraced because of the faulty analysis as well as other
problems with their methodology.

2.7. Data formats

In Section 2.2 and
Section 2.4 we saw the simplest examples
of data files: columns of numbers separated by white space. These are
the simplest to work with, and if your files are smaller than about 10
megabytes you should always treat yourself to that simplicity. This
format is often called “whitespace separated ascii” or names similar
to that.

Often you will find that the columns of data are separated by commas.
This format is called “comma separated values” (csv) and the files
often end with the .csv extension. The format has been around
almost half a century. It has some advantages over the whitespace
separated columns and is used by almost all spreadsheet programs as an
import/export format. In gnuplot you handle this with the instruction
set datafile separator comma as we see in
Section 8.1.

Sometimes files are in a variety of binary formats, which you cannot
read directly. We will not deal with these at this time, since we are
not yet working with very big files, but later on we will show how to
convert mp3 files to an ascii format which is easily read by our
programs and by gnuplot.

2.8. Simple surface plots

So far we have looked at line plots. Let us now look at another type
of plot: the surface plot. A surface plot comes from a function of
two variables: \(z = f(x, y)\). In these plots the value of the
function is plotted as the height over the x, y plane. Here is an
example:

Listing 2.8.1 Instructions to plot a simple surface, in this case the
function \(f(x, y) = e^{\frac{-x^2 - 1.7 y^2}{10}}\)

##CAPTION: Simple surface plot.
set grid
set pm3d
set xlabel 'x'
set ylabel 'y'
set samples 50
set isosamples 50
splot exp((-x*x-1.7*y*y)/10.0) with pm3d

[image: ../_images/simplesurfacefunction.svg]
Figure 2.8.1 The surface plot of \(f(x, y) = e^{\frac{-x^2 - 1.7 y^2}{10}}\)

The plot in Figure 2.8.1 is visually
gratifying, and even more so because when you generate it
interactively with gnuplot you can grab it with the left mouse button
and rotate it to get more insight into what the surface looks like
from different angles.

Another way of showing the same information is a heat
map. Figure 2.8.2 shows the same function, but this
time the value of the function is represented with color instead of
height.

Listing 2.8.2 Instructions to plot a heat map, in this case the
function \(f(x, y) = e^{\frac{-x^2 - 1.7 y^2}{10}}\)

##CAPTION: Heat map plot.
set size ratio -1
set view map
set samples 50
set isosamples 50
set xlabel 'x'
set ylabel 'y'
splot exp((-x*x-1.7*y*y)/50.0) with pm3d

[image: ../_images/heatmap.svg]
Figure 2.8.2 The heat map for of \(f(x, y) = e^{\frac{-x^2 - 1.7 y^2}{10}}\)

2.9. Topics we have covered

	data files

	plots

	gnuplot

	reading features from simple plots

	simple surface plots

[4]
In the introductory course I have insets on the board with shell
commands, emacs keybindings, and some Python commands. The
emacs keybindings are especially important since the students
have not necessarily done the full tutorial.

3. Intermediate plotting

[status: mostly-written]

Motivation

Plotting is maybe the main tool scientists use to develop their own
insight into what they study, and is also the main tool they use to
communicate their results and insights to others.

We continue to study plotting, introducing histograms and then
learning how to plot directly from Python with matplotlib.

Prerequisites

	The 10-hour “serious programming” course.

	The “Data files and first plots” mini-course in
Section 2.

Plan

We will:

	Work through an example which motivates the introduction of
histograms and of plotting from a program.

	Introduce histograms.

	Learn how to make plots directly in a python program with
matplotlib.

3.1. A worked example

Histograms, bins, distributions… What are these? What kind of
insight do they give?

Let’s start by looking at a data set on human height and seeing what
we can do with it. We will use the Howell census data for the !Kung
people of the Kalahari desert. I will guide you through trying to
pull information out of this file, paying attention to where we
introduce new ideas and techniques.

Download the file with

$ wget https://raw.githubusercontent.com/rmcelreath/rethinking/master/data/Howell1.csv
$ wget https://raw.githubusercontent.com/rmcelreath/rethinking/master/data/Howell2.csv

Looking at these files we see that (a) they have the .csv
extension, meaning that they are “comma separated values”, but (b)
looking at the contents with head Howell1.csv or less
Howell1.csv shows that the data fields are separated by semicolons
instead of commas. We need to know this to give the right plotting
instructions.

Weight vs. height

Taking the “what do you do with witches” approach, let us immediately
plot the data in this file:

$ gnuplot
gnuplot> set datafile separator ";"
gnuplot> plot 'Howell1.csv' using 1:2

What have we just done? we plotted the first two columns, and the file
header tells us that those columns are height and weight, so let us
make the plot more clear like this:

gnuplot> set datafile separator ";"
gnuplot> set xlabel "height (cm)"
gnuplot> set ylabel "weight (kg)"
gnuplot> plot 'Howell1.csv' using 1:2

What do we call this kind of plot? It’s a “scatter plot”: the height
is not in any particular order, and there can be variability in weight
for a given height, so there is no point in a line plot. That’s why
we plot points for scatter plots.

Insight: taller people weigh more, but there is some variability
(people can be overweight or underweight).

Terminology: scatter plot.

Terminology: we have plotted “weight versus height” or “weight as a
function of height”.

Height vs. age

What more can we do? The first line tells us we also have age in
column 3, so let’s look at height as a function of age:

gnuplot> set datafile separator ";"
gnuplot> set xlabel "age (yr)"
gnuplot> set ylabel "height (cm)"
gnuplot> plot 'Howell1.csv' using 3:1

Let’s add a grid to this one:

gnuplot> set grid
gnuplot> plot 'Howell1.csv' using 3:1

Type of plot: scatter plot of height vs. age.

Insight: you grow until age 20, then you stop growing. You might lose
some height when you are really old.

Weight vs. age

We can guess that weight vs. age will look a bit like height vs. age,
but check it out:

gnuplot> set datafile separator ";"
gnuplot> set xlabel "age (yr)"
gnuplot> set ylabel "weight (kg)"
gnuplot> set grid
gnuplot> plot 'Howell1.csv' using 3:2

Insight: as the !Kung people get older they weigh more until their
20s, then it stabilizes.

Distinguish female and male

The header in Howell1.csv tells us that column 4 is 1 for male and
0 for female. What do we expect to see if we somehow distinguish the
male and female parts of the plot?

Let’s first make some guesses in our mind about what we should see.
Would weight vs. height be significantly different for females and
males? How about height vs. age and weight vs. age?

Now let’s plot it:

gnuplot> set datafile separator ";"
gnuplot> set ylabel "height (cm)"
gnuplot> set xlabel "sex (0=female, 1=male)"
gnuplot> set grid
gnuplot> plot 'Howell1.csv' using 4:1

If you peer at this plot closely you will see that the points are
concentrated in a higher band for males than for females, but there
are problems: (a) it’s deeply inelegant, (b) this visual insight
could easily disappear with much more data, and (c) you cannot deduce
any specific quantities from this plot.

We will look at a couple of ways in which this can be plotted better
using the tools we have, but in the end we will realize that we are
forcing our tools a bit, which is a sign that we need new tools.

First we try to split the file into two separate pieces. For this
file we can do it with the ever-amazing tool grep. Note that the
lines for females have the snippet ;0 at line’s end and those for
males have ;1 at the end of a line, and now type:

$ grep ';0$' Howell1.csv > females.csv
$ grep ';1$' Howell1.csv > males.csv
$ gnuplot
gnuplot> set datafile separator ";"
gnuplot> set xlabel "age (yr)"
gnuplot> set ylabel "height (cm)"
gnuplot> set grid
gnuplot> plot 'females.csv' using 3:1
gnuplot> replot 'males.csv' using 3:1

The $ in the grep command matches the end of a line.

Insight: by age 20 the !Kung people have a height difference between
men and women.

This took a bit of work. Another approach is to use a feature of
gnuplot which colors the points according to the value of another
column. This saves you from creating the two separat files. You can
do it like this:

gnuplot> set datafile separator ";"
gnuplot> set xlabel "age (yr)"
gnuplot> set ylabel "height (cm)"
gnuplot> set grid
gnuplot> plot 'Howell1.csv' using 3:1:4 with points linecolor variable

This will show different colors for male and female.

Needing more tools

Both the approaches we saw to separate out female and male data are
clumsy: the first one makes you create extra files, while the second
one feels contrived and doesn’t give you very good control over the
plot.

There is also another problem with scatter plots. They give good
rapid insight, like “between the heights of of 140cm and 175cm there
is agreat variability in weight. But they do not allow you quantify
it. For example: the middle of the jumble of points does not allow
you to say how many points are in there and to distinguish different
parts. This is especially true of larger data sets.

Examples of questions you could not answer too well with the plots we
have:

	Which is the most common height among the !Kung people?

	Are most adults close to that average height or does it vary a lot?

	Can we see how those quantities vary for just grown-ups? Or just
children of certain ages?

This leads us to introduce the new conceptual tool of the histogram
and to discuss how to plot from within a python program.

3.2. Histograms

Looking at the question “hich is the most common height among the
!Kung people?”, let us try to answer it this way: for each height from
135cm to 180cm, how many people are that tall?

Of course we can’t say “for each height”: if you measure precisely
enough there will be just one person for each height!

So we break up that range into bins, for example 135 to 137, 137 to
139, …, 173 to 175, 175 to 179, 179 to 181. There should be some 22
bins, each of which is 2cm wide.

Then for each one of these bins we add up how many people have that
height.

Terminology: the bins are those 2cm spaces, the bin edges are the
minimum and maximum values for the bin. The bin width is the 2cm
between the high edge and the low edge.

To do this, enter the program in
Listing 3.2.1:

Listing 3.2.1 make-height-histogram.py – make a histogram from a file
whose first column has heights.

#! /usr/bin/env python3

"""Takes file where the first column has heights and makes a histogram
out of it, putting them into 2cm bins between 130cm and 180cm.
"""

import sys
import matplotlib.pyplot as plt
import numpy as np

def main():
 fname = sys.argv[1]
 heights = []
 ## define the "bin edges"
 bin_edges = [i for i in range(135, 182, 2)]
 n_bins = len(bin_edges) - 1
 ## initially all bins are empty
 histogram = [0] * n_bins
 ## now open the file and read in all the values in the first
 ## column; put them in bins as we read them
 with open(fname, 'r') as f:
 lines = f.readlines()
 for line in lines:
 if line[0] == '"':
 continue # skip the first line (it starts with a quote)
 ## break the line up into words, splitting on semicolons
 words = line.split(';')
 ## the first word is the height; convert it to float
 height = float(words[0])
 ## now put it in the right bin
 for bin, low_edge in enumerate(bin_edges[:-1]):
 if height >= low_edge and height < bin_edges[bin+1]:
 ## found it!
 histogram[bin] += 1

 ## now write out a file with the midpoints of the bins on the x
 ## axis and the number of heights in that bin on the y axis
 hist_out_fname = sys.argv[1] + '.hist'
 with open(hist_out_fname, 'w') as f:
 for bin in range(n_bins - 1):
 midpoint = (bin_edges[bin] + bin_edges[bin+1]) / 2.0
 f.write('%g %d\n' % (midpoint, histogram[bin]))
 print('%g %d' % (midpoint, histogram[bin]))
 print('wrote histogram to %s' % hist_out_fname)
 print('you could plot in gnuplot with the command')
 print('plot %s using 1:2 with boxes' % hist_out_fname)

if __name__ == '__main__':
 main()

Run the program with:

$./make-height-histogram.py Howell1.csv

Then plot the resulting histogram with the following gnuplot
instructions:

Listing 3.2.2 Instructions to plot the height distribution plot for the
!Kung.

##REQUIRED_FILE: Howell1.csv
##REQUIRED_FILE: Howell1.csv.hist
##REQUIRED_FILE: females.hist
##REQUIRED_FILE: males.hist
##PRE_EXEC: wget https://raw.githubusercontent.com/rmcelreath/rethinking/master/data/Howell1.csv
##PRE_EXEC: ./make-height-histogram.py Howell1.csv
##PRE_EXEC: grep ';0$' Howell1.csv > females.csv
##PRE_EXEC: grep ';1$' Howell1.csv > males.csv
set grid
set title 'height distribution of the !Kung people'
set xlabel 'height (cm)'
set ylabel 'number of people with that height
set style data histogram
set style fill solid 0.8 border -1
plot 'Howell1.csv.hist' using 1:2 with boxes

[image: ../_images/plot-height-distribution.svg]
Figure 3.2.1 Histogram of how many people are in a given range of height. This
is for the !Kung people of the Kalahari desert, and the data set
includes both females and males.

This plot seems to show two humps, one around 152cm and one around
160cm. But wait: haven’t we been told that height distribution should
look like a bell shaped curve? This one does not.

So let us use the separate male and female data we obtained earlier
and that is in the files females.csv and males.csv:

First we make height histograms for females and males:

$./make-height-histogram.py females.csv
$./make-height-histogram.py males.csv

Then plot with:

Listing 3.2.3 Instructions to plot the height distribution plot for the
!Kung

##REQUIRED_FILE: Howell1.csv
##REQUIRED_FILE: Howell1.csv.hist
##REQUIRED_FILE: females.hist
##REQUIRED_FILE: males.hist
##PRE_EXEC: wget https://raw.githubusercontent.com/rmcelreath/rethinking/master/data/Howell1.csv
##PRE_EXEC: ./make-height-histogram.py Howell1.csv
##PRE_EXEC: grep ';0$' Howell1.csv > females.csv
##PRE_EXEC: grep ';1$' Howell1.csv > males.csv
set grid
set title 'height distribution of the !Kung people'
set xlabel 'height (cm)'
set ylabel 'number of people with that height
set style data histogram
set style fill solid 0.8 border -1
plot 'Howell1.csv.hist' using 1:2 with boxes, \
 'females.csv.hist' using 1:2 with boxes, \
 'males.csv.hist' using 1:2 with boxes

[image: ../_images/plot-height-distribution-with-gender.svg]
Figure 3.2.2 Histogram of how many people are in a given range of height. This
is for the !Kung people of the Kalahari desert, and we also show
the separate male and female data. The gaussian (bell-shaped)
distribution is now clear.

We finally have what we were hoping for: a clear gaussian
(bell-shaped) distribution of data around an average height. We had
to separate male and female heights to get that.

Insight: these histograms of frequency of occurence of certain heights
give us insight into the nature of human height.

To conclude: we have written a program which takes data and makes
histograms out of it. It is useful to know how to do this, but we
will see that this approach gets cumbersome (we have to run several
different programs), so we will learn how to programs that use
libraries to make histograms and to make plots.

Exercise 3.1We only looked at heights greater than 135cm because we were
interested in fully grown men and women. Do you see the problem
here? Some children might pass through height 135cm before they
reach full height, so we might get some data in there that is not
appropriate. Adjust make-height-histogram.py to exclude people
under the age of 20 from the histograms.

Exercise 3.2Examine the CSV files at
https://vincentarelbundock.github.io/Rdatasets/datasets.html using
the approaches we have been using in this chapter.

3.3. Matplotlib

Matplotlib is a library for making plots within a python program.
Using this we can manipulate data in a program and draw it right away,
rather than always having to write out intermediate data files.

As with gnuplot, matplotlib allows us to make interactive plots or to
write them out to graphics files (png, pdf, svg, …)

My opinion is that there are times when you want to use matplotlib and
times when you want to write out text files and invoke gnuplot on it.
Developing a feeling for what’s appropriate is a part of developing
your personality as a scientist. A starting point is:

	Use gnuplot (or another command line plotting program) for a quick
exploration into a dataset, or for a reproducible command pipeline.

	Use python+matplotlib when you are doing lots of data manipulation
before generating the plot, or when you are generating plots at
various stages of processing.

Before anything else we must install matplotlib for Python3:

$ sudo apt install python3-matplotlib

In class we follow the matplotlib tutorial offered by the developers
of matplotlib:

https://matplotlib.org/users/pyplot_tutorial.html

(but we should also take the example with the cute multicolored
bubbles from the newer tutorial, even though it does not work on
matplotlib 2.0.0 which comes with ubuntu 16.04. That example is at:
https://matplotlib.org/tutorials/introductory/pyplot.html)

Then we can dip in to some of the further material at:

https://matplotlib.org/tutorials/index.html

in particular we can take a tour of the “Sample Plots in Matplotlib”.

After doing this we can try some exercises:

Exercise 3.1Redo all the work from earlier sections in this chapter using
matplotlib instead of gnuplot.

Exercise 3.2Make all the programs in the previous exercise take an optional
command line option which is an output file for the plot. If there
is no command line option then make the plot interactive.

3.4. A histogram snippet to conclude

Finally: I will reproduce here a useful snippet from the tour: how to
make and plot histograms using numpy and matplotlib.

import numpy as np
import matplotlib.pyplot as plt

[...] collect quantity to be histogrammed in an array x

n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75)

plt.xlabel('base quantity')
plt.ylabel('Probability')
plt.title('Histogram of base quantity')
plt.grid(True)
plt.show()

4. A tour of functions

Section author: Leina Gries <leinagries@gmail.com>

[status: content-mostly-written]

4.1. Motivation, Prerequisites, Plan

A function is a relationship between two (or more) variables. For now
we will call one of them \(x\) and the other \(y = f(x)\)
(the value of the function at x). For this relationship to be a
true function, each value of x must give a unique value of y.

We use other terminology for functions. We can say:

	y is a function of x

	f is a mapping from x to y

There are other terms people use as well. As usual, don’t worry about
differing terminology: they mean more of less the same thing: you take
a value x, put it into a machine, crank the machine, and out pops the
value y.

The goal of this chapter is to gain a deeper understanding of
mathematical functions and how to go about plotting them. Initally,
we will experiment with basic linear functions, using them as a tool
to understand plotting software and seeing how visualization can be
useful. We will experiment with plotting multiple lines at a time,
and look at how the geometry matches up with the algebra.

Then we will look at polynomials and explore how they solve some
physical problems and how the solutions to these problems can be
visualized with plotting software.

Afterwards, we will move into the realm of more advanced functions-
touring exponential growth and decay, the curves made by sine and
cosine waves, bell curves (Gaussian Distribution), factorials and the
fibonacci sequence. Then, we will cover some functions that create
interesting and visually pleasing graphs.

Finally, we will apply our findings to the real world and plot
functions that describe real life events, such as climate change and
nuclear fission.

4.2. Linear Functions

To start, let’s stay linear. Graph the equation \(y=5x-8\) by
running gnuplot and typing the following expressions:

gnuplot> set grid
gnuplot> plot 5*x - 8

This should bring up a graph displaying the equation in a seperate
window. Try plotting this with and without grid lines, using the
command (code). Explore the window. What can you do to make the line
displayed change?

Can you make the slope negative?

Can you graph several lines at once? This brings us to plotting two
linear functions. Try plotting the original line with the addition of
\(y=4x-6\).

gnuplot> set grid
gnuplot> plot 5*x - 8
gnuplot> replot 4*x - 6

[image: ../_images/linear.svg]
Figure 4.2.1 Two lines, one with slope 5 and the other with slope 4. Lines with
different slopes will always intersect.

We see visually in Figure 4.2.1 that the lines intersect.
How do we figure out at which point they touch? Visually we can see
that x is near 2 and y is near 2, but can we get the exact values?

This is where the beauty of analytic geometry comes in: there is a
relationship between the gometry (which we see visually) and the
analysis that you can do using algebra. The key here is:

The intersection is the point at which the x and y values of both
lines are the same.

How do we express that algebraically? We can start by saying that if
\(y = 5 x - 8\) and \(y = 4 x - 6\), then:

\[5 x - 8 = 4 x - 6\]

There are many ways of solving this, and depending on where you are in
your math studies you might have seen one or more. I will do one of
the simplest: if \(5 x - 8\) and \(4 x - 6\) are equal, then I
can add and subtract the same quantities from both, and the result
will still be equal. That gives

\begin{align}
5 x - 8 & = 4 x - 6 \\
5 x - 8 - 4 x & = 4 x - 6 - 4 x \\
x - 8 & = - 6 \\
x - 8 + 8 & = - 6 + 8 \\
x & = 2 \\
\end{align}
Once we have x we can plug that value into either of the equations for
y and we get \(y = 2\), so the intersection point is \((2, 2)\)

This technique can be used in many other circumstances to find where
two curves intersect. The algebra will be more complicated than
finding the intersection of lines, but the idea will be the same.

Can you think of a way to find out multiple points of intersection
between three or more lines?

Another bit of terminology: these functions in which x appears only in
the first power (there is no \(x^2\) or \(x^3\)) always give
straight lines when you plot them. Because of this we call them
linear functions.

FIXME: discuss Direct proportionality.

4.3. Polynomials

Polynomials are the next step in complexity. Let us start with a
binomial (second degree polynomial). Plot the function
\(y=3x^2+6x-4\)

[image: ../_images/quadratic.svg]
Figure 4.3.1 A simple second degree polynomial \(y=3x^2+6x-4\)

From the graph, what can you observe about this function? Where are
the x intercepts? The y intercept? While these are clear in some
cases, they are difficult to find in others.

The figure that comes from plotting a second degree polynomial is
called a parabola. This one has two arms that grow up from its
minimum.

We will spend a bit of time discussing this plot because it teaches us
some interesting things to look out for.

	This polynomial has three terms: \(3 x^2\), \(6 x\) and
\(-4\). Each of these three terms has more or less importance
according to the value of \(x\). When x is 0, then the constant
term 4 dominates. When x is between 0 and 1 or 0 and -1 then the term
\(6 x\) grows to be more important. When x gets much bigger
than 1 (or much smaller than -1) then the \(3 x^2\) term (second
order term) dominates.

	Terminology: the number that multiplies \(x^2\) (in our case 3)
is called the coefficient of the second order term (or the
quadratic term). The number that multiplies \(x\) (in our
case 6) is called the coefficient of the first order term (or
linear term). The term that doesn’t have x is called the
constant term or the offset.

	The arms of the parabola eventually point up. This is because the
term with \(x^2\) gets much bigger than the other ones, and when
x is negative, \(x^2\) is still positive.

	Zero crossings: it is interesting to note where the parabola crosses
the x axis and the y axis. In class we discuss how to find this by
zooming in on the picture (both with the mouse and with the range
parameters in gnuplot). Terminology: the values of x at which a
function crosses the x axis (i.e. where \(y = 0\)) are called
the roots of the function.

	It is also interesting to note the value of x for which the parabola
has its minimum or maximum values. Sometimes there is no
global minimum or maximum, so in class I describe what a local
minimum or maximum is. There is a technique for finding maximum and
minimum values for a function. This involves calculating the
derivative of the function. We will say a bit more about
derivatives below.

4.3.1. Derivatives

Without introducing the entire subject of differential calculus (for
that see Section 15), let’s
look at the parabola we have been considering: \(y=3x^2+6x-4\).
Looking at the plot, study what the slope of that plot is for big
negative x, for x between -3 and 0, and for big positive x.

We expect the slope to be big and negative for very big negative x,
close to zero for that value of x between -3 and 0, and then to get
positive and big.

When we learn calculus we will learn that you can figure out exactly
what this slope is at every point in the curve. Without showing how
it’s done, I show the result here. We call the function that is the
slope of \(f(x)\) the derivative of f, and we write
\(\frac{df(x)}{dx}\). The derivative of this second degree
polynomial is:

\[\frac{df(x)}{dx} = 2 \times 3 x + 6 = 6 x + 6\]

The properties of derivatives that we used here were: (a) the
derivative of a sum of terms is the sum of the derivatives of each
term, and (b) the derivative of \(x^n\) is \(dx^n/dx =
n \times x^{n-1}\).

The place at which the derivative is zero is \(x = -1\), so we can
say that the our parabola has its minimum at \(x = -1\). If you
zoom in to the plot enough you will see that this is true
geometrically.

You should explore this polynomial further. You should change the
sign or some of the values and see how different the plot looks.

4.4. Higher order polynomials

Having successfully plotted a binomial, let’s move onto higher order
polynomials. Plot \(x^4 + x^3 - 7 x^2 - x + 6\). The result will
initially look somewhat boring.

[image: ../_images/quartic-boring.svg]
Figure 4.4.1 A fourth degree (quartic) polynomial \(y = x^4 + x^3 - 7 x^2 -
x + 6\). This does not look too interesting at this time.

[image: ../_images/quartic.svg]
Figure 4.4.2 The same fourth degree (quartic) polynomial \(y = x^4 + x^3 -
7 x^2 - x + 6\). By zooming in to the x range [-3.2:3.2] we see
interesting features.

Now, finding the root (or solutions, found at the x intercepts of the
equation) are much more dificult to find manually.

By zooming in further, find the roots of this 4th order polynomial.
How many are there? Does this relate to the degree of the polynomial?

And now let me tell you how I picked this polynomial: I wanted to find
a polynomial that crosses the x axis at -3, -1, 1 and 2. How do you
do that? First notice that the first order polynomial \((x-1)\)
is zero when \(x = 1\). So we can craft a set of first 1storder polynomials (linear functions) which cross the x axis
at -3, \((x + 3)\), -1 \((x + 1)\), 1 \((x -1)\) and 2
\((x - 2)\). Since zero multiplied by any number gives zero, we
can try to multiply these together. We get:

\[y = (x+3) \times (x + 1) \times (x - 1) \times (x - 2)\]

If you multiply out all the expressions in parentheses you will find
that:

\[y = x^4 + x^3 - 7 x^2 - x + 6\]

Would you have been able to go the other way: go from \(x^4 +
x^3 - 7 x^2 - x + 6\) to \((x + 3) \times (x + 1) \times (x - 1) \times (x - 2)\)?
It’s much harder to do, and it’s called factoring a polynomial.

The factored expression is useful because it tells you clearly where
all the roots of the polynomial are. The normal expression is useful
because you can see clearly the coefficients of the terms of each
order. In particular, the fact that the \(x^4\) has a positive
coefficient (in this case 1) and an even power allows you to say that
the curve will have arms that point up on both sides.

Another bit of terminology: the zoomed plot in Figure 4.4.2
shows a lot of structure near \(x = 0\), but the unzoomed plot
in Figure 4.4.1 shows that for large negative and
positive values of x you just go up. The behavior of a function when
you go to large values of x (or large negative values) is called
asymptotic behavior, and understanding the asymptotic behavior of a
function is a useful and deep area of mathematics.

Note that with simple polynomials, it is relativly easy to graph
manually and to find the y for a given x. However with higher order
polynomials a plotting program helps us gain insight.

4.5. Inverse functions

FIXME: must write; discuss 1/x and x^-n and x^-(a/b)

Mention inverse proportionality.

When one

4.6. Elementary transcendental functions

A function which cannot be written as a polynomial is called a
transcendental function.

4.6.1. Exponentials

Exponential growth and decay are commonly seen phenomena in daily
life. The exponential function is be used to model many real life
situations with growth and decay.

4.6.1.1. Growth

Let us start with a simple problem and a small program to simulated
it. Let’s say we have a pair of rabbits, and every month they produce
two baby rabbits. (NOTE: rabbits do have a one month gestation time,
but their litters are actually much bigger – 4 to 12 kits, but we’re
keeping it simple).

After one generation you have 2 new rabbits (a total of 4). Then
those pair up and reproduce and you have 4 new rabbits (a total of 8).

A simple program to demonstrate this is:

Listing 4.6.1 Program which models simple reproduction.

#! /usr/bin/env python3

import math

def main():
 n_generations = 10
 n0 = 2 # initial population
 print('## generation n_rabbits')
 # print('## generation n_rabbits exponential')
 n = n0
 for generation in range(1, 11): # let's do 10 months
 n_new = (n / 2.0) * 2
 n = n + n_new
 print(generation, n)
 # print(generation, n, math.pow(2.0, generation+1))

main()

Run this program and notice that the

The general formula for exponential growth or decay is written
\(A(t) = P_0e^{r*t}\), where A is the amount at any given t, time,
r is the rate of growth or decay, and \(P_0\) is the initial
amount of whatever is being changed. It is important to remember here
that e is simply a number – it is not a variable, and should remain
constant in each situation. In this way, it should be treated the same
as pi.

Let us explore this function:

\[f(x) = e^x\]

Wait, wait wait: what does this even mean? We have seen what it means
to take a number, like 4, and raise it to a power, like 3: \(4^3
= 4 \times 4 \times 4 = 64\). But what does it mean to take numbers
that are not integers and raise them to powers? That’s
straightforward if the power is an integer. For example: \(1.7^3
= 1.7 \times 1.7 \times 1.7 = 4.913\). That’s all fine.

But what does it mean to take a number to a power that is not an
integer? The topic is too long to go in to in detail, but remember
this property you probably learned a long time ago:

\[\begin{split}x^{2 + 1} & = x^2 \times x^1 \\
x^{m + n} & = x^m \times x^n\end{split}\]

This allows us to define fractional exponents:

\[x^{1} = x^{1/2 + 1/2} = x^{1/2} * x^{1/2}\]

which means that \(x^{1/2}\) is that number which, when squared,
gives x, which is the very definition of square root! Thus:

\[\begin{split}x^{1/2} = \sqrt{x} \\
x^{1/3} = \sqrt[3]{x} \\
\dots \\
x^{1/n} = \sqrt[n]{x} \\\end{split}\]

Using the properties of exponents that we know, this allows us to get
pretty close to almost all expressions \(a^b\) where a and b are
real numbers, not just integers or fractions.

The number \(e\) is a special number, called Euler’s number.
It’s numeric value is about 2.71828, and it comes up in so many places
in math that it is as important as :math:pi`.

Let us look at our rabbit reproduction problem and write out an extra
number. Change the line that prints the current population to say:

print(generation, n, math.pow(2.0, generation+1))

Note that you will also need to import math at the top of your
program.

If you run the program again you will see that the exponential
function \(2^(generation+1)\) matches what our simulation of
rabbit growth gives.

At some point you will learn that you can convert an exponential in
base e to an exponential in base 2, or 10, or any other number. The
three important ones are e (occurs naturally in math), 2 (comes up in
computer science) and 10 (we have 10 fingers, and our digits are 0 to
9). This allows us to write:

FIXME

Exercise 4.1

Introduce rabbit death. Then think about introducing foxes. Refer to
the proposed chapter on predator-prey problems.

4.6.1.2. Decay

Uranium 235 has a half-life of 703 million years. Let’s write a
program to simulate how some \(5 \times 10^22\) atoms of U235
would decay.

Listing 4.6.2 simple-decay.py - a program which models simple decay.

#! /usr/bin/env python3

def main():
 n_steps = 10
 ## U235 density is 19.1 g/cm^3
 n0 = 5e22 # initial population
 print('## time_yr N_U235')
 n = n0
 time = 0
 ## U235 half life 703.8 million years
 while time < 7.03e10: # 100 half-lifes
 n = (n / 2.0)
 print('%10.4g %10.4g' % (time, n))
 time += 7.03e8

main()

Run the program and discuss what the meaning of half-life is and how
it relates to exponential decay.

4.6.2. Trigonometric function

4.7. Gaussian distribution

Gaussian distribution, more simply known as the bell curve or normal
distribution, is found in many places in the world around us. When the
heights of children of a similar ages are graphed in relation to one
another, the result is a bell curve. Named for its distinctive, bell
like shape, the bell curve can be easily graphed with knowledge of a
relatively simple equation. It is :(equation-formatting?) where () is
the mean, and () is the standard deviation.

Now, of course we could calculate these values manaually, but why
would we?Use (code) to generate a random set of numbers. Start out
with about 20.

Now, use () to find the sum of these numbers. Check your answer
logically- does this seem accurate? Now, divide this by the number of
values you used.

This works, but it would be easy to cut out the middle step- use
(code) to determine the mean with no possibility for user error.

Next, you can find the standard deviation- use (code).

Now, you’re all set up to plug these numbers into the equation listed
above. But this seems time consuming, and programming is all about
finding ways to minimize repetitive tasks. Use (code) to find the
standard deviation of your data set.

Try it with data for the heights of your school, or for some other
large data set that you find interesting.

Next, plot this data using (code).

Try manipulating the graph using the above techniques.

5. Growth – checked and not

[status: just starting]

5.1. Motivation, prerequisites, plan

5.1.1. Motivation

I am preparing this mini-course on 2020-03-12 as New Mexico has just
entered a state of emergency over the coronavirus epidemic. It seems
topical and a nice opportunity to introduce our students to some
aspects of the mathematical equations that describe growth of species.

5.1.2. Prerequisites

	The 10-hour “serious programming” course.

	The “Data files and first plots” mini-course in
Section 2

	The “A tour of functions” mini-course in
Section 4

5.1.3. Plan

There is an attractive and accessible video at:

https://www.youtube.com/watch?v=Kas0tIxDvrg

and:

https://www.youtube.com/watch?v=PUwmA3Q0_OE

which students can watch before the mini-course.

Then we go on to show how difference equations can lead to exponential
growth for an unchecked population.

Then on to the logistic equation and how exponential growth actually
works in the real world.

Finally a discussion of predator-prey models.

5.2. Pure exponential growth

Discus Malthus, what “malthusian” means.

Then we review what the exponential function looks like compared to
this progression.

At the python3 interpreter type:

P0 = 10
rate = 1.2

P = P0
print('## generation population')
for generation in range(100):
 P = P + P * (rate-1)
 print(generation, ' ', P)

Now put that code in a file and run the program, saving its output so
that we can plot it.

Now compare that to what would have come out of a straight exponential
function \(f(x) = P0 \times e^{rt}\). Can you make the rate and
initial population correspond between the difference equation?

https://en.wikipedia.org/wiki/Population_growth

\(dP/dt = rP(1 - P/K)\)

or

\(df(x)/dx = f(x) (1 - f(x))\)

Solution is:

f(x) = exp(x) / (exp(x) + C)

discuss the exponential phase initially, then the cooling down phase.
talk about fidget spinner fads.

P = P0

K = 3.7 is the “carrying capacity”

https://en.wikipedia.org/wiki/Logistic_function

limit t -> infinity P(t) = K

From wikipedia: “In ecology, species are sometimes referred to as r
{displaystyle r} r-strategist or K {displaystyle K} K-strategist
depending upon the selective processes that have shaped their life
history strategies.”

5.3. Checked growth

5.3.1. Checked by lack of resources

5.3.2. Checked by competition with other species

5.4. Simple predator-prey interactions

5.4.1. The Lotka-Volterra equations

The relationship between populations of predators and prey can be
expressed by the Lotka-Volterra equations, a set of paired
differential equations that approximate the interaction between
predator and prey populations over many generations.

The Lotka-Volterra equations are commonly expressed as two paired
differential equations, where \(h\) is the population of prey and
\(p\) is the population of predators. Notice the parralels between
the first and second terms of each equation.

\[\begin{align}\begin{aligned}\frac{dh}{dt} = ah - bhp\\\frac{dp}{dt} = -cp + dhp\end{aligned}\end{align} \]

\(a\), \(b\), \(c\), and \(d\) are variables which
dictate the nature of the interaction. In the case of the prey,
\(a\) represents the growth of the prey population. Since it is
multiplied by the current prey population \(h\), the population
growth of the prey is exponential at its base, excepting the second
term. Conversely, \(c\) represents the exponential decay of the
predator population in the absence of any prey to eat.

The second term of each equation reflects how often predators and prey
encounter each other and the effect these encounters have on their
respective populations. Before we look into what \(hp\) is doing
in the second term of both differentials, it’s important to understand
what the general purpose of the second term is in each case.

For the prey, the exponential population growth from the first term is
checked by predation. In the case of the predator population, the
exponential decay they experience without external input is curbed by
the same force of predation. This is the basis of why both
differentials include the term \(hp\).

However, this makes more sense when we look more closely at what
\(hp\) means in the context of this equation. By multiplying the
populations of the predators and prey, we can find the dimension of
the populations. On the surface this seems like a nonsensical
calculation, but it is integral to the function of the Lotka Volterra
equations.

If there are many more prey than predators (a large dimension), it is
easy for predators to find something to eat. Similarly, we also notice
a large dimension if there are mant more predators than prey. In this
case, it is easy for prey to get caught by a predator. The dimension
of the populations reflects the number of interactions we can expect
between predators and prey, but it doesn’t necessarily tell us about
which side benefits most.

We can only get this information by looking back at the differential
equations. b and d are variables which affect how strongly the
dimension of the populations effect each population.

6. Advanced plotting

[status: content-partly-written]

Motivation

A quick plot is OK when you are exploring a data set or a function.
But when you present your results to others you need to prepare the
plots much more carefully so that they give the information to someone
who does not know all the background you do.

Prerequisites

	The 10-hour “serious programming” course.

	The “Data files and first plots” mini-course in
Section 2.

	The “Intermediate plotting” mini-course in
Section 3.

Plan

We will go through some topics in plotting that might come up when you
need to prepare a polished plot for publication, or an animation for
the accompanying materials in a publication.

This chapter will have a collection of examples that you might adapt
to use in your papers or supporting web materials. They will all be
based on the physical system of the harmonic oscillator, in this
case a mass bouncing on a spring. (The harmonic oscillator equations
are discussed and solved in more detail in
Section 17.)

After showing simple oscillator line plots we will work through
examples of adding touches that convey information about the axes and
lines, as well as showing example captions for plots.

Then we will add another dimension: line plots that depend on a
parameter can be viewed in interesting ways that give insight.

It’s hard to go beyond a surface plot, but there are some techniques
to visualize more complex systems. Techniques that do this are volume
rendering, isosurfaces and animations, and we will give examples of
these.

6.1. Our setup

The same simple harmonic oscillator equations can describe very many
physical systems. Ours will be a mass bouncing sideways on a spring
as shown in Figure 6.1.1.

[image: ../_images/Simple-harmonic-oscillator.png]

Figure 6.1.1 A mass bouncing on a spring. The zero position on the x axis is
when the spring is at rest and does not push or pull the mass.

When we teach this in introductory physics classes we assume that
there is no friction as the mass bounces to the right and left. We
call that the simple harmonic oscillator (SHO). If there is
friction it is a damped harmonic oscillator.

The spring has a spring constant \(k\) which represents how
stiff it is. The force that returns the spring toward the rest
position after you pluck it a distance \(x\) is \(F = -k
\times x\). The mass is \(m\).

We are interested in the position of this mass as a function of
time. The equation for this is:

(6.1.1)\[x(t) = A \cos(\omega t)\]

This equation has two variables x and t, and two constants, A and
\(\omega\).

\(A\) is the amplitude of the oscillation: the maximum
displacement \(x\) will ever reach, both to the right and to the
left. The angular frequency of the cosine wave is given by
\(\omega = \sqrt{\frac{k}{m}}\). A few simple things we can say
about this formula are:

	The formula comes from solving Newton’s law: \(F = m a\) where
the force is \(-k x\), so we have \(a + \frac{k}{m} x = 0\).
Since the accelartion \(a\) is the second derivative of the
position \(\frac{d^2x}{dt^2}\) or \(\ddot{x}\), so we have

\[\frac{d^2x}{dt^2} + \frac{k}{m} x = 0\]

which is a differential equation which is solved by equation
(6.1.1). I don’t discuss how to solve differential
equations here (see Section 17) since we
are only interested in the plotting of solutions, so you can ignore
that: we will focus on plotting the solution. I only mention the
equation it comes from so you can start getting excited about the
amazing world of mathematical physics that lies ahead of you.

Note

For teachers: this mention of of differential equations should be
very rapid, or you could skip it altogether. Mentioning it gives
a vision of depth, but you need to slip it in casually and
without spending too much time on it, or it can be daunting for
some students. You could say “you will see this toward the end
of high school or in college; for now just look at it and let’s
move on to the solution.”

	If you pluck the spring to the right and then let it go, the
amplitude \(A\) is how far you plucked it initially.

	The frequency \(f = \omega / (2 \pi)\) is greater with a stiffer
spring, and smaller with a larger mass. The period is the inverse
of the frequency: \(T = 1/f = 2 \pi / \omega\).

6.2. A first line plot

Let us now jump in to generating data for this system and plot it. A
very simple program will generate the trajectory. Let us pick
amplitude, spring constant and mass: \(A = 3, k = 2, m = 1\), and
we have \(x(t) = 3 \cos(2 t)\). This program will generate the
data:

Listing 6.2.1 generate-SHO.py - generate data for the simple harmonic
oscillator solution.

#! /usr/bin/env python3

import math

A = 3.0
k = 2.0
m = 1.0
w = math.sqrt(k/m)

for i in range(140):
 t = i/10
 x = A * math.cos(w * t)
 print(t, ' ', x)

Run this program with

chmod +x generate-SHO.py
./generate-SHO.py > SHO.dat

You can then plot it with something like:

gnuplot> plot 'SHO.dat' using 1:2 with linespoints

What you see is a plot of \(x(t)\) versus \(t\).

This plot gives you some insight: it shows you that if you pluck the
spring to the right by 3 units it will bounce back and forth
regularly, with an oscillation period of about 4 and a half units of
time (more precisely \(T = 2 \pi / \sqrt{2} \approx 4.44\).

This plot is OK for you to get quick insight into the output of your
generate-SHO.py program.

But you would certainly not want to use it to present your results to
someone else because of several problems:

	There is no title in the plot.

	The x (time) and y (x(t)) axes are not labeled.

	The line has a very generic legend. It probably says something like
'SHO.dat' using 1:2, which is not informative.

In some situations this default plot might have other problems, like:

	The + signs for points might not be what you want (maybe a
filled circle, or a hollow box are better).

	You might want a bit of padding on the y axis since the plot touches
the top.

	You might want to change the aspect ratio of the plot. The
default is a rectangular overall shape, but sometimes you might want
a different shape of rectangle, and sometimes you might want a
square. Examples of a square aspect ratio are in
Section 12.11.

	There may be too many numbers on the x or y axes, so that they crowd
in to each other.

6.3. Polishing line plots

Let us address the first two issues. We can choose labels for the
x and y axes like this:

gnuplot> set xlabel 'time t (seconds)'
gnuplot> set ylabel 'spring displacement x(t) (cm)'
gnuplot> plot 'SHO.dat' using 1:2 with linespoints

With these instructions I have also communicated the units of measure
I am using for these plots. Without units the plots are junk.

As for the legend for the line, we use the title directive in
gnuplot’s plot command. Something like:

gnuplot> set xlabel 'time t (seconds)'
gnuplot> set ylabel 'spring displacement x(t) (cm)'
gnuplot> plot 'SHO.dat' using 1:2 with linespoints title 'simple harmonic oscillator'

We can also give the plot an overall title. This is not too
interesting when we have a single line drawing, but if we have several
lines then an overall title is useful.

gnuplot> set title 'Position versus time for harmonic oscillators'
gnuplot> set xlabel 'time t (seconds)'
gnuplot> set ylabel 'spring displacement x(t) (cm)'
gnuplot> plot 'SHO.dat' using 1:2 with linespoints title 'simple harmonic oscillator'

Gnuplot has very many options you can manipulate, and there is a
vast collection of demos at http://gnuplot.sourceforge.net/demo/ – it
is quite rewarding to go through all the demos and adapt them to the
things you might need to plot.

6.4. Increasing the challenge: parametrized solutions

The simple harmonic oscillator is not a terribly rich system, so we
will add a bit more to it by looking at the damped harmonic
oscillator. The equation for this is:

\[\frac{d^2x}{dt^2} + c \frac{dx}{dt} + \frac{k}{m} x = 0\]

where \(c\) is a constant which expresses how much the system is damped by
friction.

The solution is:

(6.4.1)\[x(t) = A \times e^{-ct/(2 m)} \times \cos(\omega t)\]

where the frequency \(\omega\) is:

(6.4.2)\[\omega = \sqrt{k/m - c^2/(4 m^2)}\]

Let’s do a quick function plot to try to underestand what a negative
exponential times a cosine function looks like. In gnuplot you can
type these instructions:

Listing 6.4.1 Gnuplot instructions for a sample damped cosine function.

set grid
set xlabel 't (seconds)'
set ylabel 'x (cm)'
plot [0:10] exp(-x/2), \
 exp(-x/2) * cos(4*x)

The result should look like:

[image: ../_images/sample-damped-cos.svg]
Now that we have an idea of the shape of a damped cosine curve, let us
look briefly at equations (6.4.1) and
(6.4.2) and imagine in our minds how they might
behave.

Overall the shape of the damped oscillator solution should look like
fig-sample-damped-cos

The exponential factor \(e^{-c/(2 m)}\) is what makes the
oscillations get smaller, and if the friction \(c\) is big then it
will damp much faster, while if the mass is big it will damp less
(more inertia).

The cosine factor \(\cos(\omega t)\) means that you have
oscillations (at least until it has damped a lot), and equation
(6.4.2) tells us that the friction has made the
frequency of the oscillations somewhat smaller than the natural
frequency \(\sqrt{k/m}\) of the undamped oscillator.

All of this depends on the friction constant \(c\).

But how do we visualize this curve for different values of \(c\)?
Let us start by writing a program which prints out several columns for
\(x(t, c)\) with a few different values of \(c\).

Listing 6.4.2 damped-oscillator-columns.py - generate several columns
of data with different damping constants.

#! /usr/bin/env python3

import math

A = 3.0
k = 2.5
m = 1.0

damping_constants = [0, 0.5, 1.0, 1.5, 2.0]
print('## time', end="")
for c in damping_constants:
 print(' c_%f' % c, end="")
print()

for i in range(300):
 t = i/10
 print(t, end="")
 for c in damping_constants:
 w = math.sqrt(k/m - c*c/(4*m*m))
 x = A * math.exp(- t * c*c/(2*m)) * math.cos(w * t)
 print(' ', x, end="")
 print()

You can run this with

chmod +x damped-oscillator-columns.py
./damped-oscillator-columns.py > damped-oscillator-columns.dat

and then plot it with:

Listing 6.4.3 Gnuplot instructions to plot the output columns of
damped-oscillator-columns.py

set grid
set title 'Damped harmonic oscillator with various damping factors'
set xlabel 'time t (seconds)'
set ylabel 'spring displacement x(t) (cm)'
plot 'damped-oscillator-columns.dat' using 1:2 with lines title 'c=0.0' lw 7 , \
 'damped-oscillator-columns.dat' using 1:3 with lines title 'c=0.5' lw 7 , \
 'damped-oscillator-columns.dat' using 1:4 with lines title 'c=1.0' lw 7 , \
 'damped-oscillator-columns.dat' using 1:5 with lines title 'c=1.5' lw 7 , \
 'damped-oscillator-columns.dat' using 1:6 with lines title 'c=2.0' lw 7

The result should look like:

[image: ../_images/damped-oscillator-columns.svg]
Figure 6.4.1 Damped harmonic oscillator with separate line plots for different
values of the damping constant \(c\).

Figure 6.4.1 gives us some information if
we pick through it. The legend tells us which colored line has
\(c=0.0\), and that line should look like there is no damping,
which is correct.

Then we see the line with \(c=0.5\) and we notice that (a) the
peaks of the oscillation get smaller (the damping), (b) if you follow
it further out you see that the peaks don’t line up with the peaks of
the \(c=0\) curve (the frequency is a bit lower than the undamped
curve, which validates equation (6.4.2)).

Then we see that the lines with more damping (c = 1.0, 1.5, 2.0) damp
more quickly.

But we had to really pick through this plot and strain our eyes and
patience to see those effects. Let us see if we can make the
information about the \(c\) parameter come out more clearly.

6.5. Adding a dimension: surface plots

Listing 6.5.1 damped-oscillator-surface.py - generate damped harmonic
oscillator data for different values of the damping
constant \(c\). Sections of data are separated by a
blank line, which is what gnuplot needs to make a surface
plot.

#! /usr/bin/env python3

import math

A = 3.0
k = 2.5
m = 1.0

print('## time damping_c x')

for ci in range(0, 60): # loop on damping constants
 c = ci/40.0
 for ti in range(300): # loop on time
 t = ti/10
 w = math.sqrt(k/m - c*c/(4*m*m))
 x = A * math.exp(- t * c*c/(2*m)) * math.cos(w * t)
 print(t, ' ', c, ' ', x)
 print() # blank line between damping constants

We can run this program with

chmod +x damped-oscillator-surface.py
./damped-oscillator-surface.py > damped-oscillator-surface.dat

Listing 6.5.2 damped-oscillator-surface.gp - make a surface plot of the
damped oscillator displacement as a function of both time
and the damping constant \(c\).

set grid
set title 'Damped harmonic oscillator: displacement versus time and damping.'
set xlabel 't (seconds)'
set ylabel 'damping c'
set zlabel 'x(t) (cm)'
set pm3d
set hidden3d
set view 20, 60 ## set the viewpoint
splot 'damped-oscillator-surface.dat' using 1:2:3 with lines title ''

The surface plot looks like:

[image: ../_images/damped-oscillator-surface.svg]
The main difference between fig-damped-oscillator-surface
and the figure with several lines: with the surface you can see the
behavior of x versus t for very many values of c without having to
scrunch your eyes. With a single glance you can see the effect of the
damping constant: a downslope in the oscillatory behavior.

6.6. Adding a dimension: color

6.6.1. Spetrograms

If you want to represent the information about a voice, or music, or
an animal call, or a radio signal.

Think carefully of what kind of information is in this type of signal.
You will need to represent the intensity of the signal (for example
how loud the music is or how strong a signal is) for each frequency,
and all of this will depend on time.

One tool to visualize such signals is the spectrogram. Let’s start
with picture:

[image: ../_images/Dolphin1.jpg]

Figure 6.6.1 Spetrogram of a dolphin’s vocalizations. You can see chirps,
clicks and harmonizing. (From Wikipedia)

In Figure 6.6.1 we see that the x axis is time,
the y axis is frequency, and the loudness of the sound (in decibels)
is represented by the color: black and dark red are more quiet, bright
yellow and white are louder.

What you see visually is that the various features of the sound are
seen in features of the spetrogram: the chirps are the inverted V
shapes, the clicks are vertical lines, and the harmonizing is seen in
the horizontal striations.

Once you get used to reading spectrograms you can quickly get a
feeling for not just the volume of sound as a function of time, but
also for in which frequencies those louder sounds occur.

Thus the use of color helps us get a quick-look view of the entire
picture, and it helps us find distinguishing features in the data.

6.6.2. Spectrograms for standard acoustic files

Let us download a brief violin sample, specificially a single F note.

wget --continue http://freesound.org/data/previews/153/153595_2626346-lq.mp3 -O violin-F.mp3

This gives us the file violin-F.mp3. It’s hard to load this
file in as data, but we can do a couple of conversions with the
programs ffmpeg (which manipulates audio and video formats) and
sox, which manipulates some audio formats and can turn audio files
into human-readable columns of data.

ffmpeg -i violin-F.mp3 violin-F.aif
sox violin-F.aif violin-F.dat

We can look at violin-F.dat and see that it has three columns
of data. The first is time, the second is the left stereo channel,
and the third is the right stereo channel.

For simplicity we will analyze the left stereo channel. We use this

[image: ../_images/violin-F_spec.svg]
Figure 6.6.2 Spetrogram of a violin playing an F (Fa) note. Note the
fundamental frequency at the bottom, and the many harmonics above
that.

[image: ../_images/tuningfork440_spec.svg]
Figure 6.6.3 Spetrogram of the note of a tuning fork. This produces a 440 Hz A
(La) sound. Note that there are almost no harmonics: the tuning
fork is designed to put out a sound close to a pure sin wave.

Let us record our own signal so that we can experiment.

Type

rec myvoice.dat

then speak in to it for no more than two seconds and hit control-C to
abort. You now have a file with time and one or two amplitude
channels. You can look at it and plot it.

You can also record yourself playing a musical instrument, or
clapping.

To play the sample back you can type:

play myvoice.dat

and you should hear back your brief audio sample.

But remember: we are scientists, not just users of gadgets, so when we
think of an audio file we think of it as a data. You can look at
the file with

less myvoice.dat

and you will see three columns of numbers. The first is time, the
others are the amplitude of the sound in the left and right stereo
channels.

Listing 6.6.1 music2spectrogram.py - Takes an audio file and makes a
spectrogram of it. You can also download it at this
link: music2spectrogram.py

#! /usr/bin/env python3

import sys
import numpy as np
import matplotlib.pyplot as plt
import pylab

def main():
 if not len(sys.argv) in (2, 3):
 print('error: please give an audio file argument')
 sys.exit(1)
 infile = sys.argv[1]
 ## find the sampling rate (in samples/sec) from the input file
 Fs = get_sample_rate(infile)
 outfile = None
 if len(sys.argv) == 3:
 outfile = sys.argv[2]
 time = np.loadtxt(sys.argv[1], comments=';', usecols=(0,))
 left_channel = np.loadtxt(sys.argv[1], comments=';', usecols=(1,))
 ## ignore the right channel (if there is one)

 ax_plot = plt.subplot(211)
 ax_plot.set_title('Amplitude and spectrogram for data file %s' % infile)
 plt.plot(time, left_channel)
 plt.ylabel('Amplitude')
 ax_plot.set_xticks([])

 ax_spec = plt.subplot(212)
 plt.xlabel('Time')
 plt.ylabel('Frequency')
 Pxx, feqs, bins, im = plt.specgram(left_channel, Fs=Fs, cmap=pylab.cm.gist_heat)
 cbar = plt.colorbar(orientation='horizontal') # show the color bar information
 if outfile:
 plt.savefig(outfile)
 else:
 plt.show()

def get_sample_rate(fname):
 """Read the first line in the file and extract the sample rate
 from it. These ascii sound files are like that: two lines of
 "metadata", of which the first has the sampling rate and the
 second lists how many channels there are. This routine reads that
 first line and returns the number. For compact disc music, for
 example, it would be 44100 Hz.
 """
 with open(fname, 'r') as f:
 line = f.readline() # get the first line
 assert(line[:len('; Sample Rate')] == '; Sample Rate')
 Fs = int(line[(1+len('; Sample Rate')):])
 print('sample rate:', Fs)
 return Fs

main()

We can run this program with

chmod +x music2spectrogram.py
./music2spectrogam.py violin-F.dat
or to save it to a file:
./music2spectrogram.py violin-F.dat violin-F_spectrogram.png

6.6.3. Ideas for further exploration

Earthquakes : color is magnitude

6.7. Loops in gnuplot

Look at examples from here:

http://gnuplot.sourceforge.net/demo/bivariat.html

in particular the fourier series.

6.8. Adding a dimension: animation

6.8.1. Animation in gnuplot

[FIXME: incomplete]

http://personalpages.to.infn.it/~mignone/Algoritmi_Numerici/gnuplot.pdf

also:

http://www.gnuplotting.org/tag/do/

6.8.2. Animation in matplotlib

simple-animated-plot.py

Listing 6.8.1 simple-animated-plot.py – …

#! /usr/bin/env python3

example taken from https://stackoverflow.com/a/42738014

import matplotlib.pyplot as plt
import numpy as np

plt.ion()
fig, ax = plt.subplots()
x, y = [],[]
sc = ax.scatter(x,y)
plt.xlim(0,10)
plt.ylim(0,10)

plt.draw()
for i in range(1000):
 x.append(np.random.rand(1)*10)
 y.append(np.random.rand(1)*10)
 sc.set_offsets(np.c_[x,y])
 fig.canvas.draw_idle()
 plt.pause(0.1)

plt.waitforbuttonpress()

simple_anim.py

Listing 6.8.2 simple_anim.py – …

#! /usr/bin/env python3
"""
==================
Animated line plot
==================

"""

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation

fig, ax = plt.subplots()

x = np.arange(0, 2*np.pi, 0.01)
line, = ax.plot(x, np.sin(x))

def init(): # only required for blitting to give a clean slate.
 line.set_ydata([np.nan] * len(x))
 return line,

def animate(i):
 line.set_ydata(np.sin(x + i / 100)) # update the data.
 return line,

ani = animation.FuncAnimation(
 fig, animate, init_func=init, interval=2, blit=True, save_count=50)

To save the animation, use e.g.
#
ani.save("movie.mp4")
#
or
#
from matplotlib.animation import FFMpegWriter
writer = FFMpegWriter(fps=15, metadata=dict(artist='Me'), bitrate=1800)
ani.save("movie.mp4", writer=writer)

plt.show()

using matplotlib’s FuncAnimation:

import matplotlib.animation as animation
import matplotlib.pyplot as plt
import numpy as np

fig = plt.figure()

def updatefig(i):
 fig.clear()
 p = plt.plot(np.random.random(100))
 plt.draw()

anim = animation.FuncAnimation(fig, updatefig, 100)
anim.save("/tmp/test.mp4", fps=24)

And from the matplotlib docs:

https://matplotlib.org/gallery/animation/simple_anim.html

6.9. Further reading

See also

clean plots:

http://triclinic.org/2015/04/publication-quality-plots-with-gnuplot/

http://gnuplot.sourceforge.net/demo/

https://www.jstor.org/stable/pdf/2683253.pdf

more about sox and audio formats:

http://sox.sourceforge.net/sox.html

https://newt.phys.unsw.edu.au/jw/musical-sounds-musical-instruments.html

object oriented approach in matplotlib:

https://python4astronomers.github.io/plotting/advanced.html

more on matplotlib animation

https://nickcharlton.net/posts/drawing-animating-shapes-matplotlib.html

cool matplotlib resources:

https://realpython.com/python-matplotlib-guide/

https://python4astronomers.github.io/plotting/advanced.html

7. Fitting functions to data

[status: content_complete_needs_review]

7.1. Motivation, Prerequisites, Plan

In Section 4 we looked at how to take a
function and represent it as points and lines in a plot. Here we do
the opposite: if we are given a collection of \((x, y)\) points we
try to find what kind of function might have generated those points.

There are so many types of functions that there is some artistry
involved in picking which kind of function to fit to a set of data.

In many cases we will want to fit a straight line to our data.
Sometimes it will be a polynomial. Our intuition on what functions to
try to fit can come from two sources: (a) looking at the data visually
(“hey! that looks like a parabola!”), and (b) having some intuition
about the process that underlies that data (“should be an
exponential decay; let’s try fitting an exponential function!”)

Terminology: the techniques we use here are sometimes referred to as
regression, linear regression, fitting, curve fitting, line fitting,
least squares fitting, …

7.2. Examples to get started

Let us start by visualizing some data sets. We’ll start with the
dataset we had for age, height and weight of the !Kung people of the
Kalahari desert. We downloaded and analyzed this data set back in
Section 3.1, but there we
were looking at height and weight historgrams. Here we look at
something simpler: height versus age.

In this example we will grab the data set,

$ wget https://raw.githubusercontent.com/rmcelreath/rethinking/master/data/Howell1.csv
$ gnuplot
gnuplot> set datafile separator ";"
gnuplot> plot 'Howell1.csv' using 3:1 with points

You can carry it all out with the following instructions:

Listing 7.2.1 Instructions to plot the height vs. age for the !Kung.

##REQUIRED_FILE: Howell1.csv
##PRE_EXEC: wget https://raw.githubusercontent.com/rmcelreath/rethinking/master/data/Howell1.csv
set datafile separator ";"
set grid
set title 'height versus age for the !Kung people'
set xlabel 'age (years)'
set ylabel 'height (cm)'
plot 'Howell1.csv' using 3:1 with points

and you should get the figure in Figure 7.2.1.

[image: ../_images/plot-height.svg]
Figure 7.2.1 Height vs. age for the !Kung people of the Kalahari desert. Note
that we have two separate behaviors of the height data: one for
before the age of 18 (rapid growth), the other for after the age of
20 (mostly norizontal).

We see this drastic difference between lower and higher age. One
thing that comes to mind is that the mechanisms that cause this are
obvious biological ones: we grow fast when we are young, then we stop
growing taller.

The rising height part of the graph (up to age 18) seems to be
reasonably close to a straight line, as is the top part (from 20 years
on). The entire plot does not at all look like a straight line.

Let us look at those separate areas in separate plots:

Listing 7.2.2 Zooming in on the straight line between ages 2 and 18.

##REQUIRED_FILE: Howell1.csv
##PRE_EXEC: wget https://raw.githubusercontent.com/rmcelreath/rethinking/master/data/Howell1.csv
set datafile separator ";"
set grid
set title 'height versus age for the !Kung people'
set xlabel 'age (years)'
set ylabel 'height (cm)'
plot [2:20] 'Howell1.csv' using 3:1 with points

and you should get the figure in Figure 7.2.2.

[image: ../_images/plot-height-2-18.svg]
Figure 7.2.2 Zooming in on the age 2-18 region of the height plot.

7.3. Straight line fits

7.3.1. Our goal

Let us state a bold goal: can we find a straight line that seems to
fit the points in the rising area of the height plot of the !Kung
people (Figure 7.2.2)?

Remember from Section 4.2 that a straight line
looks like \(y = m x + b\) is described by two parameters: the
slope \(m\) and the y intercept \(b\), so another way to
phrase this goal is:

Given a collection of points \((x_i, y_i)\), find the slope and
intercept for the line \(y = m x + b\) which most closely fits
the points.

You could do this visually: print it, take a ruler, place it so that
it runs through the points in the plot, and draw a line. The result
is not really optimal, so we look for better techniques.

7.3.2. Stepping back: just two points

Let us start with just two points, one for a 3-year-old and the other
for a 17-year-old. From the data file we can pick the (age, height)
pairs: (3, 96.52) and (17, 142.875).

In middle school math we learn how to find the line that goes through
these points. We write out the equation \(y = m x + b\) using the
specific \((x, y)\):

(7.3.1)\[\begin{split}96.52 & = m \times 3 + b \\
142.875 & = m \times 17 + b\end{split}\]

By subtracting the equations we get:

\[\begin{split}142.875 & - 96.52 = m \times 17 - m \times 3 = m \times 14 \\
& \implies
m = (142.875 - 96.52) / 14 = 3.311\end{split}\]

and substituting back into the first equation we get:

\[\begin{split}96.52 & = 3.311 \times 3 + b \\
& \implies
b = 96.52 - 3 \times 3.3111 = 86.5867\end{split}\]

So the equation for our line is:

\[\begin{split}m & = 3.311 \\
b & = 86.5867 \\
y & = 3.311 \times x + 86.5867\end{split}\]

Note

This is just a first stab at it! We do not know if we chose those
two points well – in fact it seems from this picture that the
17-year-old we picked was shorter than average, which would skew
the results. The 3-year-old is also taller than average. This
example was just to get going so that we can talk about line fits.
In Section 7.4 we will do proper line
fitting.

7.3.3. Let’s plot that line with our data

Now that we have a line fit we should feel really excited about
plotting it together with our data, so that we can get some visual
satisfaction. I always encourage people to do this right away.

Let us take the plotting instructions in
Listing 7.2.1 and add to it the plotting of our
fitted line:

Listing 7.3.1 Height vs. age and a line fit for ages 2-18.

##REQUIRED_FILE: Howell1.csv
##PRE_EXEC: wget --continue https://raw.githubusercontent.com/rmcelreath/rethinking/master/data/Howell1.csv
set datafile separator ";"
set grid
set key right bottom
set title 'height versus age for the !Kung people'
set xlabel 'age (years)'
set ylabel 'height (cm)'
plot [0:26] 'Howell1.csv' using 3:1 with points, \
 [2:18] 3.311 * x + 86.5867 lw 6 title "two point fit"

and you should get Figure 7.3.1.

[image: ../_images/plot-height-with-fit.svg]
Figure 7.3.1 Height vs. age for the !Kung people of the Kalahari desert, with a
line fit for ages 2-18.

7.3.4. Physical interpretation of the line fit

One realy cool thing we learn about fitting functions to data is that
those functions have a physical interpretation! This gets
scientists really excited, so I will mention it before we move on to a
better procedure for fitting curves.

If you look closely at the units of measure in our scatter plot you
see that we are plotting height (a measure of length) versus age
(a measure of time). This means that the slope \(m\) is measured
in units of length divided by time, in this case in centimeters per
year. So the slope we found of 3.311 should really be reported as
3.311 centimeters/year, and it tells us how much children grow per
year between the ages of 2 and 18.

Now let us look at the intercept \(b\) (in our case 86.5867).
This number tels us what the value of y (height) is at time zero
(birth). This would seem to imply that babies are born some 87cm
tall.

Important

But wait! Babies are not born 87cm tall. They are born around
50cm tall. Then why did our straight line fit report that height
at birth?? This is explained by remembering the original plot: in
Figure 7.2.1 we see that the height forms a straight line
between the ages of 2 and 18, but not for children less than 2.
Those children grow much faster, so the straight line is not a
valid approximation for infants. This means that, sadly, the
intercept \(b\) does not give a gratifying physical
interpretation in this case.

7.4. Proper line fitting

We’ve seen how to pick two points from our data set and make a line
that goes through them, but this approach has some real problems: if I
had chosen a very tall 3-year-old and a very short 17-year-old, then
the slope would have been much smaller. I could have also skewed it
the other way by picking a very short 3-year-old and a very tall
17-year-old, which would have given a much steeper slope. [FIXME:
write exercise to do all of this]

So what is a good objective way of finding the “best fit”? This is
much debated, and one get get quite subtle and make a real profession
of the line fitting business, but for our purposes we will use the
most comon approach. It is called “least squares fitting”.

Look at Figure 7.4.1:

[image: ../_images/Linear_least_squares_example2.svg]
Figure 7.4.1 From wikipedia,
https://en.wikipedia.org/wiki/Linear_least_squares_(mathematics) A
plot of the data points (in red), the least squares line of best
fit (in blue), and the residuals (in green).

You see four points and an example of a line that tries to go
through those four points. How well did it succeed?

Look at those green lines in the figure: they show how far the point
is from the line, and they give a measure of the error in your fit.
If you had chosen a radically different blue line, then the sum of all
those green lines might be quite big, and you would have a poor fit.

The idea behind “least squares” is that you want to minimize the sum
of the squares of those errors.

There is a lot going on here. You might immediately ask at least two
questions: (a) why the sum of the squares of the errors? (b) how do
you minimize?

For now I will give a very brief answer to the first question: squares
are often considered “nicer” functions than just taking the distance
itself. You can see this with this plot:

$ gnuplot
gnuplot> plot [-3:3] x*x
gnuplot> replot abs(x)

both the lines tend to grow bigger when your error is bigger, but the
smooth one is more suited to various mathematical techniques.

As for the second question: we will minimize the sum of the squares of
the errors using techniques from calculus. I don’t describe them
here, but I will show a cool pair of equations. First wrap your head
around this expression:

(7.4.1)\[E = \sum_{i=1}^N (m x_i + b - y_i)^2\]

I like formulae like this one because that capital greek sigma letter
is visually appealing, but what does it all mean?

First note that in math we use the symbol \(\sum_{i=1}^N\) to mean
“take a sum of all these terms, where the letter i will be replaced in
turn by 1, 2, 3, … up to N.

Now let’s say you have N data points \((x_1, y_1), (x_2, y_2),
..., (x_N, y_N)\). Then the E in equation (7.4.1) is
the sum of a bunch of terms, each of which looks like \((m x_i +
b - y_i)^2\). That is difference between “what the fitted line
would have given you” and “the real data point that you have”.
Squared. These differences are often called the “residuals”.

So E is a pretty good measure of how poor your line fit is, so if you
find the values of m and b that make E as small as possible then
they might give you a nice straight line fit through your data.

To show you some more cool math typesetting, and to entice you to
study calculus, I will show you the equations that are written to
solve this problem:

(7.4.2)\[\begin{split}E & = \sum_{i=1}^N (m x_i + b - y_i)^2 \\
\frac{\partial E}{\partial m} & = 0 \\
\frac{\partial E}{\partial b} & = 0\end{split}\]

This gives you two equations which you can solve to get m and b. We
will not go through the details of it since it is calculus material
(“finding minima using derivatives”), but we will now learn to use a
Python library that does this calculation for us.

Note

There are many pleasing aspects to learning about least squares
fitting. One of them is that this is one of the earliest places
where you run in to … FIXME

7.5. Using Python’s scientific libraries to fit lines

Python comes with an extensive scientific library called scipy.
Scipy has a statistics subpackage, which in turn has a function called
linregress() which does all that work for us.

Enter the program in

Listing 7.5.1 fit-height.py – fit a line through the height data and
print out the slope and intercept.

#! /usr/bin/env python3

import sys
from scipy.stats import linregress

def main():
 if len(sys.argv) != 4:
 print('error: wrong number of arguments')
 print('usage: %s filename min_age max_age' % sys.argv[0])
 print('example: %s Howell1.csv 2 18' % sys.argv[0])
 sys.exit(1)
 fname = sys.argv[1]
 lowest_age = int(sys.argv[2])
 highest_age = int(sys.argv[3])

 xdata, ydata = load_file(fname, lowest_age, highest_age)
 slope, intercept, r_value, p_value, std_error = linregress(xdata, ydata)
 print('the least squares fit returns slope, intercept:')
 print('m =', slope, ', b =', intercept)

load columns 2 and 0 from the file, return two data vectors. only
pick out ages betwen min_age and max_age (inclusive)
def load_file(fname, min_age, max_age):
 xdata = []
 ydata = []
 f = open(sys.argv[1], 'r')
 for line in f.readlines()[1:]:
 words = line.split(';')
 x, y = float(words[2]), float(words[0])
 if x >= min_age and x <= max_age:
 xdata.append(x)
 ydata.append(y)
 f.close()
 return xdata, ydata

main()

Run the program with:

$./fit-height.py Howell1.csv 2 18
the least squares fit returns slope, intercept:
m = 3.99026836995 , b = 79.6805438775

Now compare these values to those found in in
Section 7.3.2 where we just picked two
points to work with. It turns out that 3.99 is not too far from 4.12,
and 79.68 is not far from 79.06, but they are different. Let us
update Figure 7.3.1 to also show the line found by
least squares linear regression:

Listing 7.5.2 Height vs. age, a naive line fit and a least squares fit
for ages 2-18.

##REQUIRED_FILE: Howell1.csv
##PRE_EXEC: wget --continue https://raw.githubusercontent.com/rmcelreath/rethinking/master/data/Howell1.csv
set datafile separator ";"
set grid
set key right bottom
set title 'height versus age for the !Kung people'
set xlabel 'age (years)'
set ylabel 'height (cm)'
plot [0:26] 'Howell1.csv' using 3:1 with points, \
 [2:18] 3.311 * x + 86.5867 lw 4 title "two point fit", \
 [2:18] 3.99026836995 * x + 79.6805438775 lw 4 title "least squares fit"

and you should get Figure 7.5.1.

[image: ../_images/plot-height-with-two-fits.svg]
Figure 7.5.1 Height vs. age for the !Kung people of the Kalahari desert, with a
naive line fit for ages 2-18, and a least squares fit as well.
Note the difference between the two lines - the steeper line from
the least squares fit is a better fit for the age 2-18 range.

This line fit from the least squares method was a much better fit to
the 2-18 year old data, so we can now say that the !Kung youth grow
approximately 3.99 centimeters/year.

7.6. When to not try a linear fit

We should only try linear fits if we have reason to believe that the
data is linear (either visually or from the scientific mechanism that
underlies the data).

In the case of our height plot, what would happen if we were to try to
fit the entire plot, from age 0 to the maximum age?

Let us try and see what it looks like. We run our program with ages 0
and 90:

$./fit-height.py Howell1.csv 0 90
the least squares fit returns slope, intercept:
m = 0.909605221912 , b = 111.571782869

What would this line look like? Plotting like this:

Listing 7.6.1 Gnuplot instructions to plot an inappropriate line fit.

##REQUIRED_FILE: Howell1.csv
##PRE_EXEC: wget --continue https://raw.githubusercontent.com/rmcelreath/rethinking/master/data/Howell1.csv
set datafile separator ";"
set grid
set key right bottom
set title 'height versus age for the !Kung people'
set xlabel 'age (years)'
set ylabel 'height (cm)'
plot 'Howell1.csv' using 3:1 with points, \
 0.909605221912 * x + 111.571782869 lw 4 title "least squares line fit"

and you should get the plot in
Figure 7.6.1.

[image: ../_images/plot-height-with-inappropriate-fit.svg]
Figure 7.6.1 Height vs. age for the !Kung people of the Kalahari desert. We
also plot a fit based on the entire plot, and we see that it is a
poor fit to the data, since the data is not linear.

We see that the mechanisms that determine height are quite different
for infants, youths and older people, so there is no single line fit.

7.7. Fitting curves

7.7.1. Polynomial fits

Let us look at a falling body. In fact let us look at the first
careful measurement that was ever made of a falling body. In the
mid-17th-century Italian astronomer Riccioli
[Gra12] carried out careful experiments from a
tower in Bologna and got the data in this table:

Table 7.7.1 Riccioli’s acceleration data

	time

	distance

	0.833

	10

	1.66

	40

	2.50

	90

	3.33

	160

	4.17

	250

	1

	15

	2

	60

	3

	135

	4

	240

	4.33

	280

	1.08

	18

	2.17

	72

	3.25

	162

	4.33

	280

You can download a CSV format file for this data:
riccioli-table.csv

Newton’s law with a constant acceleration of gravity \(-g\) tells
us that the position reached by a falling body from height \(h_0\)
(280 meters), with initial velocity \(v_0 = 0\) is:

(7.7.1)\[y(t) = h_0 + v_0 t - \frac{1}{2} g t^2 = h_0 - \frac{1}{2} g t^2\]

When we calculate the coefficients for (7.7.1) we expect
the first degree coefficient (initial velocity \(v_0\)) to be
close to zero since we are letting it drop rather than tossing it. We
also expect the constant term (initial height \(h_0\)) to be close
to 280 roman feet, the height from which we drop it.

So we are interested in using the data from Riccioli’s
mid-17th-century experiment that we put in file
riccioli-table.csv:

Listing 7.7.1 fit-falling-body.py - fit a 2nd degree
polynomial to the data, then plot the data and the fit.

#! /usr/bin/env python3

import sys
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 10))

def main():
 if len(sys.argv) not in (2, 3):
 print(f'**error** usage: {sys.argv[0]} datafilename.csv [poly_deg]')
 sys.exit(1)
 input_fname = 'riccioli-table.csv'
 poly_degree = 2 # default is to fit a parabola
 if len(sys.argv) == 3:
 poly_degree = int(sys.argv[2])

 # use numpy's loadtxt() function to read the data columns
 t, y = np.loadtxt(input_fname, delimiter=',',
 skiprows=1, unpack=True)
 # in our file the y values were listed as growing from 0, but we want
 # them to fall from the top, so we subtract them from 280 roman feet
 # get the polynomial fit
 y = 280 - y
 ## now do the polynomial fit
 print(f'fitting a {poly_degree} degree polynomial to the points')
 params = np.polyfit(t, y, poly_degree)
 print('polynomial parameters:', params)
 print('acceleration of gravity in roman feet/sec^2:', -2*params[0])
 ## note: in Riccioli's calculation one roman foot is probably 0.301
 ## meters
 print('acceleration of gravity in meters/sec^2:', -2*params[0]*0.301)
 plt.scatter(t, y, label='Data')
 ## now show the polynomial
 pfunc = np.poly1d(params)
 t_regular = np.arange(np.min(t), np.max(t+0.01), 0.01)
 y_from_poly = pfunc(t_regular)
 plt.title("Riccioli's falling body data")
 plt.plot(t_regular, y_from_poly, label=f'degree {poly_degree} polynomial fit')
 ## show the plots
 plt.xlabel('time')
 plt.ylabel('height (roman feet)')
 plt.legend(loc='best')
 ## you can call plt.show() to view it interactively, or plt.savefig()
 ## to save image files
 #plt.show()
 assert(input_fname[-4:] == '.csv') # it should be a .csv file
 outfname_base = input_fname[:-4] + f'_deg{poly_degree}'
 save_plot_to_file(outfname_base, 'pdf')
 save_plot_to_file(outfname_base, 'svg')

def save_plot_to_file(outfname_base, fmt_suffix):
 out_fname = f'{outfname_base}.{fmt_suffix}'
 plt.savefig(out_fname)
 print(f'saved plot to file {out_fname}')

if __name__ == '__main__':
 main()

You can run the program with:

chmod +x fit-falling-body.py
./fit-falling-body.py riccioli-table.csv

It will find that the polynomial coefficients \((a, b, c)\) are
-14.6918224, 0.62669318, 280.40412405 and the polynomial fit looks
like:

(7.7.2)\[y(t) = y = -14.69182224 \times t^2 - 0.62669318 t + 280.40412405\]

The program saves the output in files riccioli-table_deg2.pdf and
riccioli-table_deg2.svg, and we show it in
Figure 7.7.1.

[image: ../_images/riccioli-table_deg2.svg]
Figure 7.7.1 Position as a function of time for a falling body. The data is
taken from Riccioli’s classic experiment in the mid 17th century.
The line is a 2nd degree polynomial fit of the data.

The coefficients for the polynomial in equation (7.7.2)
and Figure 7.7.1 teach us that:

	The 2nd degree polynomial is a good fit to the data.

	The coefficients in the falling body equation (7.7.1)
have physical meanings. The constant term \(h_0\) is the height
from which we drop the body, \(v_0\) is the initial velocity,
and in the \(\frac{1}{2} g t^2\) term, g is the acceleration of
gravity.

	In our fit we have a very small value for \(v_0\) (close to 0),
which matches the physical situation.

	In our fit we have \(h_0\) very close to 280 roman feet, which
matches the physical situation.

	In our fit we have \(g\) close to \(29.38 \; {\rm roman \;
feet}/s^2\). In modern units that gives us \(g = 8.84 \;
m/s^2\), which is about 10% off of the current measured value of
\(9.81 \; m/s^2\).

https://physicstoday.scitation.org/doi/pdf/10.1063/PT.3.1716

https://physicstoday.scitation.org/doi/full/10.1063/PT.3.1716

7.7.2. Overfitting

We all know that if you have two (distinct) points you can fit a
unique straight line through them. If you write the equation for
that straight line as \(y = m x + b\) you might find yourself
thinking “hmm, there were two points that constrained that line, and
there are two parameters \((m, b)\) (slope and intercept).

So two points gave unique values to two parameters. Is that “2” a
coincidence?

It turns out that if you have three points in a plane, and they are
not on a line together, then you can fit a unique parabola (2nd degree polynomial) through them. If that parabola looks
like \(y = a x^2 + b ^x + c\), then you will notice that there are
three parameters \((a, b, c)\) being fixed by the three points
that the curve must visit.

You might ask if you have 7 points, is there exactly one 6th degree
polynomial that fits through all 7 points? The answer is yes, unless
those 7 points are somewhat contrived. For example, if they all lie
perfectly on a straight line, or on a parabola, or other lower order
polynomial, then you will have multiple possible 6th degree
polynomials that go through those pointes.

So you might ask the question:

Note

Do I get better fidelity to the data if I fit a very high degree
polynomial to the data? For example, if I take the Riccioli data
set, and fit a 9th degree polynomial, will that capture
some deep nuance in the data?

The answer is a clear no, and we will demonstrate that by trying it
out and visualizing the results. After visualizing, we will try to
gain some insight.

Start by modifying the program fit-falling-body.py to remove some
of the data. It has 14 data points, so we could fit up to a 13th degree polynomial. We will do a few experiments by calling
the program with arguments different from two. Start with:

./fit-falling-body.py riccioli-table.csv 13

This should give you a plot like the one shown here:

[image: ../_images/riccioli-table_deg2.svg][image: ../_images/riccioli-table_deg13.svg]where you can clearly see that the 2nd degree polynomial makes more
sense than the 13th degree polynomial.

So what just happened? The 13th degree polynomial is a perfect fit:
it passes exactly through every point in the data set, so why is it so
clearly bogus?

This is a good topic to discuss in class, and it leads to discussions
of “overfitting”.

7.7.3. Fitting arbitrary functions

Curve fitting is described here:

https://www.scipy-lectures.org/intro/scipy/auto_examples/plot_curve_fit.html

The equation we fit comes from Zhang, Jiang, Zhang, Liu, Wang and Loh
“A Generalized SOC-OCV Model for Lithium-Ion Batteries and the SOC
estimation for LNMCO Battery”. [ZJZ+16]

\[V_{\rm OCV}(s) = a + b (-\log_e s)^m + c s + d e^{n (s-1)}\]

where \(s\) is the “state of chage” (SOC) - how much charge the
battery still has.

I found that with the data sets I had I needed to adapt it slightly
and used:

\[V_{\rm OCV} = a + b s^{-m} + c s + d e^{n (s-1)}\]

Each term in this equation corresponds to a different chemical effect
in the battery’s journey.

Listing 7.7.2 Battery discharge data: closed and open circuit voltage
(volts) versus time (hours) for the discharge of two
consumer-grade AA batteries in series. Source: Abby
Wilson, private communication.

#time closed open
0 2.48 2.74
1 2.33 2.59
2 2.29 2.55
3 2.28 2.54
3.5 2.27 2.52
4.5 2.25 2.50
5.5 2.23 2.48
6 2.21 2.46
8 2.01 2.28
8.5 1.84 2.10
8.75 0.80 1.90

Listing 7.7.3 fit-battery.py – fit a function much like that in
[ZJZ+16] to Abby Wilson’s battery
data.

#! /usr/bin/env python3

import math
import sys
import numpy as np
from scipy import optimize
import matplotlib.pyplot as plt

def main():
 if not len(sys.argv) in (2, 3):
 print('error: please give a battery data file argument')
 sys.exit(1)
 infile = sys.argv[1]
 outfile = None
 if len(sys.argv) == 3:
 outfile = sys.argv[2]

 times, OCVs = load_battery_file(infile)
 print('times:', times)
 print('open current voltages:', OCVs)
 p0=[3.5, -0.0334, -0.106, 0.7399, 1.403, 2]
 # p0=[2, 2, 2, 2, 2, 2]
 # SOCs = np.flip(times, 0) / (times[-1] - times[0])
 SOCs = times / (times[-1] - times[0])
 print('SOCs:', SOCs)
 params, params_covariance = optimize.curve_fit(Vocv, SOCs, OCVs, p0=p0)
 print('curve fit parameters:', params)
 print('a = %g' % params[0])
 print('b = %g' % params[1])
 print('c = %g' % params[2])
 print('d = %g' % params[3])
 print('m = %g' % params[4])
 print('n = %g' % params[5])
 ## now visualize the results
 plt.figure(figsize=(6, 4))
 ## plot a scatter plot of the original data
 plt.scatter(SOCs, OCVs, label='Data')
 ## plot the function fit - use a denser range of times for this,
 ## since our time data is sparse
 # trange = np.arange(times[0], times[-1], 0.1)
 # SOCrange = np.arange(SOCs[0], SOCs[-1], 0.1)
 SOCrange = np.arange(0.0, 1.01, 0.005)
 plt.plot(SOCrange, Vocv(SOCrange, params[0], params[1], params[2],
 params[3], params[4], params[5]),
 label='Fitted function')
 plt.xlabel('1 - state of charge (1 - SOC)')
 plt.ylabel('open circuit voltage (Vocv)')
 plt.legend(loc='best')
 if outfile:
 plt.savefig(outfile)
 else:
 plt.show()

def Vocv(SOC, a, b, c, d, m, n):
 # SOC = (t[-1] - t + 1) / (t[-1] - t[0])
 # print(a, b, c, d, m, n)
 # return a + b*(-np.log(SOC))**m + c*SOC + d*np.exp(n*(SOC-1))
 return a + b*SOC**(-m) + c*SOC + d*np.exp(n*(SOC-1))

def load_battery_file(fname):
 times, OCVs = np.loadtxt(fname, usecols=(0, 2), unpack=True)
 return times, OCVs

main()

Run this program with:

./fit-battery.py battery-discharge.dat

to get interactive graphical output, or to get the plot in a file you
can use something like:

./fit-battery.py battery-discharge.dat battery-discharge.pdf

The resulting plot should look like that in
Figure 7.7.2.

[image: ../_images/battery-discharge.svg]
Figure 7.7.2 A curve fit for the battery discharge data.

The parameters found were:

a = 2.53651
b = 0.0512756
c = -0.182952
d = -0.499311
m = 0.151882
n = 15.5123

So the fitted function looks like:

\[V_{\rm OCV}(s) = 2.54 + 0.051 s^{-0.152} - 0.183 s - 0.499 e^{15.5 (s-1)}\]

There are many assumptions I made here. For example, I assumed that
(1 - SOC) is linearly proportional to time as you discharge. That’s
not quite correct. But this is still an interesting example of how
you can take a rather complicated function with various parameters (6
in this case) and fit it to a set of data.

7.8. Topics for further study

7.8.1. Interpolation and extrapolation

What do interpolation and extrapolation mean? Show an example where
it works well, like with falling bodies.

Discuss what is a predictive model.

7.8.2. How high should the degree of the polynomial be?

Discuss overfitting and crazy polynomial behaviors.

Discuss “fitting unerlying truth” versus “fitting noise”.

Discuss a physical reason for having a certain degree of polynomial
(or a certain functional form), and what happens when you don’t have
that physical reason.

Discuss objective criteria for limiting the number of dimensions to
avoid crazy polynomial behaviors.

Mention approaches that use functions other than polynomials, like
Fourier analysis.

8. Case studies in data

8.1. Population data from the web

Our goals here are to:

	Automate fetching of data sets from the web.

	Look at a plot in a few different ways to get a narrative out of it.

We will start by looking at the population history of the whole world.
When I discuss this with students I often ask “what do you think the
population of the world is today?” (then you can have them search the
web for “world population clock”, which will take them to
http://www.worldometers.info/world-population/).

Then ask “what do you think the world population was in 1914? And 1923?
And 1776? And 1066? And in the early and late Roman empire? And in the
Age of Pericles?

Let us search for

world population growth

and we will come to this web site:
https://ourworldindata.org/world-population-growth/ and if we go down a
bit further we will see a link to download the annual world population
data. The text on the link is FIXME: this section is incomplete.

We will not click on the link. Instead we will use the program
wget to download it automatically [5]:

$ wget http://ourworldindata.org/roser/graphs/[...]/....csv -O world-pop.csv

Note that this is a very long URL, but students can get it as a result
of their search, so nobody has to type the full thing in.

Once they have the file downloaded they can look at the data with:

$ less world-pop.csv

and will quickly see that it is slightly different from the data we have
seen so far. The columns of data are separated by commas instead of
spaces. This type of file format is called comma-separated-value
format and is quite common. Our plotting program, gnuplot, works
with space-separated columns by default, so there are two tricks to plot
the file. Either use the cool program sed to change the commas into
spaces:

$ sed 's/,/ /g' world-pop.csv > world-pop.dat
$ gnuplot
gnuplot> plot 'world-pop.dat' using 1:3 with linespoints

or tell gnuplot to use a comma as a column separator:

Listing 8.1.1 Instructions to plot the world population.

##CAPTION: World population.
set grid
set datafile separator comma
plot 'world-pop.csv' using 1:2 with linespoints

[image: ../_images/plotworldpopulation.svg]
Figure 8.1.1 The world population from 10000 BCE until the present time.

And what a story we could tell from this plot if it weren’t so hard to
read! The main problem with this plot is that the world population in
ancient times was quite small, and then it grew dramatically with
various milestones in history which allowed for longer life expectancy
and for the occupation of more of the world.

There are a couple of ways of trying to get more out of this plot. One
is to zoom in to certain parts of it. For example, in we zoom in to
the milennium from the founding of Rome to the fall of the western Roman
empire, shown in Figure 8.1.2.

Listing 8.1.2 Plot the world population from the founding of Rome until
the fall of the western Roman empire.

##CAPTION: World population during the period of the Roman empire.
set grid
set datafile separator comma
plot [-753:476] 'world-pop.csv' using 1:2 with linespoints

[image: ../_images/plotworldpopulationroman.svg]
Figure 8.1.2 The world population from the founding of Rome (753 BCE) until the
fall of the western Roman empire (476 CE).

This is a good time to stop and discuss the graph. In discussing
Figure 8.1.2 students might make interesting
connections referring to the Wikipedia Roman demography article [https://en.wikipedia.org/wiki/Demography_of_the_Roman_Empire#Population]
It is sometimes estimated that the Roman empire might have had about
70 million citizens at the height of the empire, in the 2nd centry CE.
The world population at that time was approximately 200 million
people, so the Roman empire would have accounted for some 35% of the
world’s population. This means that large scale population events in
the Roman empire, like the Antonine Plauge in 165-180 CE, or the
decline and fall of the empire in the 4th and 5th centuries might
account for dips in Figure 8.1.2.

We can also zoom in to the 20th century. In
Figure 8.1.3 we zoom in to the 20th century.

Listing 8.1.3 Plot the world population in the 20th century.

##CAPTION: World population in the 20th century.
set grid
set datafile separator comma
plot [1900:1999] 'world-pop.csv' using 1:2 with linespoints

[image: ../_images/plotworldpopulation20th.svg]
Figure 8.1.3 The world population in the 20th century.

Discussion of Figure 8.1.3 can point out that
there is exponential growth from 1900 to 1962 (the year in which the
world’s rate of population growth peaked), but that the exponential
growth has interruptions due to World War I, the Spanish flu, and
World War II.

Listing 8.1.4 Plot the world population from 0 to 1800 CE.

##CAPTION: World population from year 0 to 1800.
set grid
set datafile separator comma
plot [0:1800] 'world-pop.csv' using 1:2 with linespoints

[image: ../_images/plotworldpopulation0-1800.svg]
Figure 8.1.4 The world population from 0 to 1800 CE.

And in Figure 8.1.4 we zoom in to the
period from year 0 to 1800 CE. It can be interesting to look at
pandemics and wars in this period and see if you can find features in
the plot that correspond to those periods in history.

These attempts at zooming in tell us a some interesting things:

	It is frustrating that there is so little data before 1950.

	The 0 to 1800 plot allows us to see things clearly before the
population jumps up so much.

	In the 0-1800 plot we see that the world population starts growing as
we approach the year 1000, after which it flattens off around the
year 1300 (the period of the great plague), after which it starts
pick up and never stops growing.

The other way to look at data when the \(y\) axis has too much
range is to use what is called a log
scale. Figure 8.1.5 shows how this can be
done in gnuplot, and you can see that the \(y\) axis has been
adjusted so that we can see some of the features in the data. This
plot is more useful than that in Figure 8.1.1.

Listing 8.1.5 Instructions to plot the world population with log scale.

##CAPTION: World population.
set grid
set datafile separator comma
set logscale y
plot 'world-pop.csv' using 1:2 with linespoints

[image: ../_images/plotworldpopulationlog.svg]
Figure 8.1.5 The world population from 10000 BCE until the present time, with a
log scale for population. You can see some features because the
log scale compresses the 20th century population explosion.

8.1.1. Exercises

Exercise 8.1Find effective ways of downloading, processing and plotting data on
the duration of ancient empires. You can find some here:
http://www.bbc.com/future/story/20190218-the-lifespans-of-ancient-civilisations-compared

[5]
The full URL is
http://ourworldindata.org/roser/graphs/WorldPopulationAnnual12000years_interpolated_HYDEandUN/WorldPopulationAnnual12000years_interpolated_HYDEandUN.csv
but we don’t need to type it all, so in the text I show an
abbreviation of it.

9. Special numbers: \(\pi\)

[status: written, but incomplete]

9.1. Motivation, prerequisites, plan

9.1.1. Motivation

Our purpose here is a recreational tour through the various aspects of
the number \(\pi\), including calculating it with the use of
random numbers. This brings out various features of probability and
statistics. This topic also gives us the opportunity to write several
small programs that calculate \(\pi\) and do related things. It
also allows us to go mention, in passing, various “higher math”
aspects of \(\pi\) which get students comfortable with the
terminology of those areas of math.

But this is not entirely recreational: the number \(\pi\) is
deeply tied to the geometry of circles and spheres, and thus comes up
in many physical laws: just think of anything that comes from a
single point and spreads uniformly in all directions: the radiation
from a (rather idealized) star, the electrical force field of an
isolated electron, the gravitational field of an isolated mass. The
geometrical aspect of these fluxes means that at a distance \(r\)
from the origin you will see an intensity that is proportional to
\(\frac{1}{4\pi r^2}\)

Among the physics formulae that involve \(\pi\) you will see:

	Einstein’s equation for general relativity:

\[G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}\]

	The Heisenberg uncertainty principle for position and momentum in
quantum mechanics:

\[\Delta x \Delta p \geq \frac{h}{4\pi}\]

Since \(\pi\) occurs so much in quantum mechanics, we have even
coined a special constant and symbol called \(\hbar\) (h-bar):

\[\hbar = \frac{h}{2\pi}\]

so that the uncertainty principle can be written as:

\[\Delta x \Delta p \geq \frac{\hbar}{2}\]

9.1.2. Prerequisites

	The 10-hour “serious programming” course.

	The “Data files and first plots” mini-course in
Section 2

	Random number basics Section 11

9.1.3. Plan

Our plan here is not a deeply rooted one: this is a playful romp
through various aspects of \(\pi\), with the intention of following
whatever tangents might come up.

9.2. A collection of factoids

https://www.livescience.com/34132-what-makes-pi-special.html

among a collection of random whole numbers, the probability that any
two numbers have no common factor — that they are “relatively prime” —
is equal to \(6/\pi^2\). Strange, no?

Finally, \(\pi\) emerges in the shapes of rivers. A river’s
windiness is determined by its “meandering ratio,” or the ratio of the
river’s actual length to the distance from its source to its mouth as
the crow flies. Rivers that flow straight from source to mouth have
small meandering ratios, while ones that lollygag along the way have
high ones. Turns out, the average meandering ratio of rivers
approaches — you guessed it — \(\pi\).

https://www.angio.net/pi/whypi.html

https://www.newyorker.com/tech/annals-of-technology/pi-day-why-pi-matters

\(\pi\) is an irrational number: it can never be written as a
fraction. In fact it is even more elusive: it can also never be
written as the solution to a polynomial equation, so we say that it is
not just irrational: it is also transcendental.

But there are a lot of cute approximations to \(\pi\) with fractions.
The two which you might remember are:

\[\pi \approx \frac{22}{7} \approx 3.14285714286\]

and

\[\pi \approx \frac{355}{113} \approx 3.14159292035\]

For those who know some trigonometry, Machin’s formula is exact:

\[\frac{\pi}{4} = 4 \arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right)\]

Another favorite of mine is Stirling’s approximation which gives an
approximation to the factorial function (see also
Section 20):

\[n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n\]

Stirling’s formula works for large-ish values of \(n\), and
approximates the exact value of \(n!\) as \(n \rightarrow
\infty\). If you try it you will find that \(10! = 3628800\),
while Stirling’s formula gives \(3598695.61893\), which is off by
about 0.8%.

9.3. Calculating \(\pi\): ancient history

(FIXME must improve sources on this.)

Bible: fountain which is 30 paces around and 10 paces across.

Archimedes: inscribe polygons; go up to 6; he went up to 96.
Depending on the energy level of the classroom, try to do the actual
calculation!

9.4. Calculating \(\pi\): monte carlo method

This is a good first introduction to monte carlo integration, which
allows us to discuss monte carlo methods in general.

Introduce the European city of gambling, refer to James Bond, and then
dive in to the method.

The method involves shooting darts into a square which has a circle
inscribed in it. Draw the picture of a circle inside a square, and
draw points of random darts hitting it.

The fraction of darts that fall in the circle is proportional to the
fraction of areas:

\[\frac{N_{\rm cir}}{N_{\rm sq}} \approx \frac{A_{\rm cir}}{A_{\rm sq}}\]

The area of the circle is \(\pi r^2\), and that of the square is
\(\pi l^2\). Since we have constructed this so that \(l =
2r\) we get:

\[\frac{N_{\rm cir}}{N_{\rm sq}} \approx \frac{\pi r^2}{(2r)^2} =
\frac{\pi}{4}\]

This gives us:

\[\pi = 4 \frac{N_{\rm cir}}{N_{\rm sq}}\]

Now what I usually do is write a live program which has a loop that
throws 1000 darts. It does so by calculating x = random.random() *
2 - 1 and the same for y. This gives us a dart in a square. Then
using the pythagoras theorm with if sqrt(x*x + y*y) < 1 we can
determine if the dart is in the circle. We add all that up and
estimate \(\pi\).

I usually write this program (12 lines) live while the students write
it with me. I write the program so that it prints, for each dart,
four things: the index of the loop, the x coordinate, the y
coordinate, and the estimate of \(\pi\) so far.

After experimenting with 1000 darts, then 100000, then a million, we
go back to 1000 and redirect the output into a file.

This file can be plotted with a line using columns 1 and 4 (estimate
of \(\pi\) vs. n_darts), and with points using columns 2 and 3 (the
locations of the darts).

9.5. Calculating \(\pi\): series that converge to \(\pi\)

Further reading:
https://en.wikipedia.org/wiki/List_of_formulae_involving_%CF%80

Remember the terminology: a sequence \(\{x_i\}\) is an ordered
list of numbers with a criterion that gives you the next one in the
sequence. An infinite series \(\sum_{k=0}^{\infty} x_k\) is the
sum of the sequence \(\{x_k\}\). (Although you can then also say
that the sequence of partial sums (i.e. up to N instead of up to
infinity) of a series is a sequence, so the terms interweave…)

Over the years people have discovered many infinite series that
converge to \(\pi\).

9.5.1. Madhava-Leibniz series

\[\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} +
\frac{1}{9} - \dots = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}\]

Properties: this series is exact, but it converges very slowly
(sublinear convergence). To get 10 digits you need five billion
terms of the series. See
https://en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80

9.5.2. “Efficient” infinite series

\[\frac{\pi}{2} = \sum_{k=0}^{\infty} \frac{2^k k!^2}{(2k+1)!}\]

The Bailey-Borwein-Plouffe formula has the interesting feature that it
can be used to pick out any binary digit of \(\pi\) (although the digit
extraction algorithm is lengthy):

\[\sum_{k=0}^{\infty} \frac{1}{16^k}\left(\frac{4}{8k+1} -
\frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6} \right)\]

Let us write a program which calculates this series up to a certain
value of N:

Listing 9.5.1 series-to-N.py - sum a series up to N.

#! /usr/bin/env python3

import sys
import math

def main():
 """Calculate a series up to a certain value of k which is given on the
 command line
 """
 # series_term = series_term_leibniz
 series_term = series_term_zeta_2
 verbose = True
 try:
 lower = int(sys.argv[1])
 upper = int(sys.argv[2])
 except:
 print('usage: %s lower_bound upper_bound' % sys.argv[0])
 sys.exit(1)

 sum_to_here = 0
 for k in range(lower, upper+1):
 sum_to_here += series_term(k)
 # pi_approximation = 4 * sum_to_here
 pi_approximation = math.sqrt(6 * sum_to_here)
 if verbose: # print the intermediate values
 print(k, ' ', sum_to_here, ' ', pi_approximation,
 ' ', math.fabs(math.pi - pi_approximation), ' ',
 math.fabs(math.pi - pi_approximation) / math.pi)

 print('result after %d iterations: %g' % (upper, sum_to_here))
 ## FIXME: the formula below changes for different series
 print('## pi_approximation_final:', pi_approximation)

def series_term_leibniz(k):
 """Returns the kth term of the leibniz series for pi. Sum starts at
 1. Note that to print the resulting calculation of pi you will
 need to print 4*sum_to_here.
 """
 return (-1)**(k+1) / (2*k - 1)

def series_term_zeta_2(k):
 """Returns the kth term of the riemann function zeta(2). Sum starts
 at 1. Note that to print the resulting calculation of pi you will
 need to print sqrt(6.0*sum_to_here)."""
 return 1.0/(k**2)

you can add more series term functions here

if __name__ == '__main__':
 main()

Note that the results of these series often need to then be
square-rooted, or squared, or divided by something, so make sure to
modify the main() function slightly each time so that you can see
\(\pi\) clearly in the results. By default I have set it to multiply the
summation by 4 for the Leibniz formula.

Try running this program and see how rapidly it converges to \(\pi\). The
Leibniz formula seems to require a factor of 10 more iterations to get
just one more digit, which is quite slow.

Exercise 9.1Right now series-to-N.py has (at least) two displeasing
qualities: it asks you for the lower limit of the sum, and it
requires that you change the code to print the resulting value of
\(\pi\) depending on which series you are summing. Modify the
program so that both those pieces of information are associated
with the function, instead of having to give them as input or
changing the code.

Exercise 9.2For each of the infinite series you have programmed, make a plot of
the convergence to \(\pi\) versus how many terms you sum. Then
research the theoretical formulae that tell you how rapidly these
series converge.

9.5.3. Formulae based on the Riemann zeta function

In general the Riemann zeta function is:

\[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}\]

Evaluated at \(s = 2\) we get the series:

\[\zeta(2) = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}\]

and at \(s = 4\) we get:

\[\zeta(4) = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{90}\]

Exercise 9.3Write a function that calculates the Riemann zeta function for
complex values of \(s\) and reproduce the attractive domain
coloring plots shown in the images in
https://en.wikipedia.org/wiki/Riemann_zeta_function

You will need to research how to calculate the zeta function for
complex values.

9.6. Relationships between special numbers

One of the most striking math identities is Euler’s identity:

\[e^{i\pi} + 1 = 0\]

It seems to combine the five most memorable numbers (0, 1, i, e,
\(\pi\)) with the three basic arithmetic operations (addition,
multiplication, exponentiation).

To see how mathematicians and philosophers have gone poetic on Euler’s
identity, see the wikipedia page:
https://en.wikipedia.org/wiki/Euler%27s_identity#Mathematical_beauty

In class we can introduce a brief discussion of the Taylor series and
show how the formula comes about, possibly adding the trigonometric
identity to it. This will usually depend on a reading of the math
level (and fatigue) of the students.

10. A workshop on programming by yourself (!)

Motivation

Here’s how I announce this mini-course to the mailing list:

This week on [...] I will teach a mini-course in which we practice
writing programs ourselves. Most of our mini-courses involve a
program which I or one of the other students have written, but it's
important to break that umbilical cord and actually carry out some
exercises or write some programs from scratch. So this week we will
do that: I will propose a program to write, but you can also pick
any program to work on, or exercise from the book. You will work on
it on your own, but I will occasionally give tips, either to
individuals or to the whole class. [...]

Plan

I start out by proposing a problem. The one I have used gives some
exposure to chemistry and an opportunity to explain some
ideas.

11. Random number basics

[status: unwritten]

Purpose:

	Learning more about random numbers

11.1. Prerequisites

	The 10 hour “serious programming” course.

	A GNU/Linux system with python3 and python3-tk installed (on an
Ubuntu 16.04 system this can be done with sudo apt install python3-tk)

11.2. Motivation

In our “serious programming” course we used random numbers to program
a random strategy in the computer’s tic-tac-toe algorithm.

It turns out that random numbers appear in very many areas of
scientific computing, so in this chapter we will become comfortable
with how to generate, plot and use random numbers.

11.3. Types of distributions

Here we will go a bit further and look at the various calls in
Python’s random library, explore some simple … FIXME: to be
filled

11.4. Further reading

[unfinished]

	https://www.youtube.com/watch?v=_tN2ev3hO14

12. Randomness and Disorder

[status: content-mostly-written]

Purpose: to drive home the notion of disorder (and order) and how that
relates to the probabilities of various situations.

Prerequisites:

	The basic Python course.

	Familiarity with simple plotting.

12.1. Experiment: burn a match

NOTE: this experiment should be carried out under adult supervision.

	Have a flat piece of metal, or a tile, or a very flat rock. Lay it
down in a stable place.

	Light a match and before the flame reaches your finger, lay it
gently on the flat metal or tile or rock.

	Watch it until it finishes burning and let it cool down.

	If possible, take the dark stick that is left and remake it into
the original match.

12.2. Experiment: ink in water

	Find an ink-like substance.

	Fill a discardable plastic cup with water.

	Drop a single drop of the ink into the water.

	Observe the ink in the water the instant it falls in.

	Observe the ink in the water after thirty seconds.

	If possible, make the water return the drop of ink to where it was
the instant it fell in.

12.3. Discussion on “ink in water” experiment

Discuss the meaning of the “ink in water” experiment with your
partners. In particular discuss the meaning of the last step and
whether it was possible.

12.4. Flipping a single coin

Take a coin and flip it 16 times. Tabulate the results like this:

H T T H H H T H T T H H T H T H ...

and so forth. Count how many times you get heads and how many times
you get tails.

If you use 1 for heads and 0 for tails, calculate the average of all
the tosses. In the few flips shown above it will be 0.5625: just a
bit more than half of the tosses were heads.

12.5. Review: random numbers in Pythyon

To review random numbers, open the python interpreter with

$ python3
>>> import random
>>> random.random()
repeat that many times
>>> random.randint(-3, 12)
>>> random.randint(-3, 12)
repeat that many times
>>> random.randint(0, 1)
repeat that many times

12.6. Experiment: flipping a single virtual coin

12.6.1. Just the flips

Flipping coins just a few times can give inconsistent results. Let us
explore how long it takes for the average number of heads and tails to
become consistent.

In this experiment we will write a computer program to flip a single
virtual coin and look at the results. Then we will update the program
to keep track of the average between heads and tails. We will count
heads as 1, tails as 0, and print the average as we keep flipping.
First enter (or paste) the program in
Listing 12.6.1.

Listing 12.6.1 single_coin_average.py

#! /usr/bin/env python3
import random

def main():
 n_runs = 16
 n_heads = 0
 n_tails = 0
 for i in range(n_runs):
 this_flip = random.randint(0, 1)
 if this_flip == 0:
 n_tails += 1
 else:
 n_heads += 1
 average = float(n_heads)/(n_heads + n_tails)
 print('%d %f' % (i, average))

main()

Run this program with:

$ python3 single_coin_average.py
[... there will be output here ...]
$ python3 single_coin_average.py > coin_avg.dat

Then plot the results with:

$ gnuplot
and at the gnuplot> prompt:
plot 'coin_avg.dat' using 1:2 with linespoints
plot [] [0:1] 'coin_avg.dat' using 1:2 with linespoints

Then change n_runs to be 100 and re-run the program and re-plot the
results. Then plot 1000 runs.

12.6.2. Long-running average of single coin flips

Write the program in Listing 12.6.2 in a file
called single_coin_flip.py

Listing 12.6.2 single_coin_flip.py

#! /usr/bin/env python3
import random

def main():
 n_runs = 16
 n_heads = 0
 n_tails = 0
 for i in range(n_runs):
 this_flip = random.randint(0, 1)
 print('%d %d' % (i, this_flip))

main()

then run it with with:

$ python3 single_coin_flip.py
[... there will be output here ...]
$ python3 single_coin_average.py > coin_avg.dat

Then plot the results with:

$ gnuplot
and at the gnuplot> prompt:
plot 'coin_avg.dat' using 1:2 with linespoints pt 7 ps 1

Then change n_runs to be 100 and re-run the program and re-plot the
results. Then plot 1000 runs.

12.7. Flipping multiple coins

Take two different coins and flip them 16 times. Tabulate the results
like this:

H T
T H
T T
H H
...

and so forth. Count how many times you get all heads and how many
times you get all tails.

Do the same thing with three coins.

12.8. Experiment: flipping virtual coins

Since the purpose of computers is to automate repetitive tasks, we
should not go beyond flipping three coins. Rather, we will write a
computer program to do so. Enter the program in
Listing 12.8.1 as many_coins.py:

Listing 12.8.1 many_coins.py

#! /usr/bin/env python3

"""
A simple program to simulate the flipping of several coins. You
can experiment by chaning the variables n_runs and n_coins below.
"""

import random

def main():
 n_runs = 16
 n_coins = 1

 n_heads = 0
 n_tails = 0
 n_all_heads = 0
 n_all_tails = 0
 # outer loop is on how many runs we are doing
 for i in range(n_runs):
 this_flip = [0] * n_coins # store the results of a single run
 # now flip a bunch of coins for this run
 for coin in range(n_coins):
 flip = random.randint(0, 1)
 this_flip[coin] = flip
 if flip == 0:
 n_heads = n_heads + 1
 else:
 n_tails = n_tails + 1
 print('%s ' % ('H' if flip == 1 else 'T'), end="")
 if this_flip.count(0) == n_coins:
 n_all_tails = n_all_tails + 1
 if this_flip.count(1) == n_coins:
 n_all_heads = n_all_heads + 1
 print('')
 print('after %d flips of %d coins, we got the following:'
 % (n_runs, n_coins))
 print('HEADS: %d' % n_heads)
 print('TAILS: %d' % n_tails)
 print('TOTAL: %d' % (n_heads + n_tails))
 print('RUNS_WITH_ALL_HEADS: %d' % n_all_heads)
 print('RUNS_WITH_ALL_TAILS: %d' % n_all_tails)
 print('fraction_runs_all_heads: %f' % (float(n_all_heads)/n_runs))
 print('fraction_runs_all_tails: %f' % (float(n_all_tails)/n_runs))

main()

The variables at the top, n_runs and n_coins, set how many
runs you do and how many coins you flip in each run.

Experiment with n_coins = 2 and try to let n_runs go through
16, 50, and then try 1000. Run the program several times with each
value of n_runs and pay close attention to the output lines
fraction_all_heads and fraction_all_tails – are they more
consistent when n_runs is larger?

Do the same with n_coins set to 3, 4, 5, and then to 20, keeping
n_runs at 1000.

Discuss what you see happen to fraction_all_heads and
fraction_all_tails.

12.9. Experiment: back to physical coins - disorder

	Take 10 coins, set them up to be all heads and near each other on
the ground.

	Take a spatula, slide it under the 10 coins, toss them high up in
the air.

	Watch the debris and count heads and tails.

	Take the spatula again and use a single movement of the spatula to
put all the 10 coins back into their original state (all near each
other and all heads). If you cannot do this with a single movement
of the spatula, give yourself 10 spatula moves.

	Repeat this experiment with the 10 coins stacked up instead “near
each other”.

	Now do what you have to do to restore the 10 coins to the pile
where they are all “heads up” using the spatula. I that fails, do
so with your fingers.

12.10. The drunk fencer

Let us now start talking about random walks. I want to move toward
discussing random walks in 2 dimensions, but it is easier to program a
one-dimensional random lurching back and forth - the way a drunk
fencer might move back and forth randomly rather than according to the
needs of the bout.

Let us type in the program in Listing 12.10.1:

Listing 12.10.1 walk-1d.py – simulates a drunken fencer

#! /usr/bin/env python3

import random
import math
import sys

def main():
 x = 0
 n_steps = 10
 if len(sys.argv) == 2:
 n_steps = int(sys.argv[1])
 take_walk(x, n_steps)

def take_walk(x, n_steps):
 print(f'##COMMENT: sys.argv[0] - one dimensional random walk program')
 print(f'##TOTAL_STEPS_REQUESTED: {n_steps}')
 print(f'##COLUMNS: step_number, pos_x, sqrt(step_number), delta_pos_sqrt')
 for i in range(n_steps):
 ## generate a step of -1 or +1 in the x direction
 step_x = random.randint(0, 1) * 2 - 1
 x = x + step_x
 delta_x_sqrt_i = math.fabs(math.fabs(x) - math.sqrt(i))
 if i == 0:
 delta_x_sqrt_i_normalized = 0
 else:
 delta_x_sqrt_i_normalized = delta_x_sqrt_i / math.sqrt(i)
 print(i, x, math.sqrt(i), delta_x_sqrt_i, delta_x_sqrt_i_normalized)

main()

and run it and plot the results like this:

$ python3 walk-1d.py
$ python3 walk-1d.py > walk-1d.dat
$ gnuplot
and at the gnuplot> prompt:
set grid
set size square
plot 'walk-1d.dat' using 1:2 with lines

By changing the number of steps to 100, 1000 and 10000 you should see
the plots in Figure 12.10.1.

[image: ../_images/walk-path-1d.svg]
Figure 12.10.1 The path of a drunken fencer 100, 1000, 10000 and 100000 steps.

12.11. The drunkard’s walk

Now we move on to the more gratifying 2-dimensional random walk, also
called the drunkard’s walk.

First introduce the notion with pictures and possibly an acting out of
drunk behavior. Then type in the program in Listing 12.11.1

Listing 12.11.1 walk.py

#! /usr/bin/env python3

import random
import math
import sys

def main():
 x = 0
 y = 0
 n_steps = 10
 if len(sys.argv) == 2:
 n_steps = int(sys.argv[1])
 take_walk(x, y, n_steps)

def take_walk(x, y, n_steps):
 print(f'##COMMENT: sys.argv[0] - two dimensional random walk program')
 print(f'##TOTAL_STEPS_REQUESTED: {n_steps}')
 print(f'##COLUMNS: step_number, pos_x, pos_y, distance_from_origin')
 for i in range(n_steps):
 ## generate steps of -1 or +1 in x and y directions
 step_x = 0
 step_y = 0
 ## use a coin toss to decide if we go in the x or y direction
 if random.randint(0, 1) == 0:
 step_x = random.randint(0, 1) * 2 - 1
 else:
 step_y = random.randint(0, 1) * 2 - 1
 x = x + step_x
 y = y + step_y
 distance = math.sqrt(x*x + y*y) # distance from the origin
 print(i, x, y, distance)
 ## NOTE: if you want you can go farther and explore the way
 ## average distance scales with the number of steps (should be
 ## proprtional to the square root of the number of steps).
 ## for this it might be interesting to also print math.sqrt(i)

main()

Examples of running this program:

$ python3 walk.py
$ python3 walk.py 20
$ python3 walk.py 100

Now we want to do a big run and save the data to a file:

$ python3 walk.py 1000000 > walk-1000000.dat

Now we plot it. Note the tricks with the tail command which let
you plot just the first few lines rather than the whole file:

$ gnuplot
and at the gnuplot> prompt:
set grid
set size square
plot '<tail -100 walk-1000000.dat' using 2:3 with lines
plot '<tail -1000 walk-1000000.dat' using 2:3 with lines
plot '<tail -10000 walk-1000000.dat' using 2:3 with lines
plot '<tail -100000 walk-1000000.dat' using 2:3 with lines
plot '<tail -1000000 walk-1000000.dat' using 2:3 with lines

By changing the number of steps to 100, 1000 and 10000 you should see
the plots in Figure 12.11.1

[image: ../_images/walk-path.png]

Figure 12.11.1 The path walked by a drunkard for 100, 1000, 10000 and 100000
steps. Note that for long walks the figure starts looking like a
fractal.

12.12. Matplotlib animation of a random walk

Using matplotlib we can animate rather smoothly in real time. Try
this program in Listing 12.12.1:

Listing 12.12.1 walk_matplotlib.py

#! /usr/bin/env python3

"""This program plots an animated random walk using matplotlib. You can run it with:

walk_matplotlib.py 500 1000

which would show 500 video frames to take 1000 steps.

A long run that shows how you can generate self-similar pictures could
be:

matplotlib.py 10000 100000

You could remove a zero from the first number to make it draw much faster.

"""

import sys
import math
import random

import matplotlib.pyplot as plt
import numpy as np

def main():
 n_frames = 500
 n_steps = 1000
 walk_file = 'walk_matplotlib.dat'
 if len(sys.argv) == 3:
 n_frames = int(sys.argv[1])
 n_steps = int(sys.argv[2])
 if n_frames > n_steps:
 raise Exception('*error* cannot have more frames than steps')
 x = 0
 y = 0
 take_walk(x, y, n_frames, n_steps)
 plt.waitforbuttonpress()

def take_walk(x, y, n_frames, n_steps):
 """Takes a random walk, plotting the trajectory as we go."""
 assert(n_frames <= n_steps)
 draw_interval = int(n_steps / n_frames)
 assert(draw_interval > 0)
 print('## draw_interval: ', draw_interval)
 # some boiler plate stuff to prepare the matplotlib drawing area
 xmax = max(x, 10)
 ymax = max(y, 10)
 xmin = min(x, -10)
 ymin = min(y, -10)
 fig = plt.figure()
 ax = plt.axes()
 ax.set_xlim(-10, 10)
 ax.set_ylim(-10, 10)
 plt.grid(True)
 step_list = []
 full_path_x = []
 full_path_y = []
 line, = ax.plot(full_path_x, full_path_y, color='g', linewidth=3.0)
 # now that the plotting layout and variables are ready, we can
 # start the iteration
 for i in range(n_steps):
 step_x = 0
 step_y = 0
 prev_x = x
 prev_y = y
 ## generate steps of -1 or +1 in x and y directions
 ## use a coin toss to decide if we go in the x or y direction
 if random.randint(0, 1) == 0:
 step_x = random.randint(0, 1) * 2 - 1
 else:
 step_y = random.randint(0, 1) * 2 - 1
 x = x + step_x
 y = y + step_y
 # readjust the limits to account for where we are now
 xmax = max(xmax, x, ymax, y, -xmin)
 ymax = max(ymax, y, xmax, x, -ymin)
 xmin = min(xmin, x, ymin, y, -xmax)
 ymin = min(ymin, y, xmin, x, -ymax)
 ax.set_xlim(xmin, xmax)
 ax.set_ylim(ymin, ymax)
 distance = math.sqrt(x*x + y*y) # distance from the origin
 if i < 1:
 continue # don't plot the first step

 # our plotting approach will use the matplotlib
 # line.set_data() method, which uses a variable with all the
 # data in it. this makes for smoother animation and better
 # memory use than other approaches, like drawing over previous
 # plots.
 full_path_x.append(x)
 full_path_y.append(y)
 prev_x = x
 prev_y = y
 # now do some clever balancing of how often we update the
 # drawing; this is based on the two input variables: the
 # number of frames and the number of steps.
 if i % draw_interval == 0:
 line.set_data(full_path_x, full_path_y)
 linewidth = 1 + 20.0 / (xmax - xmin)
 line.set_linewidth(linewidth)
 ax.figure.canvas.draw_idle()
 print(i, ' ', x, ' ', y, ' ', math.sqrt(x*x + y*y),
 ' ', linewidth)
 plt.pause(0.000001)
 return step_list

main()

There are many things you might find notable in this program. The one
I will comment on here is that there is a particular way in which we
update the line in the plot (the key animation step).

Instead of using drawing commands to draw a new line, we use the
line.set_data(). This is for speed: redrawing would be very
slow, while updating the internal plot data will write to screen much
faster.

Another thing to note is that in this example we don’t use
matplotlib’s animation approach. We could probably change this
program over, but it might be good to first see how to program it
directly.

There is a tutorial on matplotlib animations here:

https://jakevdp.github.io/blog/2012/08/18/matplotlib-animation-tutorial/

archived at:

https://web.archive.org/web/20220601192231/https://jakevdp.github.io/blog/2012/08/18/matplotlib-animation-tutorial/

12.13. Making a movie from walk frames

12.13.1. Reviewing graphics and animation

In this session I will start with a discussion of graphical and video
file formats: mention png (portable network graphics), jpeg (joint
picture expert group), and mpeg (motion picture expert group).

We can use either ffmpeg or convert or mencoder to convert
the sequence of frames into a movie.

In other mini courses, for example Section 32.1.3.1, we
have used the same idea of generating several individual frames and
then using ffmpeg to make a movie out of them. We can go to that
section and try those examples, and then return here.

It basically boils down to this. Find an image to work with, for
example a Hubble Space Telescope image of the Pillars of Creation in
the Eagle nebula:

wget https://ia902307.us.archive.org/7/items/pillars-of-creation-2014-hst-wfc-3-uvis-full-res-denoised/Pillars_of_creation_2014_HST_WFC3-UVIS_full-res_denoised.jpg
rename it something simpler
mv Pillars_of_creation_2014_HST_WFC3-UVIS_full-res_denoised.jpg pillars_of_creation_hubble_big.jpg
make it smaller
convert -resize 1000x pillars_of_creation_hubble_big.jpg pillars_of_creation_hubble.jpg

Then, to experiment with making animations, try this sequence:

for i in `seq -w 0 360`
do
 echo "rotating by $i degrees"
 convert pillars_of_creation_hubble.jpg -rotate $i pillars_of_creation_hubble-rotate${i}.jpg
done

ffmpeg -framerate 20 -i pillars_of_creation_hubble-rotate%03d.jpg rotate-movie-fr20.mp4

Then you can view rotate-movie-fr20.mp4 with your favorite movie plyer.

12.13.2. Making individual frames of the random walk

We will use gnuplot to generate a sequence of images in png format.

Start with a file with a million lines of random walk output. You can
do this as shown above with:

$ python3 walk.py 1000000 > walk-1000000.dat

gnuplot usually draws its output to the screen, but we can change that
behavior and have it generate a .png file. To do so we add a
couple of lines at the top:

$ gnuplot
and at the gnuplot> prompt:
set grid
set size square
set terminal png
set output 'walk-100.png'
plot '<tail -100 walk-1000000.dat' using 2:3 with lines
set terminal png
set output 'walk-1000.png'
plot '<tail -1000 walk-1000000.dat' using 2:3 with lines
quit
at the shell, possibly in another window, you can type:
$ ls

After running this last example you should find that there are a
couple of new files in this directory: walk-100.png and
walk-1000.png. If you view them with your favorite image viewer
(you might want to consider the viewer geeqie) you will see that
they are indeed the plots you wanted to make.

Our first task is to automate this process to generate hundreds or
thousands of individual static images. The program
walk_movie.py in Listing 12.13.1 does so.

Listing 12.13.1 walk_movie.py

#! /usr/bin/env python3

"""Makes a movie from a random walk output file."""

import os
import sys

def main():
 n_frames = 500
 n_steps = 1000000
 walk_file = 'walk-%d.dat' % n_steps
 if len(sys.argv) == 3:
 walk_file = sys.argv[1]
 n_frames = int(sys.argv[2])
 n_steps = int(os.popen("wc %s | awk '{print $1}'" % walk_file).read())
 print('Using %d frames from input file %s which has %d steps'
 % (n_frames, walk_file, n_steps))

 if not os.path.exists(walk_file):
 print('error: you must prepare the file %s -- you can do this with:'
 % walk_file)
 print(' ./walk.py %d > %s' % (n_steps, walk_file))
 sys.exit(1)

 gp_fname = 'walk_step.gp'
 for frame in range(0, n_frames):
 this_step = int(frame*n_steps/n_frames) # go in jumps
 this_step = max(this_step, 10) # avoid small numbers
 png_fname = 'walk_frame-%06d.png' % frame
 if os.path.exists(png_fname):
 sys.stdout.write('## no need to rebuild %s \r' % png_fname)
 sys.stdout.flush()
 continue
 gp = """set grid
set size square
set terminal png
set output '%s'
plot '<head -%d %s' using 2:3 with lines
quit\n""" % (png_fname, this_step, walk_file)
 f = open(gp_fname, 'w')
 f.write(gp)
 f.close()
 os.system('gnuplot %s' % gp_fname)
 percent = 100.0*frame / n_frames
 if frame % 10 == 0:
 sys.stdout.write('Making individual frames -- %.02f%% completed \r' % percent)
 sys.stdout.flush()
 print()
 print('## now you can make a movie with something like:')
 print('ffmpeg -framerate 24 -i walk_frame-%06d.png walk-movie.mp4')
 print('## or:')
 print('ffmpeg -framerate 24 -i walk_frame-%06d.png walk-movie.ogg')
 print('## or:')
 print('convert walk_frame*.png walk-movie.mp4')
 print('## or for a more powerful encoder:')
 print('mencoder "mf://walk_frame*.png" -o walk-movie.mp4 -ovc lavc')
 print('## or in reverse:')
 print('ls -1 -r walk_frame*.png > reverse_filelist')
 print('mencoder "mf://@reverse_filelist" -o walk-movie-reverse.mp4 -ovc lavc')

main()

If you run this program it will generate n_frames different frames
(the default in the program is 1000). To make a more satisfying movie
we should increase this, but let us start with 1000 to make the
program run more quickly.

walk_movie.py will pick out the random walk steps jumping 100 every
time (see the line that says n_steps = i*100). It then generates a
sequence of gnuplot commands like the one we saw above to generate
file names that look something like walk_frame-000023.png.

If we run the program and the list the directory:

$ python3 walk_movie.py
$ ls

we see that the program has generated a bunch of walk_frame-*.png
files (initially 1000 of them). Your favorite graphic viewer might
allow you to press the space bar and almost see an animation of them.

Now let us talk about making a movie. There are several programs
which encode a sequence of static image files into an mpeg movie. I
mention three such programs: ffmpeg, convert and mencoder.
The walk_movie.py program gave us a tip on how to run those
programs to encode all the frames into the movie file
walk-movie.mp4:

$ ffmpeg -framerate 24 -i walk_frame-%06d.png walk-movie.mp4

or

$ convert walk_frame*.png walk-movie.mp4

or

$ mencoder "mf://walk_frame*.png" -o walk-movie.mp4 -ovc lavc

or, to make a movie in reverse:

$ ffmpeg -framerate 24 -start_number -999999 -i walk_frame-%06d.png walk-movie.mp4
FIXME: the reverse order with a negative start number needs to
be ironed out. Maybe ffmpeg can take an `ls -r ...` on the
command line.

or

$ ls -1 -r walk_frame*.png > reverse_filelist
$ mencoder "mf://@reverse_filelist" -o walk-movie-reverse.mp4 -ovc lavc

Note that the simplest and fastest approach is to use ffmpeg (the
“Swiss army knife” of video and audio formats) so I will continue with
ffmpeg for my examples.

You can now play these movies with your favorite movie player - I
recommend vlc, though your system might come with totem already
installed:

$ vlc walk-movie.mp4
$ vlc walk-movie-reverse.mp4

I wrote walk_movie.py to only generate 500 frames so that it can
run quickly when I give examples or when I build this book, but you
should increase that number a lot so you can see a longer movie with
more detail.

Playing the movie shows you the growth of a fractal. It is
interesting to watch how sometimes it adds paths in a clump, while
sometimes it darts off into another sector of the plane, creating some
filaments that connect the thicker bushes.

 13. Random Processes

13. Random Processes

[status: partially-written]

13.1. Motivation, prerequisites, plan

Motivation

There is a surprising depth in understanding various aspects of random
processes, also called stochastic processes. The wikipedia article
mentions that:

“They have applications in many disciplines including sciences
such as biology, chemistry, ecology, neuroscience, and physics as
well as technology and engineering fields such as image processing,
signal processing, information theory, computer science,
cryptography and telecommunications. Furthermore, seemingly random
changes in financial markets have motivated the extensive use of
stochastic processes in finance.”

This is a staggering list of fields: random processes seem to be as
pervasive in all fields of physical, biological and social science as
basic math, statistics and calculus.

Prerequisites

	The 10-hour “serious programming” course.

	The “Data files and first plots” mini-course in
Section 2.

	Random number basics from Section 11.

	The sections on random walks from
Section 12.

Plan

So how do we write programs that study and visualize these ideas? We
will:

	Review random number generation.

	Introduce simple poisson processes: random amplitude and random
time between samples.

	Examine the distribution of \(\Delta t\) in a poisson process.

	Look at random placements on a 2D lattice.

	Various types of time series.

	Revisit random walks.

	Diffusion: distribution of distance covered in a random walk after
time \(t\).

	Brownian motion and kinetic theory.

	Progression of record peaks, and progression of sports world
records.

13.2. Reviewing random number generation

You should quickly review the brief section on what web pages look
like in Section 11 before continuing in this
section.

Now let us write a few lines of code which generate random numbers and
then puts them into a file which we can analyze and plot.

$ python3
>>> import random
>>> random.random()
>>> random.random()
>>> [...]
>>> ## now put the numbers in a file
>>> f = open('time_series.out', 'w')
>>> f.write('## time time_interval what_happened\n')
>>> t = 0
>>> for i in range(300):
>>> dt = random.random()
>>> t = t + dt
>>> f.write('%g %f EVENT!!\n' % (t, dt))
>>> f.close()

[not sure about the remaining paragraphs in this section; they are
commented out for now]

13.3. Poisson processes

A poisson process is a random process in which each event’s
probability is unrelated to any previous events.

Examples include throwing dice, flipping coins, radioactive decay.

We will write programs that simulate various types of poisson process.

13.3.1. A pure poisson process

Our first program will

13.3.2. An angry lightning goddess

Scenario: you live in a very unfortunately placed house. Every day
Astrape, the goddess of lightning, rolls her special dice and has a
probability of 0.03 (3%) to hitting that house. This should
correspond to an average of one hit per month.

Let us first write a program which generates this series of events
using a random number generator. Our first stab at this program will
simply see that the probability was indeed close to 0.03.

Listing 13.3.1 lightning-first-stab.py – Hit a house with lightning
with a 3% chance every day. First stab at simulating
this.

#! /usr/bin/env python3

"""Simpole example of simulating lightning strikes with a fixed
probability every day. This first stab at a simulation simply
calculates the probability of the hit to make sure that the random
number generator performs as we expect.

"""

import random

def main():
 n_days = 1000
 n_hits = 0
 n_misses = 0
 for day in range(n_days):
 r = random.random()
 if r <= 0.03: ## 3% chance
 n_hits += 1
 else:
 n_misses += 1
 hit_fraction = n_hits / n_days
 print('average daily hits: %g (%d days)' % (hit_fraction, n_days))

if __name__ == '__main__':
 main()

Run the program a few times to see that you indeed got

The key mechanism used in this program was in these lines of code:

 # ...
 r = random.random()
 if r <= 0.03: ## 3% chance
 n_hits += 1
 else:
 n_misses += 1
 # ...
hit_fraction = n_hits / n_days

Make sure you understand that the random.random() call returning
less than 0.03 happens 3% of the time.

Now, following an example from Steven Pinker [FIXME: put citation to
The Better Angles of Our Nature], we ask the question:

If Astrape struck your house today, which day is the most likely
day for the next bolt of lightning to strike your house?

To estimate this we write the following program:

Listing 13.3.2 lightning-time-distribution.py – Hit a house with
lightning with a 30% chance every day. Estimate the
distribution of time intervals between strikes.

#! /usr/bin/env python3
import random
import math

def main():
 ## run this program with n_days = 50 when you want
 ## to eyeball the output; run it with n_days = 1000,
 ## then 10*1000, then 100*1000 when you want to make
 ## plots
 n_days = 100000
 delta_t_list = simulate_strikes(n_days)
 ## now that we have the list we print it to a file
 with open('time_diffs.dat', 'w') as f:
 for delta_t in delta_t_list:
 f.write("%d\n" % delta_t)
 print('wrote time_diffs.dat with %d delta_t values'
 % len(delta_t_list))

def simulate_strikes(n_days):
 """simulates lightning strikes for a given number of
 days, collecting information on the times between
 strikes. returns the list of delta_t values.
 """
 last_delta_t = -1
 delta_t_list = []
 prev_day_with_strike = -1
 for day in range(n_days):
 r = random.random() # a random float between 0 and 1
 if r <= 0.03: # 3% chance
 #print('%d: hit' % day)
 if prev_day_with_strike >= 0:
 ## we record the delta_t of this event
 last_delta_t = day - prev_day_with_strike
 delta_t_list.append(last_delta_t)
 prev_day_with_strike = day
 return delta_t_list

if __name__ == '__main__':
 main()

You can then plot the results of this program in a couple of different
ways. We will first make a scatter plot showing the lightning
events as points in a plot with lightning number and \(\Delta t\).
You can see this in Figure 13.3.1.

Listing 13.3.3 Instructions to make a scatter plot of \(\Delta t\)
for each pair of lightning strikes.

##REQUIRED_FILE: time_diffs.dat
##PRE_EXEC: ./lightning-time-distribution.py
set xlabel 'lightning number'
set ylabel '{/Symbol D} t (days)'
plot 'time_diffs.dat' using 1 with points pt 4 \
 ps 0.3 title 'time between lightning strikes'

[image: ../_images/lightning-scatter.svg]
Figure 13.3.1 Scatter plot of \(\Delta t\) for each pair of lightning
strikes. Notice that there are more strikes in the lower portions
of the plot, which means that many strike pairs are close by!

A bit more rigor and insight can be gotten from a histogram plotting
the number of lighting pairs versus the time between the two strikes.
This histogram is shown in Figure 13.3.2.

Listing 13.3.4 Instructions to make a histogram plot of lightning pairs
versus \(\Delta t\).

##REQUIRED_FILE: time_diffs.dat
##REQUIRED_FILE: time_diffs.dat.hist
##PRE_EXEC: ./lightning-time-distribution.py
##PRE_EXEC: ../plotting-intermediate/int-histogram-maker.py time_diffs.dat
set grid
set xlabel '{/Symbol Delta} t (days)'
set ylabel 'frequency of that interval'
set style data histogram
set style fill solid 0.8 border -1
plot [0:] [0:] 'time_diffs.dat.hist' using 1:2 with boxes

[image: ../_images/lightning-hist.svg]
Figure 13.3.2 Histogram of number of lightning pairs versus \(\Delta t\).
This shows even more clearly that there are many more consecutive
lightning pairs that are closely spaced.

First conclusion: the answer to Steven Pinker’s question is that the
most likely day in which the next lightning will strike your house
is tomorrow. The goddess Astrape likes to play with humans.

Another conclusion: the distribution of time between consecutive
lightning strikes looks like a decaying exponential.

[…many other conclusions…]

13.3.2.1. Questions

Now muse about the time distance between droughts and other natural
calamities.

Examples: “Climate Change and Cultural Response” by Benson and Berry,
page 105, shows distribution of mega-droughts in Figure 7.

Look in to the “palmer drought severity index” (PDSI) to find
datasets.
https://www.ncdc.noaa.gov/temp-and-precip/drought/historical-palmers/

PDSI is often shown from 1850 or 1870 until today. Some data sets go
older, using tree ring data, and show the interesting periods from 800
to 1400, which would allow us to study the collapse of the Chaco
Canyon culture.

For information about file formats and to see how pervasive obsolete
data formats are, look at
ftp://ftp.cdc.noaa.gov/Datasets/dai_pdsi/README

Download the .nc files at ftp://ftp.cdc.noaa.gov/Datasets/dai_pdsi/
and examine them with ncview.

Or maybe better: get the ascii files from here:
http://www.cgd.ucar.edu/cas/catalog/climind/pdsi.html for example
http://www.cgd.ucar.edu/cas/catalog/climind/pdsisc.monthly.maps.1850-2010.fawc=1.r2.5x2.5.ipe=2.txt.gz

For Kansas look at
http://www.kgs.ku.edu/Hydro/Publications/2012/OFR12_18/KGS_OF_2012-18.pdf
page 10, Figure 5a: PDSI for 800 to 2000. And Figure 5b for
megadroughts. Figure 5c shows the dustbowl drought.

Aha: the paleoclimatology (2000 years) might be here:
https://www.ncdc.noaa.gov/paleo-search/study/19119 and a text file
here:
https://www1.ncdc.noaa.gov/pub/data/paleo/drought/LBDA2010/LBDA_PMDI_JJA_Recons.txt
and the grid metadata is explained here:
https://www1.ncdc.noaa.gov/pub/data/paleo/drought/LBDA2010/LBDA_PMDI_Instrumental_metadata.txt
Note that Chaco Canyon Lat/Lon are: 36.0530 deg N, 107.9559 deg W. From the
meatadat it looks like it might be grid points 1883 or 1884 in this
data set.

Q: Are drought cycles random? Are they the combination of so many
types of physics that they appear to be random enough? How about
anthropogenic climate change? Does it add a baseline?

Topic: Atlantic multidecadal oscillation.

13.3.3. Vicious glow-worms

We have talked about processes which give events distributed randomly
in time: events happen at random times. Let us now look at processes
that generate points distributed randomly in space: \((x, y)\)
coordinates are spewed out by our process. An example might be where
the grains of sand land when you drop a handful onto the ground.

We can write a program to generate random \((x, y)\) points between
0 and 100. The program random-spatial.py generates a series of such
points, each completely independent of the previous one.

Listing 13.3.5 random-spatial.py – Generate a sequence of random
\((x, y)\) points.

#! /usr/bin/env python3

"""
Print a bunch of (x, y) points.
"""

import random

def main():
 for i in range(3000):
 x = random.random() * 100.0
 y = random.random() * 100.0
 print('%f %f' % (x, y))

if __name__ == '__main__':
 main()

You can plot this with:

Listing 13.3.6 Instructions to plot points randomly distributed in a
two-dimensional space.

##REQUIRED_FILE: random-spatial.dat
##PRE_EXEC: ./random-spatial.py > random-spatial.dat
##CAPTION: Random (x, y) points. You should be able to see
##CAPTION: some structure: occasional filaments, clustering, and empty
##CAPTION: spaces.
set size ratio -1
set xlabel 'x'
set ylabel 'y'
plot 'random-spatial.dat' using 1:2 with points pt 7 \
 ps 0.3 title 'random (x, y) points'

The results are shown in Figure 13.3.3. You can see
features in the data, even though it was randomly generated:
filaments, clustering, voids… [1]

[image: ../_images/random-spatial.svg]
Figure 13.3.3 Points randomly distributed in a two-dimensional space.

A possible comment: people who spend a lot of time looking at randomly
generated data probably don’t easily believe in conspiracy theories.

We can then do something analogous to what we did for events with
random time intervals: plot the distribution of distances between
\((x, y)\) points. The programs xy-to-distances.py and
float-histogram-maker allow us to do so, and the results are in
. Note that you will not get as much insight out of these spatial
histograms as you did in , since a big factor in the distribution of
spacial distances is the small size of the x-y plane we used.

Before running these programs you will need to install the
python3-scipy package:

$ sudo apt install python3-scipy

Listing 13.3.7 xy-to-distances.py – Convert a collection of \((x,
y)\) points to a list of distances between points.

#! /usr/bin/env python3

"""Load a collection of (x, y) points and print out the distance
between each pair of points"""

import sys
import scipy
import scipy.spatial
import math

def main():
 fname = sys.argv[1]
 coords = []
 with open(fname, 'r') as f:
 lines = f.readlines()
 for line in lines:
 xs, ys = line.split()
 (x, y) = (float(xs), float(ys))
 coords.append((x, y))
 print('read in %d coordinates' % len(coords))

 dist_out_fname = sys.argv[1] + '.distances'
 nearest_fname = sys.argv[1] + '.nearest'
 with open(dist_out_fname, 'w') as fpairs:
 with open(nearest_fname, 'w') as fnearest:
 for i in range(len(coords)-1):
 nearest_distance = sys.float_info.max
 for j in range(i+1, len(coords)):
 r = math.hypot(coords[j][0] - coords[i][0],
 coords[j][1] - coords[i][1])
 ## write all pairwise distances to the fpairs file
 fpairs.write('%g\n' % r)
 ## now see if we have a new nearest distance
 if r < nearest_distance:
 nearest_distance = r
 ## write nearest distances to a separate file
 fnearest.write('%g\n' % nearest_distance)
 print('wrote distances to %s' % dist_out_fname)
 print('wrote nearest distances to %s' % nearest_fname)

if __name__ == '__main__':
 main()

You can run this with:

$./random-spatial.py > random-spatial.dat
$./xy-to-distances.py random-spatial.dat

and plot the result with:

Listing 13.3.8 Instructions to plot a histogram of distances between
points randomly distributed in a two-dimensional space.

##REQUIRED_FILE: random-spatial.dat
##REQUIRED_FILE: random-spatial.dat.distances
##REQUIRED_FILE: random-spatial.dat.nearest
##REQUIRED_FILE: random-spatial.dat.distances.hist
##REQUIRED_FILE: random-spatial.dat.nearest.hist
##PRE_EXEC: ./random-spatial.py > random-spatial.dat
##PRE_EXEC: ./xy-to-distances.py random-spatial.dat
##PRE_EXEC: ./float-histogram-maker.py random-spatial.dat.distances
##PRE_EXEC: ./float-histogram-maker.py random-spatial.dat.nearest
set grid
set multi layout 2,1
set style data histogram
set style fill solid 0.8 border -1
set xlabel 'distance between random (x, y) points'
set ylabel 'frequency of that distance'
plot [0:] 'random-spatial.dat.distances.hist' using 1:2 with boxes
set xlabel 'nearest distance to a point'
set ylabel 'frequency of that nearest distance'
plot [0:] 'random-spatial.dat.nearest.hist' using 1:2 with boxes

The results are shown in Figure 13.3.4.

[image: ../_images/spatial-hist.svg]
Figure 13.3.4 Histogram of distances between 2D random points.

So we have seen that in two spatial dimensions we have a situation
analogous to that for time differences: nearest points are distributed
with a decaying exponential distribution.

13.3.3.1. Questions

So what would the two dimensional distribution look like if the
\((x, y)\) values were not purely random?

Explore this in two ways:

	Change the program random-spatial.py to put all the \((x,
y)\) points at integer positions.

	Change the program random-spatial.py to only put new points
outside a “radius of avoidance” from existing points.

The “radius of avoidance” idea is what happens with the famous Waitomo
Glowworm Caves in New Zeland: the worm larvae take positions on the
ceiling of the cave and glow to attract prey. They avoid settling
near other larvae to avoid cannibalism. The result is a distribution
that does not have the same filaments and voids as a purely random
distribution.

The lack of structure (filaments, voids…) in the cave was observed
by biologist Stephen Jay Gould. He conjectured that the reason was
this radius of avoidance. Physicist Ed Purcell carried out a
calculation and visualization similar to ours to confirm Gould’s
conjecture.

[cite Steven Pinker for the glowworm example]

13.4. Brownian motion

In 1827 Scottish botanist Robert Brown looked at pollen grains in
water and noticed that the pollen was moved around in the water,
jiggling randomly. This was one of the significant discoveries that
led to the acceptance of the molecular theory.

In 1905 Einstein explained this motion by showing that the pollen was
being buffeted around by the motion of individual water molecules.

Today we know that fluids (liquids and gasses) are made of molecules
which are in constant motion. They bump in to each other, into the
walls of their container, and they also bump in to larger particles
floating around (such as the grain of pollen that Brown observed).

Simulating this behavior is an interesting challenge: it would involve
keeping track of a large number of gas molecules and seeing when they
bump in to a large sphere, which would represent the grain of pollen.

Right now I leave that more detailed programming task as an exercise,
and will point that a huge number of bumps (\(10^{14}\)
collisions/second) by molecules which are going in all directions
means that our grain of pollen will be moving in a sort of random
walk, the same kind we discussed and visualized in
Section 12.

What we will do here is write some programs that simulate such random
walks and then look at answering the question “where will I end up?”
More specifically we ask “how far did I go?”

Let us start with one dimension. The program multiple-walks.py
will take several walks in one dimension and write out the final
arrival point and how far we went.

Listing 13.4.1 multiple-walks.py – Take several random walks in one
dimension; print out the arrival points.

#! /usr/bin/env python3

"""Take many one-simensional random walks so that we can study the
distribution of how far you get in a random walk

"""

import random
import math
import sys

def main():
 x = 0
 n_steps = 10000
 n_walks = 10
 if len(sys.argv) == 3:
 n_steps = int(sys.argv[1])
 n_walks = int(sys.argv[2])
 elif len(sys.argv) != 1:
 sys.stderr.write('error - usage: %s [n_steps n_walks]\n' % sys.argv[0])
 exit(1)

 distances = [] # we'll store all the distances we found
 ## now run several random walks
 for i in range(n_walks):
 final_x = take_walk(x, n_steps)
 distance = math.fabs(final_x) # how far did we get?
 distances.append(distance)
 print('%d: %g %g' % (i, final_x, distance))

def take_walk(x, n_steps):
 """take a simple 1D random walk"""
 for i in range(n_steps):
 ## generate a step of -1 or +1 in the x direction
 step_x = random.randint(0, 1) * 2 - 1
 x = x + step_x
 # print(i, x, math.sqrt(i), math.fabs(math.fabs(x) - math.sqrt(i)))
 ## return the final location
 return x

main()

Nice, but can we have a plot?

Listing 13.4.2 multiple-walks-plot.py – Take several random walks in
one dimension; print out the arrival points and make a
plot of the trajectory as a function of time.

#! /usr/bin/env python3

"""Take many one-simensional random walks so that we can study the
distribution of how far you get in a random walk. Keep track of the
path each walk took and plot it.
"""

import random
import math
import sys
import matplotlib.pyplot as plt

def main():
 x = 0
 n_steps = 10000
 n_walks = 10
 if len(sys.argv) == 3:
 n_steps = int(sys.argv[1])
 n_walks = int(sys.argv[2])
 elif len(sys.argv) != 1:
 sys.stderr.write('error - usage: %s [n_steps n_walks]\n' % sys.argv[0])
 exit(1)

 distances = [] # we'll store all the distances we found
 ## prepare some plot parameters
 plt.xlabel('step')
 plt.ylabel('distance from origin')
 plt.grid(True)
 ## now run several random walks
 for i in range(n_walks):
 path = take_walk(x, n_steps)
 final_x = path[-1]
 distance = math.fabs(final_x) # how far did we get?
 distances.append(distance)
 print('%d: %g %g' % (i, final_x, distance))
 plt.plot(path) # add to the plot
 ## now show the plot we have accumulated
 plt.show()

def take_walk(x, n_steps):
 """take a simple 1D random walk"""
 path = []
 for i in range(n_steps):
 ## generate a step of -1 or +1 in the x direction
 step_x = random.randint(0, 1) * 2 - 1
 x = x + step_x
 # print(i, x, math.sqrt(i), math.fabs(math.fabs(x) - math.sqrt(i)))
 path.append(x)
 ## return the final location
 return path

main()

Sure, but what if we are impatient and we want to see the plots before
they are all generated. We can animate the plot using the techniques
from Section 6.8.2.

Listing 13.4.3 multiple-walks-plot.py – Take several random walks in
one dimension; print out the arrival points and make a
plot of the trajectory as a function of time. In this
version we draw the plots as the walks become ready,
rather than waiting for the end.

#! /usr/bin/env python3

"""Take many one-simensional random walks so that we can study the
distribution of how far you get in a random walk. Keep track of the
path each walk took and plot it.
"""

import random
import math
import sys
import matplotlib.pyplot as plt

def main():
 x = 0
 n_steps = 10000
 n_walks = 10
 if len(sys.argv) == 3:
 n_steps = int(sys.argv[1])
 n_walks = int(sys.argv[2])
 elif len(sys.argv) != 1:
 sys.stderr.write('error - usage: %s [n_steps n_walks]\n' % sys.argv[0])
 exit(1)

 distances = [] # we'll store all the distances we found
 ## prepare to have animation
 fig, ax = plt.subplots()
 plt.xlabel('step')
 plt.ylabel('distance from origin')
 plt.grid(True)
 plt.ion()
 ## now run several random walks
 for i in range(n_walks):
 path = take_walk(x, n_steps)
 final_x = path[-1]
 distance = math.fabs(final_x) # how far did we get?
 distances.append(distance)
 print('%d: %g %g' % (i, final_x, distance))
 plt.plot(path) # add to the plot
 fig.canvas.draw_idle()
 plt.pause(0.4)
 fig.canvas.draw_idle()
 ## now show the plot we have accumulated

 plt.show()
 plt.waitforbuttonpress()

def take_walk(x, n_steps):
 """take a simple 1D random walk"""
 path = []
 for i in range(n_steps):
 ## generate a step of -1 or +1 in the x direction
 step_x = random.randint(0, 1) * 2 - 1
 x = x + step_x
 # print(i, x, math.sqrt(i), math.fabs(math.fabs(x) - math.sqrt(i)))
 path.append(x)
 ## return the final location
 return path

main()

Now let’s look at a crucial property of random walks: the overall
behavior of the final position and the distance from the origin. At
firs tit seems that these are all very different, with no pattern.
But if we plot a histogram of the final positions in the one
dimensional random walk we see something interesting:

Listing 13.4.4 multiple-walks-histogram.py – Take several random walks
in one dimension; plot a histogram of the arrival points.
If we take enough walks and they are long enough, we end
up with a gaussian distribution of positions, centered
around the origin.

#! /usr/bin/env python3

"""Take many one-simensional random walks so that we can study the
distribution of how far you get in a random walk. This version starts
from multiple-walks.py and adds the ability to plot a histogram of how
far we got.

"""

import random
import math
import sys

import numpy as np
import matplotlib.pyplot as plt

fig, ax = plt.subplots()

def main():
 x = 0
 n_steps = 1001
 n_walks = 1001
 if len(sys.argv) == 3:
 n_steps = int(sys.argv[1])
 n_walks = int(sys.argv[2])
 elif len(sys.argv) != 1:
 sys.stderr.write('error - usage: %s [n_steps n_walks]\n' % sys.argv[0])
 exit(1)

 positions = [] # we'll store all the positions we found
 ## prepare to plot
 plt.grid(True)
 plt.xlabel('final value')
 plt.ylabel('number of walks')
 plt.title('1D random walk arrival values (%d, %d)' % (n_steps, n_walks))
 plt.ion() # enable interactive
 ## now run several random walks
 for i in range(n_walks):
 final_x = take_walk(x, n_steps)
 positions.append(final_x)
 # print('%d: %g %g' % (i, final_x, position))
 plot_position_histogram(positions, n_steps, n_walks)
 plt.show()
 plt.waitforbuttonpress()

def take_walk(x, n_steps):
 """take a simple 1D random walk"""
 for i in range(n_steps):
 ## generate a step of -1 or +1 in the x direction
 step_x = random.randint(0, 1) * 2 - 1
 x = x + step_x
 # print(i, x, math.sqrt(i), math.fabs(math.fabs(x) - math.sqrt(i)))
 ## return the final location
 return x

def plot_position_histogram(positions, n_steps, n_walks):
 if len(positions) < 10:
 return
 n_steps_so_far = len(positions)
 n_bins = min(51, 5+int(n_steps_so_far/3))
 # print(np.array(positions))
 plt.cla()
 plt.grid(True)
 plt.xlabel('final value')
 plt.ylabel('number of walks')
 plt.title('1D random walk arrival values (%d, %d)'
 % (n_steps_so_far, n_walks))
 n, bins, patches = plt.hist(positions, n_bins)
 fig.canvas.draw_idle()
 plt.pause(0.01)

main()

NOTE: try to superimpose a gaussian with sigma proportional to
sqrt(n_steps).

Let’s visualize things together with an animated multiplot:

Listing 13.4.5 multiple-walks-histogram-multiplot.py – This version
combines the plotting of the 1D random walks and the
histograms, and shows them as they accumulate.

#! /usr/bin/env python3

"""Take many one-simensional random walks so that we can study the
distribution of how far you get in a random walk. This version starts
from multiple-walks.py and adds the ability to plot a histogram of how
far we got.

"""

import random
import math
import sys

import numpy as np
import matplotlib.pyplot as plt

skip_interval = 1
skip_interval = 5

def main():
 x = 0
 n_steps = 1001
 n_walks = 1001
 if len(sys.argv) == 3:
 n_steps = int(sys.argv[1])
 n_walks = int(sys.argv[2])
 elif len(sys.argv) != 1:
 sys.stderr.write('error - usage: %s [n_steps n_walks]\n' % sys.argv[0])
 exit(1)

 positions = [] # we'll store all the positions we found
 # (ax1, ax2, ax3, ax4) = prepare_plotting(n_steps, n_walks)
 prepare_plotting(n_steps, n_walks)
 ## now run several random walks
 last_10_walks = []
 for i in range(n_walks):
 take_walk(x, n_steps, last_10_walks)
 if i % skip_interval == 0 or i < 20 or i > (n_walks-20):
 plot_walks(last_10_walks)
 final_x = last_10_walks[-1][-1] # last position of last walk
 position = math.fabs(final_x) # how far did we get?
 # positions.append(position)
 positions.append(final_x)
 # print('%d: %g %g' % (i, final_x, position))
 if i % skip_interval == 0 or i < 20 or i > (n_walks-20):
 plot_position_histogram(positions, n_steps, n_walks)
 plt.subplot(224).figure.suptitle('1D random walks arrival values (%d, %d)'
 % (i, n_walks))
 plt.pause(0.000001)
 plt.show()
 plt.waitforbuttonpress()

def prepare_plotting(n_steps, n_walks):
 fig = plt.figure(1)
 fig.suptitle('1D random walks arrival values (%d, %d)'
 % (n_steps, n_walks))
 plt.subplots_adjust(top=0.92, bottom=0.10, left=0.10, right=0.95,
 hspace=0.25, wspace=0.35)
 plt.ion()
 # return (ax1, ax2, ax3, ax4)

def take_walk(x, n_steps, last_10_walks):
 """take a simple 1D random walk"""
 last_10_walks.append([])
 for i in range(n_steps):
 ## generate a step of -1 or +1 in the x direction
 step_x = random.randint(0, 1) * 2 - 1
 x = x + step_x
 last_10_walks[-1].append(x)
 # print(i, x, math.sqrt(i), math.fabs(math.fabs(x) - math.sqrt(i)))
 ## now make sure we only keep the last 10 entries
 while len(last_10_walks) > 10:
 del last_10_walks[0]
 return last_10_walks

def plot_walks(last_10_walks):
 ## plot it in the cumulative plot
 ax = plt.subplot(2, 2, 1)
 plt.xlabel('step')
 plt.ylabel('position')
 ax.plot(last_10_walks[-1])
 ## plot it in the "last 10" plots
 if len(last_10_walks) >= 10:
 ax = plt.subplot(2, 2, 2)
 ax.cla()
 plt.xlabel('step')
 plt.ylabel('position')
 for i in range(10):
 ax.plot(last_10_walks[i])
 ax.figure.canvas.draw_idle()

def plot_position_histogram(positions, n_steps, n_walks):
 if len(positions) < 10:
 return
 n_steps_so_far = len(positions)
 n_bins = min(51, 5+int(n_steps_so_far/3))
 ## plot the positions
 ax = plt.subplot(2, 2, 3)
 ax.cla()
 ax.grid(True)
 plt.xlabel('final position')
 plt.ylabel('number of walks')
 # plt.title('1D random walk (%d, %d)'
 # % (n_steps_so_far, n_walks))
 n, bins, patches = ax.hist(positions, n_bins)
 ax.figure.canvas.draw_idle()
 ## plot the positions
 distances = [math.fabs(pos) for pos in positions]
 ax = plt.subplot(2, 2, 4)
 ax.cla()
 ax.grid(True)
 plt.xlabel('distance from start')
 plt.ylabel('number of walks')
 # plt.title('1D random walk (%d, %d)'
 # % (n_steps_so_far, n_walks))
 n, bins, patches = ax.hist(distances, n_bins)
 ax.figure.suptitle('1D random walks arrival values (%d, %d)'
 % (n_steps_so_far, n_walks))
 ax.figure.canvas.draw_idle()

main()

Let’s look at the 2D situation:

Listing 13.4.6 multiple-walks-histogram-2d.py – Take several random
walks in two dimensions; plot a histogram of how far they
arrived.

#! /usr/bin/env python3

"""Take many one-simensional random walks so that we can study the
distribution of how far you get in a random walk. This version starts
from multiple-walks-histogram.py, changes it to take two dimensional
walks, and then plots a histogram of how far we got.

"""

import random
import math
import sys

import numpy as np
import matplotlib.pyplot as plt

def main():
 pt = (0, 0)
 n_steps = 1000
 n_walks = 1000
 if len(sys.argv) == 3:
 n_steps = int(sys.argv[1])
 n_walks = int(sys.argv[2])
 elif len(sys.argv) == 4:
 n_steps = int(sys.argv[1])
 n_walks = int(sys.argv[2])
 output_file = sys.argv[3]
 elif len(sys.argv) == 2:
 output_file = sys.argv[1]
 elif len(sys.argv) != 1:
 sys.stderr.write('error - usage: %s [n_steps n_walks]\n' % sys.argv[0])
 exit(1)

 distances = [] # we'll store all the distances we found
 ## now run several random walks
 for i in range(n_walks):
 final_pt = take_walk(pt, n_steps)
 distance = math.hypot(*final_pt) # how far did we get?
 distances.append(distance)
 # print('%d: %g %g %g' % (i, *final_pt, distance))
 plot_distance_histogram(distances, n_steps, n_walks, output_file)

def take_walk(pt, n_steps):
 """take a simple 1D random walk"""
 for i in range(n_steps):
 ## generate a step of -1 or +1 in the x direction
 step_x = random.randint(0, 1) * 2 - 1
 step_y = random.randint(0, 1) * 2 - 1
 pt = (pt[0] + step_x, pt[1] + step_y)
 # print(i, x, math.sqrt(i), math.fabs(math.fabs(x) - math.sqrt(i)))
 ## return the final location
 return pt

def plot_distance_histogram(distances, n_steps, n_walks, output_file):
 n_bins = min(50, n_walks/3.0)
 # print(np.array(distances))
 n, bins, patches = plt.hist(distances, n_bins)
 print(bins)
 plt.xlabel('distance traveled')
 plt.ylabel('number of walks')
 plt.title('2D random walk distance distribution (%d, %d)'
 % (n_steps, n_walks))
 plt.grid(True)
 plt.show()

main()

13.5. Further reading

The wikipedia article https://en.wikipedia.org/wiki/Brownian_motion
has nice diagrams.

Start by watching this video:
https://www.youtube.com/watch?v=hy-clLi8gHg

Possibly do this experiment:
https://www.youtube.com/watch?v=wf2tBAvMNbg

Other video on brownian motion:
https://www.youtube.com/watch?v=NHo6LTXdFns

This one has a cute demonstration of how you get a random walk when
you focus on a single particle, and is
https://www.youtube.com/watch?v=pdz7wFHSLD0

Scipy has some routines that help simulate Brownian motion. The
cookbook has this example:
http://scipy-cookbook.readthedocs.io/items/BrownianMotion.html

13.6. Progression of record peaks

http://iaaf-ebooks.s3.amazonaws.com/2015/Progression-of-IAAF-World-Records-2015/projet/IAAF-WRPB-2015.pdf

https://en.wikipedia.org/wiki/Athletics_record_progressions

[footnotes]

[1]
Note that the clustering is an artifact of the random generation of
points; it is not due to a physical effect that clusters the points
together.

13.7. The gambler’s fallacy

13.8. The gambler’s ruin

13.9. Link to other chapters

	Simulated annealing covered in Section 25

	Genetic algorithms (planned).

 14. Power laws, Zipf, Benford, …

14. Power laws, Zipf, Benford, …

Areas: pure math, curiosity, economics, complex systems

[status: partly written]

14.1. Motivation, prerequisites, plan

We can start by realizing that certain relationships between numbers
are “curious”. Our curiosity might be enough to get us going if we
see a couple of examples. Here are two examples which might make us
curious:

	Longer words in a language occur less often, and there is a clear
mathematical relationship between frequency of words and the rank of
the word in a frequency table (Zipf’s law).

	In numbers that come up in the real world, the most significant
digit is more often 1 and 2 than 8 and 9 (Benford’s law).

There are many areas of nature and of human endeavor in which similar
relationships come up. These relationships are called power laws
(where power refers to the exponent in a variable). Many of these
give insight into the underlying mechanisms of those areas of study.

We will start by studying Zipf’s law and write some programs that
illustrate it. This will let us study other data sets that have
similar relationships, some from astronomy, some from geography, some
from economics. We will look at those examples, discussing the
insights that come from the power law relationships. Finally we will
dedicate some time to Benford’s law and some curious and amusing
historical applications.

14.2. A brief refresher on log-log plots

Let us try plotting a power law function in gnuplot:

gnuplot> set samples 1000
gnuplot> plot x**(-1)
gnuplot> plot [0.01:100] x**(-1)

gnuplot> set samples 1000
gnuplot> a = 1
gnuplot> k = -1.5
gnuplot> plot [0.01:100] a * x**k
gnuplot> k = -3.2
gnuplot> replot [0.01:100] a * x**k

Note how little information you actually see about the plot. That’s
because the scales of the information for x near 0 and for x far out
on the x axis are very different. You can zoom in with the gnuplot
GUI (right-click and drag a rectangle near the origin), but that
doesn’t tell you much more.

We usually take the logarithms of both x and y and then we can see the
nuances of what’s happening in between:

gnuplot> set logscale xy
gnuplot> set samples 1000
gnuplot> a = 1
gnuplot> k = -1.5
gnuplot> plot [0.01:100] a * x**k
gnuplot> k = -3.2
gnuplot> replot [0.01:100] a * x**k

Note that the slope of these “log-log” plots is that exponent k.

14.3. Zipf’s law

We start with Zipf’s law. In the first half of the 20th century
George Zipf noticed that if you have a large sample of words in a
real-world English language text, there is an inverse proportionality
between the frequency of a word and its position in the frequency
table (see Section 4.5 where we introduced inverse
proportionality).

This means that a plot of frequency versus rank will look like a
\(1/x\) plot, or if you plot both x and y axis on a logarithmic
scale, you will have a straight line with a slope of -1.

How do we explore this law? As usual, we write a program! Start by
typing in the program in Listing 14.3.1.

Listing 14.3.1 word-freq-rank.py - Analyze frequency versus rank for
words in a text file.

#! /usr/bin/env python3

"""
Reads all the words in a file and prints information about the
rank and frequence of occurrence of words in the file.

The file should be a rather long file with a typical sampling of
words. The ideal file would be a book downloaded from Project
Gutenberg in ascii text format.
"""

import sys
import re

def main():
 if len(sys.argv) == 1: # handle command-line arguments
 f = sys.stdin
 elif len(sys.argv) == 2:
 fname = sys.argv[1]
 f = open(fname, 'r')
 else:
 sys.stderr.write('error - usage: %s [filename]\n' % sys.argv[0])
 sys.exit(1)

 sorted_words, word_freq_map = read_words_from_file(f)
 f.close()
 print('## file:', fname)
 print('## rank word frequency')
 for i, word in enumerate(sorted_words):
 print('%8d %-13s %8d' % (i+1, word, word_freq_map[word]))

def read_words_from_file(f):
 """read the words from a file and return two things: the sorted
 list of words, and the rank dictionary which maps each word to its
 rank."""
 word_set = set()
 word_freq_map = {}
 for line in f.readlines():
 word_list = re.split('--|\s', line)
 ## now that we have the words, let's strip away all the
 ## punctuation marks
 word_list = [word.strip(""",.;:_"'&%^$#@!?/\|+-()*""").lower()
 for word in word_list]
 cleaned_up_words = []
 for word in word_list:
 word = word.strip(""",.;:_"'&%^$#@!?/\|+-()*""")
 if len(word) > 0:
 cleaned_up_words.append(word)
 ## now that we have found the words in this line, we also add
 ## them to the word rank dictionary before we lost the count
 ## information by adding them to the set
 for word in word_list:
 if word in word_freq_map.keys():
 word_freq_map[word] += 1
 else:
 word_freq_map[word] = 1
 ## finally, add them to a set, which discards repeated
 ## occurrences
 word_set.update(tuple(cleaned_up_words))

 ## finally: use the rank dictionary to sort the list of words by
 ## how often they occur (their rank)
 sorted_word_list = sorted(list(word_set), key=lambda x: -word_freq_map[x])
 return sorted_word_list, word_freq_map

main()

14.3.1. Example from a paragraph of your own.

Type a simple paragraph of English text into a file, call it
simple-para.txt. Then run the program on that file with:

$ python3 word-freq-rank.py simple-para.txt

You’ll see output showing the histogram with ASCII output.

You could also have run the program with no arguments and typed
directly in the terminal.

14.3.2. Example from Project Gutenberg

To download a full book from Project Gutenberg and plot its word
frequency distribution with gnuplot you can use these instructions:

Listing 14.3.2 Instructions to plot the word frequency distribution of
Swann’s Way, by Marcel Proust.

##REQUIRED_FILE: swanns-way.txt
##PRE_EXEC: wget --output-document swanns-way-english.txt http://www.gutenberg.org/cache/epub/1128/pg1128.txt
##PRE_EXEC: ./word-length-freq.py swanns-way-english.txt > swanns-way-freq-english.out
set multiplot layout 2,1 title "Zipf's law"
set grid
plot 'swanns-way-freq-english.out' using 1:3 with linespoints pt 6 ps 0.2 title "word frequency (linear scale)"
set logscale xy
plot 'swanns-way-freq-english.out' using 1:3 with linespoints pt 6 ps 0.2 title "word frequency (log-log scale)"

[image: ../_images/plot-word-freq.svg]
Figure 14.3.1 Histogram of how many times words of a certain length appear in the
text of Swann’s Way (volume 1 of Marcel Proust’s “In Search of Lost
Time”, formerly translated in English as “Remembrance of Things
Past”).

The top plot in Figure 14.3.1 is in the usual linear
scale. This can be hard to read because you have some big numbers,
and the small ones are hard to tell apart. That’s why the other two
plots have a logarithmic scale for the y axis (log scales are
discussed in Section 8.1).

Out of curiosity, let us also look at the first few and last few lines
of the output file.

Listing 14.3.3 First few lines (most common words) in Swann’s Way.
First column is the rank (most frequent to least
frequent), the second is the word, the third is the
number of times it occurs.

file: swanns-way-english.txt
rank word frequency
 1 the 903
 2 and 784
 3 i 650
 4 to 570
 5 of 554
 6 you 486
 7 my 458
 8 a 419

Listing 14.3.4 Last few lines (least common words) in Swann’s Way.
First column is the rank (most frequent to least
frequent), the second is the word, the third is the
number of times it occurs.

 4616 ballow 1
 4617 starv'd 1
 4618 derive 1
 4619 official 1
 4620 succeed 1
 4621 cities 1
 4622 lately 1
 4623 whatever 1
 4624 simp'ring 1
 4625 constrains 1
 4626 sue 1
 4627 vor 1

Now let’s look at a comparison of the English translation of this book
versus the original French text:

Listing 14.3.5 Instructions to plot the word frequency distribution of
Swann’s Way, by Marcel Proust. This version compares the
original French text with the English translation.

##REQUIRED_FILE: swanns-way-french.txt
##REQUIRED_FILE: swanns-way-english.txt
##PRE_EXEC: wget --output-document swanns-way-english.txt http://www.gutenberg.org/cache/epub/1128/pg1128.txt
##PRE_EXEC: wget --output-document swanns-way-french.txt https://www.gutenberg.org/files/2650/2650-0.txt
##PRE_EXEC: ./word-length-freq.py swanns-way-english.txt > swanns-way-freq-english.out
##PRE_EXEC: ./word-length-freq.py swanns-way-french.txt > swanns-way-freq-french.out
set grid
set ylabel 'word frequency'
set xlabel 'word rank'
set logscale xy
set title "rank-frequency relationship for Swann's Way, comparing French and English"
plot 'swanns-way-freq-english.out' using 1:3 with linespoints, 'swanns-way-freq-french.out' using 1:3 with linespoints

[image: ../_images/plot-word-freq-french-english.svg]
Figure 14.3.2 Histogram of how many times words of a certain length appear in the
text of Swann’s Way (volume 1 of Marcel Proust’s “In Search of Lost
Time”, formerly translated in English as “Remembrance of Things
Past”). This version compares the original French text with the
English translation. Note that the slope for the main part of the
curve is the same.

14.3.3. Explanations of Zipf’s law

TODO

14.4. What are “power laws”?

If you have a relationship where the number of items with a given
measure is proportional to that measure to a negative power, then we
say that we have power law behavior.

In the case of Zipf’s law, if \(l\) is the length of the words and
\(N(l)\) is the number of words with that length in our text, we
have:

\[N(l) = {\rm const} \times l^{-1}\]

More in general we will have:

\[N(x) = {\rm const} \times x^{-\alpha}\]

where \(\alpha\) is the “power” in “power law”. In Zipf’s law the
power is \(\alpha = -1\).

14.4.1. Calculating the power from the data

How do you calculate the power \(\alpha\) if you are given a
collection of data points?

In Section 7 we learned some techniques
to fit functions to data. How would we carry out a fit to the data
that brings out the power in the power law?

Zipf’s law was just one rather notable example of power law, but there
are many others. We will discuss a few more and write programs that
download the relevant data and analyze it.

	population-rank distribution for nations

wget
https://raw.githubusercontent.com/datasets/population/master/data/population.csv

	easier:

wget https://www.cia.gov/library/publications/the-world-factbook/rankorder/rawdata_2119.txt

	rank-size distribution for nations

	city size

	deadly conflicts

	luminosity in astronomy

14.5. Deadly conflicts

https://github.com/zacharykitt/analyses/blob/master/deadly_quarrels.py

14.6. Benford’s law

14.6.1. Physical constants

$ wget https://physics.nist.gov/cuu/Constants/Table/allascii.txt
$ cat allascii.txt | cut -c 61 | grep '[0-9]' > first-digits.dat
gnuplot> plot 'first-digits.dat'

This has downloaded an ascii table of physical constants (we’ve talked
about ascii before, but we need to frequently remind people that ascii
is basically plain text… ascii is not a common buzzword, so we
should mention ascii often, and explain often what it means).

Now we want to look at the distribution of those first digits. Which
appears most?

In Section 3.2 we learned how to
make and plot histograms. The most effective way to make and plot
histograms might be the snippet of code that uses numpy and matplotlib
in Section 3.4. Let’s use that to write a small
program that analyzes the frequency of these first digits:

Listing 14.6.1 first-digit-hist.py - Plot the frequency with which
digits appear in the first position in a list of numbers.

#! /usr/bin/env python3

run this with
./first-digit-hist.py first-digits.dat
to get an interactive plot, or with
./first-digit-hist.py first-digits.dat first-digit-freq.png
(or you can put pdf or svg)

import sys
import numpy as np
import matplotlib.pyplot as plt

fname = sys.argv[1]
out_fname = ''
if len(sys.argv) == 3:
 out_fname = sys.argv[2]
 out_format = sys.argv[2][-3:]

[...] collect quantity to be histogrammed in an array x
xs = open(fname, 'r').read().split()
x = [int(digit) for digit in xs]
prepare the plot
n, bins, patches = plt.hist(x, bins=np.arange(1,11)-0.5,
 density=1, facecolor='g', alpha=0.75)
plt.xticks(range(1,10))
plt.xlim([0,10])
plt.xlabel('first digit')
plt.ylabel('probability')
plt.title('Histogram of first digit probability')
plt.grid(True)
if there is no output filename then we plot interactively
if not out_fname:
 plt.show()
else:
 plt.savefig(out_fname, format=out_format)
 print('output written to file %s' % out_fname)

Go ahead and enter the program first-digit-hist.py and then run it
with:

to get an interactive plot:
$./first-digit-hist.py first-digits.dat
to put the output into a file:
$./first-digit-hist.py first-digits.dat first-digit-freq.png
or you can replace .png with .pdf or .svg

The result of these runs should be a plot a bit like the one in
Figure 14.6.1: you will see that 1 occurs much more
frequently, followed by 2 and then 3. Once you get beyond 4 you would
have to collect a lot of data to get a clear result, but you would
then find that 4 occurs more than 5, which occurs more than 6 and so
on.

[image: ../_images/first-digit-freq.svg]
Figure 14.6.1 Histogram of how many times the various digits appear as the
first digit in a number. The list of numbers we use are the
physical constants in the National Institute of Standards and
Technology list.

To show an example of how one can use shell pipelines to look at
another data set. The GNU scientific library sources can be found on
github at

$ wget https://raw.githubusercontent.com/ampl/gsl/master/const/gsl_const_mks.h
$ wget http://git.savannah.gnu.org/cgit/gsl.git/plain/const/gsl_const_cgs.h
$ cat gsl_const_mks.h | grep 'define GSL_' | awk '{print $3}' | grep -v '(1e' | cut -c 2 > first-digits-gsl-mks.dat
$ cat gsl_const_cgs.h | grep 'define GSL_' | awk '{print $3}' | grep -v '(1e' | cut -c 2 > first-digits-gsl-cgs.dat
$./first-digit-hist.py first-digits-gsl-cgs.dat &
$./first-digit-hist.py first-digits-gsl-mks.dat &

14.6.2. Stock quotes

Another source of numbers to which Benford’s law might apply is stock
quotes. Let us FIXME

wget --output-document nasdaq-list.csv 'http://www.nasdaq.com/screening/companies-by-industry.aspx?exchange=NASDAQ&render=download'

Listing 14.6.2 first-digit-nasdaq.py - Plot the frequency with which
digits appear in the first position of NASDAQ stock
market listings.

#! /usr/bin/env python3

run this with
./first-digit-hist.py first-digits.dat
to get an interactive plot, or with
./first-digit-hist.py first-digits.dat first-digit-freq.png
(or you can put pdf or svg)

import sys
import numpy as np
import matplotlib.pyplot as plt
import csv

fname = sys.argv[1]
out_fbase = ''
if len(sys.argv) == 3:
 out_fbase = sys.argv[2][:-4]
 out_format = sys.argv[2][-3:]

print(out_fbase)

csvfile = open(fname, 'r')
reader = csv.reader(csvfile, delimiter=',', quotechar='"')
firstdigit_sale = []
firstdigit_cap = []

for row in list(reader)[1:]:
 print(row[0], row[2], row[3])
 if row[2] != 'n/a':
 sale = float(row[2])
 if sale != 0:
 firstdigit = ('%e' % sale)[0]
 firstdigit_sale.append(int(firstdigit))
 if row[3] != 'n/a':
 cap = float(row[3])
 if cap != 0:
 firstdigit = ('%e' % cap)[0]
 firstdigit_cap.append(int(firstdigit))
csvfile.close()

prepare the plot: collect quantity to be histogrammed in an array x
for (label, x) in [('sale', firstdigit_sale), ('cap', firstdigit_cap)]:
 n, bins, patches = plt.hist(x, bins=np.arange(1, 11)-0.5,
 density=1, facecolor='g', alpha=0.75)
 plt.xticks(range(1, 10))
 plt.xlim([0, 10])
 plt.xlabel('first digit')
 plt.ylabel('probability')
 plt.title('Histogram of first digit probability')
 plt.grid(True)
 ## if there is no output filename then we plot interactively
 if not out_fbase:
 plt.show()
 else:
 out_fname = out_fbase + '_' + label + '.' + out_format
 plt.savefig(out_fname, format=out_format)
 plt.gcf().clear()
 print('output written to file %s' % out_fname)

[image: ../_images/first-digit-nasdaq_sale.svg]

[image: ../_images/first-digit-nasdaq_cap.svg]
Figure 14.6.2 Histogram of how many times the various digits appear as the
first digit in a number. The list of numbers we use here are the
stock quotes and market capitalization in the NASDAQ stock
exchange.

14.6.3. Further reading

	https://physics.nist.gov/cuu/Constants/Table/allascii.txt

	https://en.wikipedia.org/wiki/Benford%27s_law

	https://en.wikipedia.org/wiki/Zipf%27s_law

	stats on word length

	/usr/share/dict/words

	https://en.wikipedia.org/wiki/Brown_Corpus

	http://www.nltk.org/nltk_data/

	random book from gutenberg

	stats on individual income or wealth

	War and conflict datasets: https://ucdp.uu.se/downloads/

	Correlates of war study:
https://en.wikipedia.org/wiki/Correlates_of_War

	Correlates of war data: http://correlatesofwar.org/data-sets/COW-war

	Richardson’s original data set:
https://vincentarelbundock.github.io/Rdatasets/doc/HistData/Quarrels.html

	Detailed paper with many war diagrams:
https://arxiv.org/pdf/1901.05086.pdf
https://pdfs.semanticscholar.org/27cd/75962a447881768698ac1402100938d5f790.pdf

14.7. Pareto’s principle

14.7.1. Further reading

	https://www.theguardian.com/commentisfree/2011/nov/11/occupy-movement-wealth-power-law-distribution

14.8. Olber’s paradox

 15. Pushing toward calculus

15. Pushing toward calculus

[status: somewhat written but incomplete]

15.1. Motivation and plan

When I was in school calculus is where math became a pure and
never-ending thrill.

Knowing calculus will get us on a path toward science the way it is
really done: scientific laws describe how biological or chemical or
physical systems change in time and position, and calculus is the
mathematics of those changes.

So introducing calculus opens up a fantastic world to us, but how do
we teach it to middle and high school kids who have not yet learned
the prerequisites?

Our advantage over a pure math class is that we can write programs to
illustrate calculus topics. We might not yet know trigonometric and
logarithmic identities, but we can write programs to convince
ourselves of the properties we have not yet proven. The same goes for
limits. This means that we can jump ahead for a while, knowing that
in our pure math classes we will eventually prove all the material
that we now understand intuitively.

15.2. Prerequisites

	The 10 hour programming workshop.

	The mini-courses on elementary and intermediate plotting in
Section 2 and
Section 3

	The “tour of functions” mini-course in
Section 4.

15.3. Limits, the infinitely big, and the infinitesimally small

Let us plot a function: \(f(x) = 1/x\):

gnuplot> set grid
gnuplot> plot 1/x

We see that it spikes both down and up when x is close to zero, and
that it gets closer and closer to zero as x gets very big in the
positive direction, and also when x gets very big in the negative
direction.

This brings up some questions:

	Does \(f(x)\) ever actually reach zero when x gets big?

	What is \(f(0)\)? We cannot divide by zero, so the answer
cannot be \(f(0) = 1/0\).

There is no clear answer to these questions, but as we begin to grope
for answers we might want to say something like:

	\(f(x)\) will reach zero when x is infinity, or minus infinity.
In formulae: \(f(\infty) = 1/\infty = 0\) and \(f(-\infty)
= 1/(-\infty) = 0\).

	\(f(0)\) is infinite. So: \(f(0) = 1/0 = \infty\).

But there are several problems with writing down these expressions.

First of all infinity is not an actual number, so we do not have a
proper arithmetic for it. We have to define what all of that means.

Then there is the obvious worry that from the plot it looks like
\(f(0) = \infty\) (when you look from the right) and \(f(0)
= -\infty\) (when you look from the left). This is not OK becuase a
function can only have one value at a given point.

The way mathematicians tackle this is with the idea of a limit. Let
us start by using this kind of terminology for our \(1/x\)
example. For the case of x getting big:

“The limit of \(1/x\) as x goes to infinity is zero.” (And “The
limit of \(1/x\) as x goes to minus infinity is zero.”)

And the way we define that is (taking some liberty):

“You can make \(1/x\) arbitrarily close to zero by making
\(x\) big enough.”

A more formal way we can say it is:

“For any number (no matter how small) \(\epsilon\), I can find a
value \(x_0\) such that, for all \(x > x_0\), \(f(x) <
\epsilon\).”

So that allows us to talk about the behavior of \(1/x\) as x gets
really big (or really big in the negative direction): we do not say
that \(1/\infty = 0\), but rather we say that the limit of
\(1/x\) is 0 as \(x\) gets really big. The math notation for
this is:

\[\lim_{x\to\infty} \frac{1}{x} = 0\]

although one can also say:

\[\frac{1}{x} \to 0 \; {\rm as } \; x \to \infty\]

And how do mathematicians deal with \(f(0)\)? That’s the one
where we have different behavior to the left and to the right of
\(x = 0\).

For this mathematicians define a one-sided limit. The way we can
talk about \(1/x\) around 0 is:

“The limit of \(1/x\) as x goes to 0 from above is infinity.”

\[\lim_{x\to 0^+} \frac{1}{x} = \infty\]

and

“The limit of \(1/x\) as x goes to 0 from below is minus
infinity.”

\[\lim_{x\to 0^-} \frac{1}{x} = -\infty\]

Note

Limits also apply to ordinary functions at ordinary points, not
just to unusual situations. For example, \(\lim_{x\to 3}
x^2\) is simply \(3^2 = 9\).

15.4. Continuous functions

15.5. Convergence and divergence

We saw that \(f(x) = 1/x\) approaches zero as x goes to infinity.
We say that \(f(x)\) converges to zero as x goes to infinity.

We saw that \(f(x) = 1/x\) goes wild at zero. We say that
\(f(x)\) diverges as x goes to zero.

Another example clarifies what mathematicians mean by divergence.
Take this limit:

\[\lim_{x\to\infty} \sin(x)\]

The \(\sin(x)\) function will bounce around forever, bounded
between -1 and +1 forever - it will never settle close to a single
value. We say that this function diverges, even though it’s not
blowing up to infinity or minus infinity: the fact that it does not
converge to a single value means that the limit diverges.

15.6. Weird mixes

Our examples of \(1/0\) and \(1/\infty\) are straightforward,
but what if you have a more complex limit, like:

\[\lim_{x\to 0} \sin(1/x)\]

Let us plot this one, and then zoom in to see if it converges:

gnuplot> set samples 1000
gnuplot> plot sin(1/x)
gnuplot> plot [-3:3] sin(1/x)
gnuplot> plot [-1:1] sin(1/x)
gnuplot> plot [-0.5:0.5] sin(1/x)
gnuplot> plot [-0.1:0.1] sin(1/x)
gnuplot> plot [-0.05:0.05] sin(1/x)
gnuplot> plot [-0.01:0.01] sin(1/x)
gnuplot> plot [-0.005:0.005] sin(1/x)
gnuplot> plot [-0.001:0.001] sin(1/x)

We see that there is no convergence, and in fact as you get closer to
zero the function looks like it’s less likely to converge on a
single value.

Now let us look at:

\[\lim_{x\to 0} x\sin(1/x)\]

and let us plot this slighty different function in the same way:

gnuplot> set samples 1000
gnuplot> plot x*sin(1/x)
gnuplot> plot [-3:3] x*sin(1/x)
gnuplot> plot [-1:1] x*sin(1/x)
gnuplot> plot [-0.5:0.5] *sin(1/x)
gnuplot> plot [-0.1:0.1] x*sin(1/x)
gnuplot> plot [-0.05:0.05] x*sin(1/x)
gnuplot> plot [-0.01:0.01] x*sin(1/x)
gnuplot> plot [-0.005:0.005] x*sin(1/x)
gnuplot> plot [-0.001:0.001] x*sin(1/x)

Or let us automate that:

reset
set samples 5000
set yrange [-1:1]

do for [ii=1:100:1] {
 max = 100.0/(ii*ii)
 print(max)
 plot [-max:max] x*sin(1/x)
 pause 0.03
}

This zooming in shows us that the function \(f(x) = x \sin(1/x)\)
does not diverge at \(x = 0\), even though it has that \(1/x\)
bit inside. Although we cannot take \(f(0)\), we do have a limit
that converges:

\[\lim_{x\to 0}x \sin(1/x) = 0\]

15.7. Limits of some functions

Listing 15.7.1 explore-limit.py – exploring the
limiting behavior of some functions.

#! /usr/bin/env python3

def f(x):
 # return 1/x
 return 1/x**2
 # return exp(-x)
 # return exp(-x**2)

epsilon_str = input('give a very small number: ')
epsilon = float(epsilon_str)

x = 1
while f(x) >= epsilon:
 x += 1

print('with the value of x = %g we got f(x) < %g' % (x, epsilon))

15.8. The limit of a series

A summation is the addition of a sequence of numbers. We use the
cool gree capital sigma letter \(\Sigma\) as a notation for this.
For example, if we want to write Gauss’s formula for the sum of the
first 100 numbers:

\[\sum_{k=1}^{100} k = (100 * 101) / 2 = 5050\]

More generally:

\[\sum_{k=1}^{n} k = \frac{n (n+1)}{2}\]

Or the sum of the first 50 values of the harmonic series
\(1/k\):

\[\sum_{k=1}^{50} \frac{1}{k}\]

Or the sum of the first \(n\) values of \(1/k^2\):

\[\sum_{k=1}^{n} \frac{1}{k^2}\]

We read this as “The sum of one over k squared with k going from one
to n …”

Sometimes we have something called an infinite series, or just
series. This is a sum where you keep adding up the elements
forever. An example is:

\[\sum_{k=1}^{\infty} \frac{1}{k^2}\]

which looks like the previous example of a finite sum, but where we
sum forever.

One question you might ask is “wait, if you add infinitely many
things, won’t that diverge?” My first answer is to say that I’m
delighted at how you used the word “diverge” so comfortably. The
answer to the question is that we are summing an infinite number of
terms, but as we add more terms and k gets bigger, \(1/k^2\) gets
infinitesimally small! That means that it’s possible that the sum
will converge.

Let us write a simple program which tests this:

Listing 15.8.1 explore-series.py - explore whether the infinite sums of
\(1/k\) and \(1/k^2\) diverge or converge.

#! /usr/bin/env python3

compare the infinite sums of 1/k and 1/k^2

N = 500
sum_1_over_k = 0
sum_1_over_k_sq = 0

for k in range(1, N+1):
 sum_1_over_k += 1.0/k
 sum_1_over_k_sq += 1.0/(k*k)
 print(k, ' ', sum_1_over_k, ' ', sum_1_over_k_sq)

[image: ../_images/explore-series.svg]
Figure 15.8.1 The sum of the sums of \(1/k\) and \(1/k^2\). We see that
the sum of \(1/k\) gets smaller but eventually does surpass any
point you might pick, while the sum of \(1/k^2\) never grows
past \(\frac{\pi^2}{6}\).

A cute fact to note is that:

\[\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}\]

so you should take a moment to take the result of the third column in
the output of explore-series.py, multiply by 6, take the square
root, and see if you get \(\pi\).

We have seen two examples of infinite series, one of which converges
and the other does not. Note that mathematicians have dozens of
interesting ways of proving rigorously that the harmonic series
diverges. A proof dating from the middle ages is shown in the
Wikipedia article on the harmonic series [https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)#Divergence]

15.9. The most important application: derivatives

The most important use we have for limits is to formulate differential
and integral calculus.

Differential calculus is the study of the rate of change of
functions, while integral calculus is the study of the areas defined
by the curves of functions.

We will discuss integrals in Section 16,
while we will talk briefly about derivatives here. [FIXME: eventually
derivatives might also have their own chapter.]

There are many introductions to calculus, including some written as
free documentation, so here I will simply show a couple of figures
from the Wikipedia article on derivatives [https://en.wikipedia.org/wiki/Derivative] so that an instructor can
make reference to those pictures and explain it on a blackboard or
whiteboard.

In Figure 15.9.1 we see that a reasonably smooth
curve has a tangent line at each point, and the slope of that tangent
line (which we know from analytical geometry) is what we call the
slope of the curve.

[image: ../_images/Tangent-calculus.svg]
Figure 15.9.1 The derivative is slope of the the line tangent to the curve at the
given point.

But how do we find the slope of this tangent line? In
Figure 15.9.2 we see how we might do this:

[image: ../_images/Secant-calculus.svg]
Figure 15.9.2 To find the tangent line we start with an intersecting (or
secant) line that goes through the point \(x\) and a point a
tiny bit ahead \(x + h\), where \(h\) is small.

If we take the points \((x, f(x)), (x+h, f(x+h))\) we have a line
segment and we can calculate its slope with the usual \(\Delta
y/\Delta x\):

\[{\rm derivative\; of\; f\; at\; x} = \frac{f(x+h) - f(x)}{(x + h) - x} = \frac{f(x+h) - f(x)}{h}\]

We use the notation

\[\frac{d f(x)}{dx}\]

for the slope (derivative) of a function f at point x.

The place where limits come in is that if we make h really small then
this intersecting line will become the tangent line, and its slope
will be the derivative at that point.

Note

The notation \(\frac{df(x)}{dx}\) is called the “Leibniz
notation”. Other common ways of writing the derivative are the
“Lagrange notation:” \(f'(x)\), and Newton’s “dot” notation which
is usually used when we have functions of time:

\[\dot x = \frac{dx}{dt}\]

15.10. Visualizing derivatives with an animation

Drawing the pictures for the derivative on the board might help some,
but an animation really drives home the idea of the derivative as a
limit.

The program in Listing 15.10.1 shows an
animation of the types of plots from a secant line to tangent
line. See Figure 15.9.2 and
Figure 15.9.1.

Listing 15.10.1 derivative-animation.py - look at the limit as h
approaches zero: the secant line becomes a tangent line at the given point.

#! /usr/bin/env python3

import math
import matplotlib.pyplot as plt
import matplotlib
import numpy as np

draw_scale = 4.0

def main():
 # the limits and the function that we plot
 a = -1.3
 b = 3.2
 func = curvy_cubic

 # matplotlib graphics setup - boiler-plate stuff
 plt.rcParams.update({'font.size': 10*draw_scale})
 fig = plt.figure(figsize=(6.4*draw_scale, 4.8*draw_scale))

 # first generate the x for the entire domain from a to be
 x = np.arange(a, b, 1.0/1000)
 # pick the point at which we calculate the derivative
 # x0 = a + 2.0*(b-a)/3
 x0 = 1.8

 ## now a loop in which h gets smaller and smaller
 for i in range(2,300):
 # pick a value of h that keeps decreasing toward 0
 h = 2/(i + 1e-2*i*i)
 # calculate the slope of the secant line
 y0 = func(x0)
 y1 = func(x0+h)
 m = (y1 - y0) / h
 # now get the intercept
 b = y0 - m * x0
 print(x0, h, x0+h, y0, m, b)

 # to animate we clear and then redraw everything
 fig.clear()
 # draw the entire curve
 plt.plot(x, func(x), color='g', linewidth=1.0*draw_scale)
 plt.grid(True)
 # draw the two secant points
 plt.plot([x0], [y0], marker='o', markersize=7*draw_scale, color='red')
 plt.plot([x0+h], [y1], marker='o', markersize=5*draw_scale, color='black')
 # draw the line through those two points, using the linear
 # equation y = m*x + b
 line_x_pts = np.arange(x0 - 1.2, x0 + 1.2, 1.0/100)
 line_y_pts = m * line_x_pts + b
 plt.plot(line_x_pts, line_y_pts, color='b', linewidth=1.0*draw_scale)
 # annotate the current value of h and slop
 info_para = """func: %s\nh: %g\nslope: %g""" % (func.__name__, h, m)
 plt.annotate(
 info_para,
 xy=(0, -2), xytext=(0, -2))
 # now annotate where (x0, y0) and (x0+h, y1) are
 plt.annotate('(x0, y0)', xy=(x0, y0), xytext=(x0-1, y0-3),
 arrowprops=dict(facecolor='black', shrink=0.05))
 plt.annotate('(x0+h, y1)', xy=(x0+h, y1), xytext=(x0+h+1, y1+2),
 arrowprops=dict(facecolor='black', shrink=0.05))
 # to animate we do the draw_idle() and pause()
 fig.canvas.draw_idle()
 plt.pause(1.45+h)

 plt.waitforbuttonpress()

def curvy_cubic(x):
 """a simple cubic function mixed with a sin - it shows some
 interesting curves"""
 return (x-1)**3 - 3*(x-1) + np.sin(x)

main()

 16. Numerical integration

16. Numerical integration

[status: enough written to run a course, but incomplete]

16.1. The integral

The integral of a function is the “area under the curve” of that
function between two given points a and b. We write it in this way:

(16.1.1)\[\int_a^b f(x) dx\]

A picture that illustrates this is in the Wikipedia article on
integrals [https://en.wikipedia.org/wiki/Integral] which I reprodue
here in Figure 16.1.1.

[image: ../_images/Integral_example.svg]
Figure 16.1.1 The integral is the area under the curve of a function, between two
points a and b.

Other written tutorials explain integrals quite well, but the figure
above allows an instructor to explain it at a blackboard or
whiteboard.

For now remember a couple of things: the integral is an area, and
notice the beautiful notation in (16.1.1).

Integrals come up a lot in science. In Physics, to example, work is
defined as the integral of force over a distance. This way of
describing of work then leads to defining a body’s energy.
Electric flux is the integral of the electric field over a surface
(a 2-dimensional integral, but the same idea). A simple application
in pure math is to calculate the areas of certain figures and the
volumes of some solids.

Integrals are related to derivatives by the fundamental theorem of
calculus, developed in the 17th century and based on work by
Archimedes in ancient Greece. I will not touch on this too much at
this time: it’s possible to explain derivatives and integrals to kids,
but explaining the “antiderivative” might be out of our reach. We
will just occasionally mention little bits of information about the
link.

16.2. Calculating the integral numerically

It rare that we can calculate an integral exactly, but we can write
computer programs that approximate the integral of any function. In
Figure 16.1.1 we see one way of doing it by breaking
the area down into many small rectangles. The area is then close to
the sum of the areas of those small rectangles.

[image: ../_images/Integral_approximations.svg]
Figure 16.2.1 Approximating the area under the curve by making many small
rectangles that try to fit the curve.

Figure 16.1.1 shows how we can break that region of
space into a bunch of rectangles. The area of all those rectangles
will approximate the integral of our function. If you insert more
rectangles, they will snuggle up to the curve even better.

The drawing in Figure 16.2.1 lets us explain
the notation in Equation (16.1.1). Each little
rectangle in the figure has a base of \(dx\), and a height of
\(f(x)\). The area of that little rectangle is height
\(\times\) base, which is \(f(x) dx\). Now think of
\(\int\) as a fancily drawn letter S and you see that the notation
in Equation (16.1.1) reads as “the sum of \(f(x)
dx\) for x between a and b”, which means “the sum of the areas of all
the baby rectangles between a and b”.

The key insight is then to notice that in the limit (yes! it’s
limits again!) of an increasing number of smaller and smaller
rectangles we get the the integral.

Let us write a program which calculates the area under a curve using
this approximation. Students are encouraged to think for a while
before looking at Listing 16.2.1. I
spend some time devising an algorithm with the students. I typically
go to the whiteboard and, interactively with the students, I point out
that we need:

	A loop over the number of rectangles.

	A variable with the area we have accumulated so far. (This is a
standard paradigm in many programs: a variable that starts at zero,
and you add stuff to it as you compute it.)

	Identifying the lower left and right corners of each baby rectangle.

	Finding the upper left and right corners of each baby rectangle.

	Finding the height of the rectangle using \(f(x)\).

	Taking that individual rectangle’s area.

	Adding that rectangle’s area to the sum variable.

Now let us write the program in
Listing 16.2.1 program and run it. It
will report the area it found. If you put few rectangles you will get
a worse approximation, and if you put in more rectangles you get a
better approximation.

Listing 16.2.1 integrate-with-rectangles.py - approximate the area under
a curve with a collection of small rectangles that fit
under that curve.

#! /usr/bin/env python3

import math

def main():
 a = -1
 b = 1
 n_rectangles = 100

 # A = integrate_function(curvy_cubic, a, b, n_rectangles)
 A = integrate_function(upper_semicircle, a, b, n_rectangles)
 print('with %d rectangles, the area is %g' % (n_rectangles, A))

def integrate_function(f, a, b, n_rectangles):
 width = (b - a) / n_rectangles
 total_area = 0
 for i in range(n_rectangles):
 midpoint = a + i * width + width/2
 height = f(midpoint)
 area = width * height
 total_area += area
 return total_area

def curvy_cubic(x):
 return (x-1)**3 - 3*(x-1) + math.sin(x)

Note that this function, when integrated from -1 to 1, should give
an area of pi/2
def upper_semicircle(x):
 return math.sqrt(1 - x*x)

main()

You can modify integrate-with-rectangles.py to use a curvy
function curvy_cubic() or to use the upper_semicircle()
function. The latter is interesting because the integral under the
upper semicircle should be half the area of a circle with that radius:
\(\pi r^2\). In our case the radius is 1, so we expect that
\(\int_{-1}^{1} {\rm upper_semicircle}(x) dx = \pi/2\). This
means that we can use our integration program to calculate
\(\pi\)!

But integrate-with-rectangles.py was a rather dry program: it is
simple to write and understand, it gives the answer, but it does not
carry us on a wave of enthusiasm.

So let us see if we can make an animation of the process of this
approximation. Enter the program in
Listing 16.2.2. This version
shows the plot of the curve as well as the subdivision of the area
into rectangles, and it gives us an update on the estimate of the
area.

Listing 16.2.2 integrate-with-rectangles-and-plot.py - calculate area
with the same approximation in
Listing 16.2.1 but also
draw an animation of the rectangles as we do it.

#! /usr/bin/env python3

import math
import matplotlib.pyplot as plt
import numpy as np

def main():
 a = -1.3
 b = 3.1
 func = curvy_cubic
 # a = -1
 # b = 1
 # func = upper_semicircle

 fig = plt.figure()
 for n_rectangles in range(5, 200, 3):
 do_single_integration(fig, func, a, b, n_rectangles)
 plt.waitforbuttonpress()

def do_single_integration(fig, func, a, b, n_rectangles):
 x = np.arange(a, b, 1.0/n_rectangles)
 fig.clear()
 plt.grid(True)
 plt.plot(x, func(x), color='g')
 A = integrate_function(func, a, b, n_rectangles)
 info_para = """func: %s
n_rectangles: %d
area: %g
""" % (func.__name__, n_rectangles, A)
 plt.annotate(
 info_para,
 xy=(0, -1), xytext=(0, -2))
 print(info_para)
 fig.canvas.draw_idle()
 plt.pause(0.8)

def integrate_function(f, a, b, n_rectangles):
 width = (b - a) / n_rectangles
 total_area = 0
 for i in range(n_rectangles):
 left_point = a + i*width
 right_point = a + (i+1)*width
 midpoint = a + i * width + width/2
 height = f(midpoint)
 area = width * height
 total_area += area
 # now plot that rectangle; we must renormalize all to be in
 # the [0,1] range for both x and y
 if f(midpoint) < 0:
 color = 'r'
 else:
 color = 'b'
 norm_left = left_point
 plt.bar([midpoint], height, width=width, edgecolor=color, fill=False)
 return total_area

def curvy_cubic(x):
 return (x-1)**3 - 3*(x-1) + np.sin(x)

Note that this function, when integrated from -1 to 1, should give
an area of pi/2
def upper_semicircle(x):
 return np.sqrt(1 - x*x)

main()

Run the program and pay close attention to the ongoing calculation of
the area and see if it converges as you get more and more rectangles.

16.3. Improving the numerical approximation

If you imagine using trapezoids instead of rectangles in
Figure 16.2.1 you will notice that they hug
the curve more closely. The area of a trapezoid is straightforward to
calculate (I usually get the students to work it out while I write
their ideas on the whiteboard). This method is called the
trapezoidal rule.

Exercise 16.1: trapezoidal ruleModify the program in
Listing 16.2.2 to use
trapezoids instead of rectangles. Compare the results to those
from the rectangular method.

Even better is a method called Simpson’s rule. We take three points
along the line and approximate the curve between them with a second
degree polynomial. The curve then becomes a stitched together
sequence of baby parabolas. Parabolas hug our function curve even
more closely, so we should get a better approximation.

The procedure for Simpson’s rule has three main steps:

	Break the interval from a to b into segments which have a left,
middle and right point.

	Find the parabolas using techniques similar to those in
Section 7.7.1.

	We know how to integrate polynomials exactly, so each tiny parabola
has a known area, for example \(\int_a^b x^2 dx =
(b^3-a^3)/3\).

Exercise 16.2: Simpson's ruleModify the program in
Listing 16.2.2 to use
Simpson’s rule.

16.4. Stepping back from numerical integration back to analytical work

 17. Differential Equations

17. Differential Equations

Section author: Sophia Mulholland <smulholland505gmail.com>

17.1. Motivation, Prerequisites, Plan

The goal of this chapter is to learn about differential equations and
how they are used to solve scientific problems. We will also learn to
write programs in C to solve differential equations.

Differential equations are used to answer scientific questions about
how systems change.
We will look in to these examples:

A very loose definition of the uses of differential equations is to
describe how things change.

	how springs move

	how populations grow

	how radioactive material decays

	how bridges collapse

The plan is to start out with a simple explanation of derivatives, and
see examples of derivatives in action. We’ll look into the derivation
of a falling object’s equation and then Euler’s method. Then we’ll end
up modeling a falling body and an oscillating spring.

17.2. Derivatives

If you google the word ‘derivative’ you’ll find the definition:

An expression representing the rate of change of a function with
respect to an independent variable.

So the rate of change of a function can change right? It could be
going up then down and then up again. So how can we represent the rate
of change if it’s not just a number? We use an expression. Like
\(2x\) or \(5x^3\). We can use a function to model the rate of
change of another function.

Here’s an example of taking a derivative:

\[\begin{split}f(x) & = 5x^3-3x^2+10x-5\\
f'(x) &= 15x^2-6x+10\end{split}\]

There are many different techniques to solve these equations like
the Chain rule, the Quotient rule, and the Product rule.

You can graph the functions in gnuplot like this

gnuplot
and at the gnuplot> prompt:
set grid
plot 5*x*x*x-3*x*x+10*x-5
plot 15*x*x-6*x+10

[image: ../_images/example-derivative.svg]

17.2.1. Why?

So why do we care about the rate of change of a function? It helps us
predict what’s going to come next. We can predict the future
population of earth by analyzing its rate of change right now and
making an estimate. We can predict how radioactive material is going
to decay.

You can think of a derivative as an instantaneous rate of
change.

In the image below, as the two blue points get closer together, we can
estimate the slope as the change in \(x\) as it approaches \(0\).

[image: ../_images/derivative.png]

Figure 17.2.1 This photo from the Wikipedia article on derivatives,
https://en.wikibooks.org/wiki/Waves/Derivatives shows the concept
of taking the derivative

There are real world examples of derivatives all throughout physics,
computer science, chemistry, biology, and economics.

Derivatives are an instantaneous rate of
change or a slope at one point in time.

17.3. Definitions

	Differential equation
	An equation involving a function and one or more of it’s derivatives

	Derivative
	An expression representing the rate of change of a function with
respect to an independent variable.

	Different notations:
	
\[\begin{split}y'' & = 3x \;\; \textrm{Lagrange notation} \\
f''(x) & = 3x \;\; \textrm{Lagrange notation} \\
\frac{d^2y} {dx^2} & = 3x \;\; \textrm{Leibniz notation} \\
\ddot{y}(t) & = 3t \;\; \textrm{Newton notation (only for functions of time)}\end{split}\]

We have heard lots of talk of equations, and it was probably a
reference to algebraic equations, which might look like:

\[\begin{split}x^2 + 2x - 3 & = 0 \\\end{split}\]

We work out the solutions, possibly by factoring it:

\[\begin{split}(x+3)(x-1) & = 0 \\
\dots \implies & x = \{1, -3\}\end{split}\]

The solution to a system of algebraic equations is a number or set of
numbers.

But now we talk about differential equations. An example might look
like (in the various notations):

\[\begin{split}y'' + 2y' & = 3y \\
f''(x) + 2f'(x) & = 3f(x) \\
\frac{d^2y} {dx^2} + 2\frac{dy} {dx} & = 3y \\
\dots \implies & y = e^{-3x}\end{split}\]

The solution to a differential equation is a function or a family of functions.

17.4. An Example

We know from Newton’s law that

\[F = ma\]

If the force is the force gravity for a falling body, \(F = -mg\),
then:

\[ma = -mg\]

and that

\[a = -g\]

Now

\[\begin{split}ma & = -mg \\
m\frac{d^2y} {dt^2} & = -mg \\
\frac{d^2y} {dt^2} + g & = 0\end{split}\]

From this, we have proved that the constant \(-g\) is equal to the
second derivative of position.

We also know that acceleration is the second derivative of position. How?
Well if an object’s position is x, then it’s velocity is the change in
x over time.

The acceleration is then the change in velocity over time.
\(\frac{dv} {dt}\) or \(\frac{d^2x} {dt^2}\)

17.5. Population Growth

The differential equation describing population growth is:

\[\frac{dP(t)}{dt} = r P(t)\]

One way to read this is to think that the more rabbits you have, the
more babies you will make in a generation.

How do you solve this? Do you remember which function had a
derivative that was equal to itself?

\[\begin{split}f(x) & = e^x \\
\frac{df(x)}{dx} & = e^x = f(x)\end{split}\]

with a constant multiplier in the exponent:

\[\begin{split}f(x) & = e^{\alpha x} \\
\frac{df(x)}{dx} & = \alpha f(x)\end{split}\]

With all that in hand, we can guess that the solution is:
\(P(t) = e^{rt}\): this will solve the differential equation.

But wait, now note that if you multiply \(P(t)\) by a constant
\(A\), the equation is still satisfied, since you can simplify
away any constant multiple of \(P(t)\) in the equation. This
means that the most general solution is:

\[P(t) = A \times e^{rt}\]

While a pure mathematician might be happy to simply say that you can
have an arbitrary constant, a scientist will naturaly ask what the
constant means in the system we are studying. And usually there is a
good answer. Take a look at what happens at time \(t = 0\):

\[P(0) = A e^{r \times 0} = A e^0 = A\]

So \(A\) is the starting value of the population at time 0. We
can call it \(P_0\) and write:

\[P(t) = P_0 e^{r t}\]

To summarize our notation in this problem:

	\(P(t)\) is the population at time t

	\(P_0\) is the initial population

	and \(r\) is the growth rate

Let’s try to graph a rabbit population with an initial population of
2 rabbits and a growth rate of 0.5:

\(P = 2e^{0.5t}\) is the function

\(\frac{dP} {dt} = e^{0.5t}\) is the function’s derivative

gnuplot
and at the gnuplot> prompt:
plot 2*exp(0.5*x)
replot exp(0.5*x)

[image: ../_images/rabbit-population.svg]
Figure 17.5.1 The growth of the population is in purple and the derivative of
that line is in green. Note that as the slope of the rabbit
population gets steeper, the derivative also increases.

17.5.1. But what does the derivative tell us?

	Since the derivative is positive, the function is increasing.

	Since the derivative is increasing, the slope of the function is
increasing.

17.6. Euler’s Method

Euler’s Method is a way of approximating the solution of a first-order
differential equation. Remember that the solution of a differential
equation is always a function or set of functions. To use this method,
we need to know the first point on the section we want to look at.

When we don’t know the solution to a particular equation, we can use
Euler’s Method. By taking little steps along the graph, it shows us a
prediction of what the exact solution looks like.

[image: ../_images/Euler-method-from-wikipedia.svg]
Figure 17.6.1 From Wikipedia, https://en.wikipedia.org/wiki/Euler_method A
picture of the Euler method. The unknown curve is blue, and the
approximation is in red.

The idea is that if you have the differential equation and one
starting point, you can approximate the solution of the equation. In
the figure above, the red line is obviously not curvy like the blue,
but why?

At the first point, we have the derivative at a point \((x_1,
y_1)\). That means we have the slope at that exact point. We use the
slope to graph a tangent line across a time step, which is why they
appear to be segments. Then, we have the next two points (hopefully
they are close to the actual solution). We calculate
the derivative for \((x_2, y_2)\) and repeat the process.

Let’s graph \(y' = 2x - 2\) and use euler’s method to graph its
solution \(y = x^2 - 2x\).

It’s much easier to know if we’re right, if we already know the
solution. For most differential equations, it is really hard or
impossible to solve it analytically.

Listing 17.6.1 euler-method.c demonstrates Euler’s method.

// this program uses Euler's method to approximate solutions to the
// differential equation dy/dx = f(x, y)

// compile with: gcc -o euler-method euler-method.c -lm
// run with: ./euler-method > euler-method.dat
// plot in gnuplot with:
// plot "euler-method.dat" using 1:2 with lines
// replot "euler-method.dat" using 1:3 with lines

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

/* prototypes for functions below */
double RHS_parab(double x, double y);
double exact_parab(double x, double y);

int main(int argc, char *argv[])
{
 double xinitial = -5;
 double yinitial = 35;
 double interval = 10; 	/* how many seconds */

 /* handle command line options that allow the user to select number
 of steps */
 int n_steps;
 if (argc == 1) {
 n_steps = 1000;
 } else if (argc == 2) {
 n_steps = atoi(argv[1]);
 } else {
 fprintf(stderr, "error: usage is %s [n_steps]\n", argv[0]);
 return 1;
 }

 /* put out a wee bit of metadata with the "low effort metadata"
 (LEM) structured comment approach */
 printf("##COMMENT: Euler method solution to dy/dx = f(x, y)\n");
 printf("##N_STEPS: %d\n", n_steps);
 printf("##COLUMN_DESCRIPTIONS: x y_approx y_exact slope\n");

 double dx = interval/n_steps;
 double xprev = xinitial;
 double yprev = yinitial;
 double exact = exact_parab(xprev, yprev);
 printf("%lf %lf %lf\n", xprev, yprev, exact);
 for (int j = 0; j < n_steps; j++) {
 // calculate right hand side (RHS) with (xi, yi)
 double slope = RHS_parab(xprev, yprev);
 // increase x by step size
 double xnew = xprev + dx;
 // use tangent line to approximate next y value from previous y value
 double ynew = yprev + dx * slope;
 // find exact exact_solution to compare approximation with
 double exact = exact_parab(xnew, ynew);
 printf("%g %g %g %g\n", xnew, ynew, exact, slope);
 // now reset the cycle
 xprev = xnew;
 yprev = ynew;
 }
 return 0;
}

// returns RHS (right hand side)
double RHS_parab(double x, double y)
{
 return 2*x - 2;
}

// returns exact exact_solution
double exact_parab(double x, double y)
{
 return x*x - 2*x;
}

Compile and run and plot this with:

gcc -o euler-method euler-method.c -lm
./euler-method > euler-method.dat
gnuplot
then at the gnuplot> prompt type:
set grid
plot "euler-method.dat" using 1:2 with lines
replot "euler-method.dat" using 1:3 with lines

[image: ../_images/euler-method.svg]
Figure 17.6.2 Euler’s approximation with 1000 steps.

At first glance, It looks like the two lines are right on top of each
other right? Well if you zoom in on your own graph you can probably
see that the lines are not exactly the same. The green line is our
exact solution. Using Euler’s method can give us a good approximation
for the solution, but never exact.

So now, we can compare that good approximation to a poor
approximation using Euler’s method. If you run:

./euler-method 10 > euler-method-bad-approximation.dat
gnuplot
then at the gnuplot> prompt type:
set grid
plot "euler-method-bad-approximation.dat" using 1:2 with lines title "approximate"
replot "euler-method-bad-approximation.dat" using 1:3 with linespoints title "exact"

[image: ../_images/euler-bad-approximation.svg]
Figure 17.6.3 Euler’s approximation with just 10 steps.

On the purple line there are only ten steps and so it differs a lot
from an exact solution of the equation \(\frac{dy} {dx} = 2x - 2\).

17.7. Second Order Differential equations

A second order differential equation is one that involves not just the
first derivative of y, but the second one too.

\[y'' + P(x)y' + Q(x)y = 0\]

where \(P(x)\) and \(Q(x)\) are continuous functions or
constants.

The solutions to second order differential equations will have two
arbitrary constants, instead of having just one for first order
equations. Yes: this is not a coincidence.

Incorporating a second order differential into a real world problem
can be really useful. For instance, a model of a ball dropped off a
tall building is going to have more than one factor right? To model
it’s position, you have to incorporate it’s initial position AND its
initial velocity AND it’s acceleration due to gravity.

17.8. Falling Body

Imagine taking a basketball and dropping it off a building. What force
is acting on that ball?

Gravity will cause the ball to accelerate towards the ground. So what
would we need to model it? The mass of the basketball and the
acceleration of gravity.

The way this is described in physics is with Newton’s second law:

\[F = m a = m \frac{d^2y}{dt^2}\]

We know that for a smallish fall in an ordinary part of the world the
force of gravity is \(F = -m g\) (the negative sign is because it
is going down), so we end up with this equation:

\[\begin{split}m \frac{d^2y}{dt^2} & = - m g \\\end{split}\]

you can cancel the mass terms to get:

\[\frac{d^2y}{dt^2} = -g\]

The solution to this equation is one of the simplest cases of
indefinite integral applied twice:

\[\begin{split}v(t) & = - g t + C_1 \\
y(t) & = - \frac{1}{2} g t^2 + C_1 t + C_2\end{split}\]

where \(C1\) and \(C_2\) are the two arbitrary constants we
expect from a second order differential equation. Note that at time
\(t = 0\) we can see that

\[\begin{split}v(0) & = C_1 \\
y(0) & = C_2\end{split}\]

so we can pick better names for the constants: \(v_0\) and
\(y_0\) (initial velocity and initial height):

\[\begin{split}v(t) & = g t + v_0 \\
y(t) & = - \frac{1}{2} g t^2 + v_0 t + y_0\end{split}\]

where the physical meaning of the arbitrary constants stands out
nicely.

Type in the program below called falling-body.c

Listing 17.8.1 falling-body.c shows exact solution and approximation

// this program uses Euler's method to approximate solutions to the
// falling body equation d^2y/dt^2 = -g

// compile with: gcc -o falling-body falling-body.c -lm
// run with: ./falling-body > falling-body.dat
// plot in gnuplot with:
// plot "falling-body.dat" using 1:2 with lines
// replot "falling-body.dat" using 1:3 with lines

#include <stdio.h>
#include <math.h>

//acceleration due to gravity
double g = 9.8;
double yinit = 100;
double vinit = 0.1;

double acceleration(double t, double y)
{
 return -g;
}

// returns exact solution
double falling_body_exact(double st)
{
 return yinit + vinit*st - 0.5*g*pow(st,2);
}

int main()
{
 double tinit = 0;

 // define initial variables, step size
 double duration = 10; /* how many seconds */
 int n_steps = 10000;
 double dt = duration/n_steps;

 printf("##COMMENT: Euler method solution to falling body d^y/dx^2 = -g\n");
 printf("##N_STEPS: %d\n", n_steps);
 printf("##COLUMN_DESCRIPTIONS: t y_approx v_approx y_exact acc\n");

 // set the variables based on our initial values
 double tprev = tinit;
 double yprev = yinit;
 double vprev = vinit;
 double exact = falling_body_exact(tprev);
 double acc = acceleration(tprev, yprev);
 printf("%g %g %g %g %g\n", tprev, yprev, vprev, exact, acc);
 for (int j = 0; j < n_steps; j++) {
 // solve differential with initial values
 acc = acceleration(tprev, yprev);
 // using acceleration, update velocity
 double vnew = vprev + dt * acc;
 // now, using velocity, update position
 double ynew = yprev + vnew * dt;
 // increase t by step size
 double tnew = tprev + dt;
 tprev = tnew;
 yprev = ynew;
 vprev = vnew;
 // find exact solution to compare approximation with
 double exact = falling_body_exact(tnew);
 printf("%g %g %g %g %g\n", tnew, ynew, vnew, exact, acc);
 }
 return 0;
}

Compile and run it with:

gcc -o falling-body falling-body.c -lm
./falling-body > falling-body.txt

Now use gnuplot to graph the falling body as a function of time

gnuplot
then at the gnuplot> prompt:
set grid
plot "falling-body.txt" using 1:2 with lines
replot "falling-body.txt" using 1:4 with lines

[image: ../_images/falling-body.svg]
Figure 17.8.1 Height of a falling body versus time.

17.8.1. Adding Air Resistance to Falling Body

If you consider air drag then the falling body behaves differently.
Air drag can often be modeled with an opposing force

\[F_{\rm drag} = b v^2 = b \dot{y}^2\]

where \(b\) is a constant coefficient which depends on the
properties of the fluid (in our case air) and the body moving in it.

This drag force gives us this differential equation:

\[\begin{split}m \ddot{y} = b \dot{y}^2 - m g \\
m \ddot{y} - b \dot{y}^2 + m g = 0\end{split}\]

The full solution to this differential equation is possible, though
quite gnarly - we discuss the full solution below.

Type or paste in the program below called falling-body-drag.c

Listing 17.8.2 falling-body-drag.c shows a falling
body’s path as a function of time.

// this program uses Euler's method to approximate solutions to the
// falling body equation with air drag: d^2y/dt^2 + g

// compile with: gcc -o falling-body-drag falling-body-drag.c -lm
// run with: ./falling-body-drag > falling-body-drag.dat
// plot in gnuplot with:
// plot "falling-body-drag.dat" using 1:2 with lines
// replot "falling-body-drag.dat" using 1:3 with lines

#include <stdio.h>
#include <math.h>

//acceleration due to gravity
double mass = 1; /* kg */
double g = 9.8; /* m/s^2 */
double yinit = 100; /* m */
double vinit = 0.1; /* m/s */
double b_drag = 0.05; /* */

double force(double t, double y, double v)
{
 return -mass*g + b_drag * v * v;
}

// returns exact solution
double falling_body_exact(double st)
{
 return yinit + vinit*st - 0.5*g*pow(st,2);
}

int main()
{
 double tinit = 0;

 // define initial variables, step size
 double duration = 9; /* how many seconds */
 int n_steps = 10000;
 double dt = duration/n_steps;

 printf("##COMMENT: Euler method solution to falling body d^y/dx^2 = -g\n");
 printf("##N_STEPS: %d\n", n_steps);
 printf("##COLUMN_DESCRIPTIONS: t y_approx v_approx no_drag_exact acc\n");

 // set the variables based on our initial values
 double tprev = tinit;
 double yprev = yinit;
 double vprev = vinit;
 double exact_nodrag = falling_body_exact(tprev);
 double acc = force(tprev, yprev, vprev) / mass;
 printf("%g %g %g %g %g\n", tprev, yprev, vprev, exact_nodrag, acc);
 for (int j = 0; j < n_steps; j++) {
 // solve differential with initial values
 acc = force(tprev, yprev, vprev) / mass;
 // using acceleration, update velocity
 double vnew = vprev + dt * acc;
 // now, using velocity, update position
 double ynew = yprev + vnew * dt;
 // increase t by step size
 double tnew = tprev + dt;
 tprev = tnew;
 yprev = ynew;
 vprev = vnew;
 // find exact solution to compare approximation with
 double exact_nodrag = falling_body_exact(tnew);
 printf("%g %g %g %g %g\n", tnew, ynew, vnew, exact_nodrag, acc);
 }
 return 0;
}

Compile and run it with

gcc -o falling-body-drag falling-body-drag.c -lm
./falling-body-drag 1.7 1000 0.4 > falling-body-drag.dat

Now use gnuplot to graph the falling body as a function of time,
including drag:

set grid
plot "falling-body-drag.dat" using 1:2 with lines title "with drag"
replot "falling-body-drag.dat" using 1:4 with lines title "without drag"

[image: ../_images/falling-body-drag.svg]
You will notice that the two plots start out together, but then the
plot with drag diverges from the free fall and eventually straightens
out.

This straightening out of the slope of \(y(t)\) means that the
velocity has become a constant due to air drag balancing out the
effects of gravity. This is called the terminal velocity.

To get more insight into what happened you can look at the plots of
column 3 (velocity) and column 5 (acceleration). You will see that
the velocity starts close to 0, gets very negative very quickly, and
then tapers off to about \(-14 m/s\), which is the terminal
velocity.

The acceleration, instead, starts at \(-9.8 m/s^2\) and taperes
off to zero once the body is moving fast enough that the \(b v^2\)
drag force matches the force of gravity.

Now for a discussion of the full solution. There is an article at:
https://philosophicalmath.wordpress.com/2017/10/21/terminal-velocity-derivation/
in which they focus on the question of calculating the velocity.

This they find to be:

\[\DeclareMathOperator\arctanh{arctanh}
v(t) = \sqrt{\frac{mg}{b}} \tanh\left(t \sqrt{\frac{b g}{m}} +
\arctanh\left(v_0 \sqrt{\frac{b}{m g}}\right)\right)\]

The \(\tanh()\) function is integrable, so one can also find
\(y(t)\) exactly from this equation, but their main focus is on
how to find the terminal velocity:

\[\lim_{t\to\infty} v(t) = \lim_{t\to\infty} \left(\dots \right) =
\sqrt{\frac{m g}{b}}\]

So the terminal velocity depends on the mass, the acceleration of
gravity, and (inversely) on the coefficient \(b\). This matches
our intuition, and if we look at the values in our program (at the
time of writing this paragraph):

\[\begin{split}m & = 1 \; kg \\
g & = 9.8 \; m/s^2 \\
b & = 0.05 \; {\rm kg} / m \\
\dots & \implies v_{\rm terminal} = 14 \; m/s\end{split}\]

which is what our numerical solution found.

One more thing to say about drag: when certain conditions are
satisfied for an object falling in a fluid (or having the fluid move
around it), the coefficient \(b\) can be given by:

\[b = \frac{1}{2} \rho C_d A\]

where \(\rho\) is the fluid density, \(C_d\) is the drag
coefficient, and \(A\) is the cross-sectional area of our falling
body.

17.9. The harmonic oscillator

The motion of a mass attached to a spring is described by Newton’s
law, where the force produced by the spring is given (once you ignore
all friction effects) by Hooke’s law:

\[F = - k x\]

Here is how to read that equation: \(x\) is a small displacement
of the mass when you pull it from its rest position. \(k\) is
the sprint constant - a bigger value of \(k\) means that we have
a stiffer spring which will return to its resting point more
vigorously.

If you push the spring instead of pulling you get (for small
displacements) the same force in the opposite direction.

The resulgint system is called a “harmonic oscillator”. The Wikipedia
page on the harmonic oscillator points out its importance in physics
with (approximately) this wording:

The harmonic oscillator model is very important in physics, because
any mass subject to a force in stable equilibrium acts as a
harmonic oscillator for small vibrations. Harmonic oscillators
occur widely in nature and are exploited in many human-made
devices, such as clocks and radio circuits. They are the source of
virtually all sinusoidal vibrations and waves.

17.9.1. The simple harmonic oscillator

Applying Newton’s law, as we did for the falling body but this time
with the spring force, we get:

\[\begin{split}m \frac{d^2x}{dt^2} & = -k x \\
\implies m \frac{d^2x}{dt^2} + k x & = 0\end{split}\]

Let us look at this differential equation in its simplest form. The
question that comes to mind is: “what function, when you take its
derivative twice, gives you itself back again with a minus sign?”

The answer to that is either \(\sin()\) or \(\cos()\), or an
exponential with an imaginary multiple of the argument.

So we expect the solution to look something like:

\[x(t) = A \cos(C t) + B \sin(C t)\]

where \(A\) and \(B\) are the familiar arbitrary constants,
and \(C\) is some kind of folding of the parameters of the
differential equation, like mass and spring constant.

A harmless simplification is to assume that we are plucking and
letting go with an initial velocity of 0, which makes the
\(\sin()\) term go away, and we are left with just the cosine
term:

\[x(t) = A \cos(C t)\]

If we plug that into the differential equation we see that it works
when we set the parameter \(C\) to be:

\[C = \sqrt{\frac{k}{m}}\]

We usually call this \(\omega_0\), the natural frequency of the
oscillator:

\[\omega_0 = \sqrt{\frac{k}{m}}\]

and our solution is:

\[x(t) = A \cos(\omega_0 t)\]

This is a sinusoidal wave with amplitude \(A\) and frequency
\(\omega_0\).

The velocity will be:

\[v(t) = -A \omega_0 \cos(\omega_0 t)\]

Think through the proportionalities involved here: the frequency is
higher when the spring is stiffer, and lower when the mass is bigger.
The same goes for the velocity. Does that match your intuition?

Without any other forces acting on it, this spring will keep going
forever.

17.9.2. The damped harmonic oscillator

To model the spring as if it was happening in the real world, we need
to account for friction. In physics the force given by sliding
friction is usually proportional to the velocity:

\[F_{\rm friction} = - C \frac{dx}{dt}\]

adding this to the spring force gives this differential equation for
the damped harmonic oscillator:

\[\begin{split}m \frac{d^2x}{dt^2} + C \frac{dx}{dt} + k x & = 0 \\
\frac{d^2x}{dt^2} + \frac{C}{m} \frac{dx}{dt} + \omega_0^2 x & = 0\end{split}\]

This can be solved analytically and we get:

\[x(t) = A e^{-\zeta \omega_0 t} \cos\left(\omega t\right)\]

If you look at this closely you see that:

	The frequency \(omega\) is shifted a bit from the natural
\(\omega_0\) of the undamped system. The full relationship is:

\[\omega = \omega_0 \sqrt{1 - \left(\frac{C}{2 \sqrt{m
k}}\right)^2}\]

	There is a damping term \(\exp{(-\zeta \omega_0 t)}\) where
\(\zeta = C / (2\sqrt{m k})\). This will make the oscillations
damp out very quickly if \(C\) is big, and more gradually if
\(C\) is small.

In the program damped-spring-with-friction.c below, you can model
a damped oscillating spring.

Listing 17.9.1 damped-spring-with-friction.c shows exact solution
and approximation for a spring.

// compile with: gcc -o damped-spring-with-friction damped-spring-with-friction.c -lm
// run with: ./damped-spring-with-friction > damped-spring-with-friction.dat
// plot in gnuplot with:
// plot "damped-spring-with-friction.dat" using 1:3 with lines
// replot "damped-spring-with-friction.dat" using 1:4 with lines

#include <stdio.h>
#include <math.h>

//acceleration due to gravity
double g = 9.8;
//some physics values for the spring equation
double k = 3.0;
double m = 2.0;
//physics for air friction
double air_friction = 3;
//physics for frictional damping force
double damp = 0.5;
/* double damp = 0.0000005; */
double F0 = 10;			/* constant driving force */
double amplitude = 2;

//returns differential
double acceleration(double t, double x, double v)
{
 double omega_0 = sqrt(k / m);
 return - damp * v / m - omega_0*omega_0 * x;
 /* return (-k*x - damp*v + F0*cos(8*t)) / m; */
}

// returns exact solution for harmonic motion
double harmonic_exact(double t)
{
 return amplitude*cos(sqrt(k/m - damp*damp/(4*m*m))*t)*exp((-damp/(2*m)) * t);
}

int main()
{
 double tinit = 0;

 // define initial variables, step size
 double duration = 30; /* how many seconds */
 int n_steps = 10000;
 double dt = duration/n_steps;

 printf("##COMMENT: Euler method solution to damped harmonic oscillator\n");
 printf("###COMMENT: m d^y/dx^2 + C dx/dt + k x = 0");
 printf("##N_STEPS: %d\n", n_steps);
 printf("##COLUMN_DESCRIPTIONS: t x_approx v_approx no_damp_exact acc\n");

 // set the variables based on our initial values
 double tprev = tinit;
 double xprev = amplitude;
 double vprev = 0; /* pluck, then release from rest position */
 double exact_harmonic = harmonic_exact(tinit);
 double acc = acceleration(tprev, xprev, vprev);
 printf("%g %g %g %g %g\n", tprev, xprev, vprev, exact_harmonic, acc);
 for (int j = 0; j < n_steps; j++) {
 // solve differential with initial values
 acc = acceleration(tprev, xprev, vprev);
 // using acceleration, update velocity
 double vnew = vprev + dt * acc;
 // now, using velocity, update position
 double xnew = xprev + vnew * dt;
 // increase t by step size
 double tnew = tprev + dt;
 tprev = tnew;
 xprev = xnew;
 vprev = vnew;
 // find exact solution to compare approximation with
 double exact_nodamp = harmonic_exact(tnew);
 printf("%g %g %g %g %g\n", tnew, xnew, vnew, exact_nodamp, acc);
 }
}

Run this program with

gcc -o damped-spring-with-friction damped-spring-with-friction.c -lm
./damped-spring-with-friction > damped-spring-with-friction.dat

Now let’s use gnuplot to graph the damped spring:

gnuplot
and at the gnuplot> prompt:
set grid
set title "damped harmonic oscillator"
set xlabel "time"
set ylabel "amplitude"
plot "damped-spring-with-friction.dat" using 1:2 with lines title "damped oscillator approximate"
replot "damped-spring-with-friction.dat" using 1:4 with lines title "damped oscillator exact"

It should look something like this:

[image: ../_images/damped-spring.svg]
If you look at the code you can see that you can do experiments by
changing the damp parameter at the top, and you could even
experiment wtih adding a driving force to the oscillator by changing
the function acceleration().

17.9.3. The non-linear pendulum

The force along the trajectory of mass on a string (pendulum) is:

\[F(t) = - m g \sin(\theta)\]

This gives us an expression of Newton’s law as:

\[\begin{split}m L \frac{d^2 \theta(t)}{dt^2} + m g \sin(\theta(t)) & = 0 \\
\frac{d^2 \theta(t)}{dt^2} + (g / L) \sin(\theta(t)) & = 0 \\\end{split}\]

For small angles we have \(\sin(\theta) \approx \theta\), so we
get:

\[\frac{d^2\theta}{dt^2} + (g / L) \theta(t) = 0\]

this last equation is the same as the simple harmonic oscillator
equation, where our fundamental frequency is given by:

\[\omega_0 = \sqrt{\frac{g}{L}}\]

once again you should look at the proportionalities in that equation
and see if you agree with them.

The full non-linear equation, where we have \(\sin(\theta(t))\), is
very difficult to solve. This has been solved in closed form, but the
solutions are very complex and involve their own set of approximations
to calculate elliptical integrals.

Since the solution is so complex, and the slightest variation in the
kind of force we are contemplating would make the equation
completely unsolvable, it becomes interesting to use our differential
equation solver to calculate it.

Type or paste in the program nonlinear-pendulum.c:

Listing 17.9.2 nonlinear-pendulum.c approximates the equation for a
nonlinear pendulum.

// compile with: gcc -o nonlinear-pendulum nonlinear-pendulum.c -lm
// run with: ./nonlinear-pendulum > nonlinear-pendulum.dat
// plot in gnuplot with:
// plot "nonlinear-pendulum.dat" using 1:3 with lines
// replot "nonlinear-pendulum.dat" using 1:4 with lines

#include <stdio.h>
#include <math.h>

//acceleration due to gravity
double g = 9.8;
//some physics values for the spring equation
double k = 3.0;
double m = 2.0;
//physics for air friction
double air_friction = 3;
//physics for frictional damping force
double damp = 0.5;
/* double damp = 0.0000005; */
double F0 = 10;			/* constant driving force */
double theta_0 = 0.3; /* radians */
double Length = 0.5; /* length in meters */

double acceleration(double t, double x, double v)
{
 return - (g / Length) * sin(x);
 /* return (-k*x - damp*v + F0*cos(8*t)) / m; */
}

// returns exact solution for harmonic motion
double harmonic_exact(double t)
{
 return theta_0*cos(sqrt(g / Length) * t);
}

int main()
{
 double tinit = 0;

 // define initial variables, step size
 double duration = 10; /* how many seconds */
 int n_steps = 10000;
 double dt = duration/n_steps;

 printf("##COMMENT: Euler method solution to damped harmonic oscillator\n");
 printf("###COMMENT: m d^y/dx^2 + C dx/dt + k x = 0");
 printf("##N_STEPS: %d\n", n_steps);
 printf("##COLUMN_DESCRIPTIONS: t x_approx v_approx no_damp_exact acc\n");

 // set the variables based on our initial values
 double tprev = tinit;
 double xprev = theta_0;
 double vprev = 0; /* pluck, then release from rest position */
 double exact_harmonic = harmonic_exact(tinit);
 double acc = acceleration(tprev, xprev, vprev);
 printf("%g %g %g %g %g\n", tprev, xprev, vprev, exact_harmonic, acc);
 for (int j = 0; j < n_steps; j++) {
 // solve differential with initial values
 acc = acceleration(tprev, xprev, vprev);
 // using acceleration, update velocity
 double vnew = vprev + dt * acc;
 // now, using velocity, update position
 double xnew = xprev + vnew * dt;
 // increase t by step size
 double tnew = tprev + dt;
 tprev = tnew;
 xprev = xnew;
 vprev = vnew;
 // find exact solution to compare approximation with
 double exact_nodamp = harmonic_exact(tnew);
 printf("%g %g %g %g %g\n", tnew, xnew, vnew, exact_nodamp, acc);
 }
}

Run this program with

gcc -o nonlinear-pendulum nonlinear-pendulum.c -lm
./nonlinear-pendulum > nonlinear-pendulum.dat

Now let’s use gnuplot to graph the damped spring:

gnuplot
and at the gnuplot> prompt:
set grid
set title "damped harmonic oscillator"
set xlabel "time"
set ylabel "amplitude"
plot "nonlinear-pendulum.dat" using 1:2 with lines title "damped oscillator approximate"
replot "nonlinear-pendulum.dat" using 1:4 with lines title "damped oscillator exact"

It should look something like this:

[image: ../_images/nonlinear-pendulum.svg]
Take a careful look at that last plot, and at the source code,
specifically the setting of:

double theta_0 = 0.3; /* radians */

0.3 radians is a rather small angle, so the approximation
\(\sin(\theta) \approx \theta\) almost holds at \(\sin(0.3) =
0.29552\). But after a few periods you see that the solutions diverge.

If you set theta_0 to be 0.1 then the approximation will work for
a long time. If you set it to be 0.8 you will see the curves diverge
quite soon.

 18. Ecology

18. Ecology

[status: barely-started]

18.1. Motivation, Prerequisites, Plan

As I write this, in April of 2020, it seems like a good opportunity ot
get comfortable with some of the equations that come up when we talk
about growth. We will look at the growth of a population, or growth
of the number of infected humans (which is related to the growth of
the population that carries the infection).

Let us start with mosquitoes and West Nile Virus in Texas. Watch this
crash course video at:

https://www.youtube.com/watch?v=RBOsqmBQBQk&index=2&list=PL8dPuuaLjXtNdTKZkV_GiIYXpV9w4WxbX

Then have ready this nature paper on basics of ecology:

https://www.nature.com/scitable/knowledge/library/an-introduction-to-population-growth-84225544/

18.2. Factors that come up in modeling population ecology

Table 18.2.1 Factors in population ecology

	name

	variable

	

	initial pop:

	N

	

	birth rate:

	B

	

	death rate:

	D

	

	growth rate:

	r

	= (B - D) / N

	predation

	
	

	immigration

	
	

	emigration

	
	

	mates

	
	

	food

	
	

	space

	
	

18.3. Exponential growth

Spend some time plotting exponentials in gnuplot. Show how they dwarf
linear growth, and how you need log scale to compare them.

18.4. History of the human population on earth

Peruse the Wikipedia page on historical population estimates:

https://en.wikipedia.org/wiki/Estimates_of_historical_world_population

and the study at:

https://www.prb.org/howmanypeoplehaveeverlivedonearth/

Spend some time exploring the interactive graphs at:

https://ourworldindata.org/world-population-growth

Expand the title on “All our charts on World Population Growth”, and
pick the population by country since 1500 and try to understand what
areas are exponential.

Then look at the link “World population since 10,000 BCE
(OurWorldInData series)”.

Download the data for this graph and zoom in on some specific
periods. Look at both linear and logarithmic scales.

Following the indications shown in

https://www.nature.com/scitable/knowledge/library/an-introduction-to-population-growth-84225544/

we can look at the table below and seek certain interesting periods in
the data.

Table 18.4.1 Periods of interest in human population history

	Start

	End

	What to look for

	-10000

	-4000

	Agricultural revolution

	-4000

	-600

	Early empires

	-1000

	300

	Alexander and Rome

	1

	300

	Imperial Rome

	1

	1600

	Largely steady world population

	1200

	1400

	Medieval black death

	1500

	present

	Modern world

	1850

	present

	Industrial revolution

	1900

	present

	Large scale science

18.5. The logistic function

Although the earth’s population as a whole appears to still be in an
exponential growth phase, the Pew Research Center predicts that it
will flatten by the end of the 21st century:

https://www.pewresearch.org/fact-tank/2019/06/17/worlds-population-is-projected-to-nearly-stop-growing-by-the-end-of-the-century/

This type of function is not exponential growth anymore: it shows
exponential growth, but that then slows down and we end up with what
is called the Logistic Function:

https://en.wikipedia.org/wiki/Logistic_function

Think of fidget spinners.

18.6. The Lotka-Volterra differential equations

18.7. Further reading

	https://www.youtube.com/watch?v=NYq2078_xqc - Khan Academy video
with pleasant intro to cycles and real examples, 5min.

	https://www.youtube.com/watch?v=mFDiiSqGB7M - crash course on
predator-prey ecology

	https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations#A_simple_example

	http://www.scholarpedia.org/article/Predator-prey_model

	http://mc-stan.org/users/documentation/case-studies/lotka-volterra-predator-prey.html

Still have to look at articles on 3-way predator-prey:

	http://emis.ams.org/journals/HOA/JAMDS/3/2155.pdf

	chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://www.cs.unm.edu/~forrest/classes/cs365/lectures/Lotka-Volterra.pdf

	http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.360.1552&rep=rep1&type=pdf

	http://disi.unal.edu.co/~gjhernandezp/sim/lectures/DeterministicModelsAndChaos/PopulationModels/LotkaVolterra3species.pdf

And how about simple models of a full society collapse?

	https://en.wikipedia.org/wiki/Collapse:_How_Societies_Choose_to_Fail_or_Succeed

	http://necsi.edu/projects/evolution/co-evolution/pred-prey/co-evolution_predator.html

	https://www.ted.com/talks/jared_diamond_on_why_societies_collapse

	https://arxiv.org/abs/1002.0068

	https://faustusnotes.wordpress.com/2014/05/15/mathematical-modeling-of-civilization-collapse/

Cliometrics

	https://en.wikipedia.org/wiki/Cliometrics

 19. Biology – phylogeny

19. Biology – phylogeny

[status: written, but incomplete]

19.1. Motivation, prerequisites, plan

19.1.1. Motivation

One of the most important areas of research in biology is that of
phylogenetic analysis. This collection of techniques allows us to
build an evolutionary tree showing how various species are related.

This type of analysis can also be used in other areas, such as tracing
the origin of human spoken languages.

I find phylogenetic analysis to be fascinating because it gives us a
sort of “webcam of the gods”, a view of the past (which we cannot see)
which brought about the present state of things.

19.1.2. Prerequisites

	The 10-hour “serious programming” course.

	The “Data files and first plots” mini-course in
Section 2

19.1.3. Plan

We will start by looking at a video tutorial of how to build a simple
phylogenetic tree by hand. Then we will learn how to use biopython
and ete3 packages to construct and visualize trees on that simple
problem.

Then we discuss further projects in which we look for data sets to
work with, including sets from our own genetic algorithm runs (where
we also know the real evolutionary history), human languages (where we
do not know the real history), and computer programming languages
(where we should know most of the real history).

https://cnx.org/contents/24nI-KJ8@24.18:EmlvXoDL@7/Taxonomy-and-phylogeny

19.2. Start with a video and then make a simple table

Start with this Khan Academy tutorial on phylogenetic trees [https://www.khanacademy.org/science/high-school-biology/hs-evolution/hs-phylogeny/v/understanding-and-building-phylogenetic-trees-or-cladograms]

Then we take their table of traits. Start with the empty table:

Table 19.2.1 An empty trait table which the class could fill together.

	Species

	Feathers

	Fur

	Lungs

	Gizzard

	Jaws

	Lamprey

	
	
	
	
	

	Antelope

	
	
	
	
	

	Sea Bass

	
	
	
	
	

	Bald Eagle

	
	
	
	
	

	Alligator

	
	
	
	
	

and write it on the board. Then fill out the tree on the board with
the class. You can discuss what all these animals are, and look them
up if necessary.

The table will end up looking like this:

Table 19.2.2 What the trait table should like like once it is filled.

	Species

	Feathers

	Fur

	Lungs

	Gizzard

	Jaws

	Lamprey

	no

	no

	no

	no

	no

	Antelope

	no

	yes

	yes

	no

	yes

	Sea Bass

	no

	no

	no

	no

	yes

	Bald Eagle

	yes

	no

	yes

	no

	yes

	Alligator

	no

	no

	yes

	no

	yes

Then use the principle of parsimony to create the phylogenetic tree,
following the guidelines in the tutorial. The result should look like
what you see in Figure 19.2.1.

[image: ../_images/simple-animal-tree-by-hand.png]

Figure 19.2.1 The resulting tree from the Khan Academy video example.

Discuss the meaning of parsimony as seen in this example. Connect it
to Ockham’s razor.

19.3. Terminology

Clades, taxa, species, genotype, phenotype, …

The tree of life

[image: ../_images/Tree_of_life_SVG.svg]
Figure 19.3.1 Hillis’s tree of life based on completely sequenced genomes (from
the Wikipedia image [https://en.wikipedia.org/wiki/File:Tree_of_life_SVG.svg])

19.4. NEW - Installing necessary packages

sudo apt install python3-biopython python3-matplotlib

19.5. NEW - first steps with biopython

Tutorials are at:

https://taylor-lindsay.github.io/phylogenetics/

and

http://biopython.org/DIST/docs/tutorial/Tutorial.html

Data from opentreeoflife at:

https://tree.opentreeoflife.org/

I tied Streptococcus_mitis_NCTC_12261_ott725 at:

https://tree.opentreeoflife.org/opentree/argus/ottol@175918/Streptococcus

and downloaded the Newick format of the streptococcus subtree at:

https://tree.opentreeoflife.org/opentree/default/download_subtree/ottol-id/175918/Streptococcus

with:

wget --output-document subtree-ottol-175918-Streptococcus.tre https://tree.opentreeoflife.org/opentree/default/download_subtree/ottol-id/175918/Streptococcus

from io import StringIO
from Bio import Phylo
from Bio.Phylo.TreeConstruction import DistanceCalculator
t = Phylo.read(StringIO("((a,b),c);"), format="newick")
Phylo.draw(t)

import os
import matplotlib
import matplotlib.pyplot as plt
from Bio import Phylo
from Bio.Phylo.TreeConstruction import DistanceCalculator

os.system('wget https://api.opentreeoflife.org/v3/study/ot_2221.tre')
tree = Phylo.read("ot_2221.tre", "newick")
Phylo.draw(tree)
Phylo.draw_ascii(tree)

os.system('wget --output-document subtree-ottol-175918-Streptococcus.tre https://tree.opentreeoflife.org/opentree/default/download_subtree/ottol-id/175918/Streptococcus')
tree = Phylo.read("subtree-ottol-175918-Streptococcus.tre", "newick")
Phylo.draw(tree)

19.6. OLD - Installing necessary packages

Follow the instructions at http://etetoolkit.org/download/

Install Minconda (you can ignore this step if you already have Anaconda/Miniconda)
wget http://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh -b -p ~/anaconda_ete/
export PATH=~/anaconda_ete/bin:$PATH;

Install ETE
conda install -c etetoolkit ete3 ete_toolchain

Check installation
ete3 build check

Now to test it run this simple program. You can even paste it into
the python3 interpreter.

from ete3 import Tree
t = Tree("((a,b),c);")
t.render("mytree.png", w=183, units="mm")

19.7. Preparing a tree by hand

Now let us prepare a tree where we input it ourselves. The format is
like what we saw in the example above: the tree is made with the call
Tree("((a,b),c);")

But we will make a slightly more interesting tree, the one we worked
out in Section 19.2. To do so enter
the program in Listing 19.7.1.

Listing 19.7.1 Program which makes a phylogenetic tree from a simple
example tree.

#! /usr/bin/env python3
from ete3 import Tree

out_fbase = 'tree-sample-animals'

t = Tree("((a,b),c);")
t = Tree("((((Eagle,Alligator),Antelope),Sea Bass),Lamprey);")
for format in ('png', 'svg'):
 out_fname = out_fbase + '.' + format
 print('writing output to', out_fname)
 t.render(out_fname, w=183, units="mm")

You can adjust the look of this tree. See the discussion in:

http://etetoolkit.org/docs/3.0/tutorial/tutorial_drawing.html

we can go through that and adjust our styles a bit and see how our
tree looks.

19.8. Inferring a tree

The problem with the program in
Listing 19.7.1 is that it prepares the
tree, which you can view with your favorite PNG or SVG file viewer.
But it does not find the tree. That is our next goal.

So we want to find the most likely evolutionary tree that would yield
the result we see in the Table 19.2.2. This process
is called inferring the phylogenetic tree from the table of
characteristics.

19.8.1. An example input file provided by ete3

Following the ete cookbook at
http://etetoolkit.org/cookbook/ete_build_basics.ipynb

let us try:

find some place to download NUP62.aa.fa
$ mkdir phylo
$ cd phylo
$ locate NUP62.aa.fa
/home/markgalassi/anaconda_ete/lib/python3.6/site-packages/ete3/test/test_ete_build/NUP62.aa.fa
/home/markgalassi/anaconda_ete/pkgs/ete3-3.1.1-pyhf5214e1_0/site-packages/ete3/test/test_ete_build/NUP62.aa.fa
$ cp /home/markgalassi/anaconda_ete/lib/python3.6/site-packages/ete3/test/test_ete_build/NUP62.aa.fa ./
$ cat NUP62.aa.fa | head -n15
$ ete3 build -w standard_fasttree -a NUP62.aa.fa -o NUP62_tree/ --clearall
$ ls NUP62_tree/ -ltr
$ geeqie NUP62_tree/clustalo_default-none-none-fasttree_full &

Adapting our table to the .fa file format, we need a name for each
organism, and an encoding for the traits. The ete3 team’s example has
this line, for example:

>Phy004Z0OU_MELUD
MSQFSFGTGGGFTLGTSGTAASTAATGFSFSSPAGSGGFGLGSAAPAAGSSSQSSGLFSF
SRPAATAAQPGGFSFGTAGTSSAAPAASVFQLGANAPKLSFGSSSATPATGITGSFTFGS
SAPTSAPSSQAAAPGFVFGSAGTSSTAQAGTTAGFTFSSGTTTQAGAGSLSMGAAVPQTA
PTGLSFGAAPAAAATSAATLGAATQPAAPFSLGGQSTATATVSTSTSSGPALSFGAKLGV
TSTSAATASTSTTSVLGSTGPTLFASVASSAAPASSTTTGLSLGAPSTGTASLGTLGFGL
KAPGTTSAATTSTATGTTTASGFALNLKPLTTTGATGAVTSTAAITTTTSTSAPPVMTYA
QLESLINKWSLELEDQEKHFLHQATQVNAWDQTLIENGEKITSLHREVEKVKLDQKRLDQ
ELDFILSQQKELEDLLTPLEESVKEQSGTIYLQHADEEREKTYKLAENIDAQLKRMAQDL
KDITEHLNTSRGPADTSDPLQQICKILNAHMDSLQWIDQNSAVLQRKVEEVTKVCESRRK
EQERSFRITFD

and we could have something like:

Listing 19.8.1 Table of traits for the animals we discussed earlier
FIXME put table cross-reference.

>Lamprey
NNNNN
>Antelope
NYYNY
>Sea_Bass
NNNNY
>Bald_Eagle
YNYNY
>Alligator
NNYNY

Put this information into a file called simple-animals.fa and use
the ete3 build command to infer a phylogenetic tree for it:

ete3 build -w standard_fasttree -a simple-animals.fa -o simple-animals_tree/ --clearall

This program will put graphical output files in the directory
simple-animals_tree/clustalo_default-none-none-fasttree_full/ and
you can view the .png, .svg and .pdf files there.

The output shows the same family links that we obtained by hand, but
the tree looks different because the root is placed differently.
FIXME: must find the correct invocation of ete3 to root the tree
parsimoniously.

[image: ../_images/tree-sample-animals.svg]
You can also view this tree as ascii with:

ete3 view -t simple-animals_tree/clustalo_default-none-none-fasttree_full/simple-animals.fa.final_tree.nw

We can process it further with a few python instructions:

from ete3 import PhyloTree
tree = PhyloTree("simple-animals_tree/clustalo_default-none-none-fasttree_full/simple-animals.fa.final_tree.nw")
tree.link_to_alignment("simple-animals_tree/clustalo_default-none-none-fasttree_full/simple-animals.fa.final_tree.used_alg.fa")
tree.set_outgroup('Lamprey')
tree.render("%%inline")
tree.render("simple-animals-rooted-outgroup.svg", w=183, units="mm")
tree.render("simple-animals-rooted-outgroup.png", w=183, units="mm")
print(tree)

This will save svg and png formatted views of the tree, as well as
showing you an ascii representation.

The documentation on ete3 show a dizzying variety of tree styles. The
key is to define a tree style using the Python TreeStyle class, and
then use it as a parameter to how we visualize our tree.

Here are a couple of of examples, continuing from the previous code.
The first, taken from the ETE tutorial [http://etetoolkit.org/docs/latest/tutorial/tutorial_drawing.html#circular-tree-in-180-degrees],
shows a circular tree in 180 degrees.

[this uses the tree built in the previous code block]
from ete3 import Tree, TreeStyle
ts = TreeStyle()
ts.show_leaf_name = True
ts.mode = "c"
ts.arc_start = -180 # 0 degrees = 3 o'clock
ts.arc_span = 180
tree.render("simple-animals-circular.svg", tree_style=ts)
tree.render("simple-animals-circular.png", tree_style=ts)
tree.show(tree_style=ts)
note that instead of tree.show(), which opens a live tree
browser, you could use tree.render() to save it to a file

Another example shows our tree as a bubble tree map [http://etetoolkit.org/docs/latest/tutorial/tutorial_drawing.html#bubble-tree-maps]:

19.9. Other sequence analysis resources

Berkeley evolution course. 7 organisms and 7 features:
https://evolution.berkeley.edu/evolibrary/article/phylogenetics_07

Cute with ladybugs, but just 6 elements and 7 features:
https://bioenv.gu.se/digitalAssets/1580/1580956_fyltreeeng.pdf

Another video giving step-by-step for building a tree by hand:
https://www.youtube.com/watch?v=09eD4A_HxVQ

19.10. Linguistics datasets

First discuss the issues of generating a string representation of
language features. One example of the issues involved is given in
this article:

https://brill.com/view/journals/ldc/3/2/article-p245_4.xml?lang=en

where they discuss how to align the English “horn” with the latin
“kornu”. This then allows you to define a “genetic distance” between
the same word in two different languages. One such measure is the
“Levenshtein normalized distance” (LDN), which takes values between 0
and 1.

This can then be used with the ASJP (Automated Similarity Judgement
Program)
https://en.wikipedia.org/wiki/Automated_Similarity_Judgment_Program
database which is based on a word list. The database is at
https://asjp.clld.org/

Download the database from

https://asjp.clld.org/download

and look at the listss18.txt file and see how languages we know
(English, Italian, Spanish, Russian) are represented.

Look at the results in WorldLanguageTree001.pdf

One oft-used list is the the Swadesh list
https://en.wikipedia.org/wiki/Swadesh_list which has 100 terms. Some
of these are “I”, “you”, “we”, “this”, “that”, “person”, “fish”,
“dog”, “foot”, “hand”, “sun”, “mountain”, various basic colors, and so
forth. There is also an abbreviated 35-word list. The ASJP uses a
40-word list, similar to the Swadesh list.

Each part of a word gets an ASJP code and an IPA (International
Phonetic Alphabet) designation of how it’s pronounced.

19.10.1. lingpy.org

Go through the tutorial, starting at:

http://www.lingpy.org/tutorial/index.html

install with

pip3 install lingpy

then simple examples at:

http://www.lingpy.org/examples.html

then the workflow tutorial at:

http://www.lingpy.org/tutorial/workflow.html

and the cookbook at:

https://github.com/lingpy/cookbook

19.10.2. elinguistics.com

Overall language evolutionary tree:
http://www.elinguistics.net/Language_Evolutionary_Tree.html You can
follow the links to some detailed discussion of timelines at
http://www.elinguistics.net/Language_Timelines.html as well as
in-depth discussion of encoding and language comparison. In
particular you will find various sounds for key encoding words at
http://www.elinguistics.net/Compare_Languages.aspx?Language1=English&Language2=German&Order=Details

The choice of “basis words” to use as “genetic markers” is described
at http://www.elinguistics.net/Lexical_comparison.html and the
continuing pages http://www.elinguistics.net/Sound_Correspondence.html
and back to the example of English to German at
http://www.elinguistics.net/Compare_Languages.aspx?Language1=English&Language2=German&Order=Details

19.10.3. Others

https://en.wikipedia.org/wiki/Tree_model#Perfect_phylogenies

https://en.wikipedia.org/wiki/Tree_model

https://en.wikipedia.org/wiki/Language_family

https://en.wikipedia.org/wiki/Tree_model#CITEREFNakhleh2005

https://www.theguardian.com/education/gallery/2015/jan/23/a-language-family-tree-in-pictures

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049109/

https://linguistics.stackexchange.com/questions/14905/is-there-a-phylogenetic-tree-for-all-known-languages

https://glottolog.org/

https://glottolog.org/resource/languoid/id/stan1293

https://glottolog.org/glottolog/family

https://www.ethnologue.com/browse/families

https://glottolog.org/resource/languoid/id/macr1271

https://science.sciencemag.org/content/323/5913/479

Look at the PDF for this paper on phylogeny of polynesian languages:

https://www.researchgate.net/publication/23933879_Language_Phylogenies_Reveal_Expansion_Pulses_and_Pauses_in_Pacific_Settlement

And this one with very nice-looking pictures of Japonic language
evolution and some discussion of word differentiation.

https://royalsocietypublishing.org/doi/full/10.1098/rspb.2011.0518

Natural language processing with Python and NLTK:

http://www.nltk.org/book/

19.11. Evolution of programming languages

https://www.i-programmer.info/news/98-languages/8809-the-evolution-of-programming-languages.html

https://royalsocietypublishing.org/doi/full/10.1098/rsif.2015.0249

 20. Recursion

20. Recursion

[status: partially-written]

20.1. Motivation, prerequisites, plan

Recursion comes up in many very important computer algorithms, to the
point where it’s reasonable to say that it is an essential tool for
most programmers. When an algorithm can be expressed recursively it
almost feels like we’re cheating in how we implement it: we get this
complex result from two very simple statements!

The only prerequisite for this chapter is the 10-hour Serious
Computer Programming for Youth course.

Our plan is to first try to get a feeling for recursion with some
visual examples. Then we state the two key parts of a recursive
definition (and hence of a recursive algorithm): the recurrence
relation and the initial condition. With this under our belts we
take on examples from math and other areas.

20.2. Visual examples

	Point a webcam at the screen.

	https://i.stack.imgur.com/0DaD5.jpg (or other paintings – Escher?).

	Break sections from broccoli.

	Draw koch snowflake or Sierpinski gasket.

20.3. Word examples

History of the Liar’s Paradox

From Epimenides to Quine

Epimenides said “all Cretans are Liars”. The modern version is
“This sentence is a lie.”

	“This sentence is false.”

	“The next sentence is true. The previous sentence is false.”

	Read this sentence and do what it says twice.

	Dialogs from Godel, Escher, Bach

	Quining: “yields falsehood when preceded by its quotation” yields
falsehood when preceded by its quotation.
https://en.wikipedia.org/wiki/Quine%27s_paradox

	Russell’s Paradox.
https://en.wikipedia.org/wiki/Russell%27s_paradox

	Aristotle’s “law of excluded middle”.
https://en.wikipedia.org/wiki/Law_of_excluded_middle

20.4. Components of a recursive definition

A recursive series is defined by two components:

	Recurrence relation
	Specifies what the next element of a sequence is, based on the
previous one. If we are talking about a numbered sequence, then
this means defining the \(n\)thelement in terms of the
\((n-1)\)thelement (and maybe \(n-2\) and earlier
elements as well).

	Initial condition
	You can’t go on applying the recurrence relation forever, so at
some point you have to stop. We do this by specifying an initial
condition. For example we can set an element to have a clear value
when \(n = 0\) or \(n = 1\).

Let us look at some examples of recursive definitions in simple math.

20.4.1. Simple math

Define power with recursion:

\[3^5 = 3*3^4 = 3*(3*3^3) = 3*(3*(3*3^2)) = 3*(3*(3*(3*3)))\]

which suggests this generalization:

\begin{align}
x^n & = 1 & {\rm \; when \; } n = 0 \\
x^n & = x & {\rm \; when \; } n = 1 \\
x^n & = x \times x & {\rm \; when \; } n = 2 \\
x^n & = x \times x^{n-1} & {\rm \; when \; } n > 2
\end{align}
In this you can see that \(x^n\) is defined recursively with
recurrence relation \(x^n = x \times x^{n-1}\) and initial condition
\(x^0 = 1\).

Factorials are defined like this:

\begin{align}
2! &= 2 \times 1 = 2 \\
3! &= 3 \times 2 \times 1 = 6 \\
 &\dots \\
n! &= n \times (n-1) \times (n-2) \dots \times 2 \times 1
\end{align}
which lends itself to a very simple recursive definition:

\begin{align}
n! & = 1 & {\rm \; when \; } & n = 1 \\
n! & = n \times (n-1)! & {\rm \; when \; } & n > 1
\end{align}
This is very easily implemented in Python:

def factorial_recursive(n):
 if n == 1:
 return 1
 else:
 return n * factorial_recursive(n-1)

20.4.2. Programming simple math recursion

In Listing 20.4.1: you can see a simple program
which calculates \(x^n\). Go ahead and try it out to calculate
powers.

Listing 20.4.1 Program which calculates powers using recursion.

#! /usr/bin/env python3

"""
A demonstration of how to calculate x^n using recursion.
"""

def main():
 x = float(input('give x: '))
 n = float(input('give n: '))
 result = power(x, n)
 print('%g^%d is: %g' % (x, n, result))

def power(x, n):
 if n == 0:
 return 1
 else:
 return x * power(x, n-1)

main()

20.4.2.1. Exercises

Exercise 20.1Write an analogous program that calculates \(n!\) You may use
Listing 20.4.1 as a guide.

Exercise 20.2The fibonacci numbers, which appear in many beautiful
manifestations of nature, are defined recursively:

\begin{align}
fib(n) & = 1 & {\rm \; when \; } & n = 0\ or\ n = 1 \\
fib(n) & = fib(n-1) + fib(n-2) & {\rm \; when \; } & n > 1
\end{align}
Now write a program that calculates \(fib(n)\). You may once
again use Listing 20.4.1 as a guide.

20.4.3. Recursion with data structures

The list is a very important data structure, and it often lends itself
to surprisingly simple recursive algorithms.

A simple example is to reverse a list in python. A list with just
one element l = ['dude'] will have an obvious reverse, which is just
itself. And if you have reversed a list with \(n\) elements, then
to do a list with one more element is easy. Start out with:

l = [2.5, 17, 'dude']

and imagine that you have reversed all but the last element:

this is not ready to run!
l = [2.5, 17, 'dude']
we have somehow reversed the first two elements
l_reversed_without_last = [17, 2.5]
now we complete the task by putting the last element at the start
l_reversed = [l[-1]] + l_reversed_without_last

From this pseudo-code (that will absolutely not work!) you can get
an idea for a recursive algorithm:

	Recurrence relation
	reverse(list) = [last_element] + reverse(list_without_last_element)

	Initial condition
	reverse(list_with_just_one_element) = that_list_with_just_one_element

Remembering that in Python you can get the last element of a list
l with l[-1], and the rest of the list with l[:-1], we can
write an inline function to do this:

def reverse_list_recursive(l):
 if len(l) == 1:
 return l
 else:
 return reverse_list_recursive(l[1:]) + [l[0]]

now run it with:
reverse_list_recursive([2.5, 17, 'dude'])

do some numbers with:
reverse_list_recursive(list(range(20)))

now do a much longer list
reverse_list_recursive(list(range(200)))

20.5. Visualizing what the recursion is doing

We clearly agree that the magic of recursion works, but it can be
frustrating to not have an intuition of the intermediate steps. Let
us modify the function so that it prints how it’s putting together the
pieces of the lists in the intermediate stages.

Listing 20.5.1 Reverse a list with a recursive algorithm, breaking it
into l[0] and l[1:]. This prints some information on
the calls to the recursive algorithm.

def reverse_list_recursive_pivot_0(l):
 """Reverse the list l using a recursive algorithm based on breaking it
 down into l[0] and l[1:]
 """
 if len(l) == 1:
 return l
 else:
 # print information on how the recursion relation is going
 print(f' RECURSION: reverse({l[1:]}) + {[l[0]]}')
 return reverse_list_recursive_pivot_0(l[1:]) + [l[0]]

now try it out with a few examples of lists of numbers
for listlen in range(6):
 print('------- reversing list', list(range(listlen+1)), '------')
 result = reverse_list_recursive_pivot_0(list(range(listlen+1)))
 print('RESULT:', result)
 print()

20.6. Towers of Hanoi

The Towers of Hanoi is a puzzle in which you have three pegs and a
pile of discs on one of them. The discs always must be piled with
bigger discs below smaller discs. The goal is to move the discs from
their initial peg to another peg, using the extra peg if you need to.

Listing 20.6.1 Recursive solution to the Towers of Hanoi game

#! /usr/bin/env python3

"""
A demonstration of how to solve the Towers of Hanoi game using
recursion
"""

def main():
 n_disks = int(input('how many discs? '))
 move_tower(n_disks, 'A', 'B', 'C')

def move_tower(height, from_pole, to_pole, interim_pole):
 if height > 0:
 move_tower(height-1, from_pole, interim_pole, to_pole)
 move_disk(from_pole, to_pole)
 move_tower(height-1, interim_pole, to_pole, from_pole)

def move_disk(from_pole, to_pole):
 print('moving disk from', from_pole, 'to', to_pole)

main()

Now look at the program in Listing 20.6.1. This is a
surprisingly short program because the information about the state of
the pegs and discs is not in any of the program variables! It’s all
stored in function stack as part of recursive calls.

Exercise 20.1Count how many disc movements are made in total to solve the
puzzle, and plot that as a function of how many discs you picked
for that run.

Exercise 20.2Find a way to intercept the program to draw (in simple ascii art, or
with a canvas as shown in Section 24) the
intermediate stages of the solution.

20.7. Should we really use recursion in programming?

We saw in Section 20.6 and we will see again in
Section 29 that some problems are expressed
very simply using recursive algorithms. Should we always look for
recursive solutions?

The trade-offs come when you are dealing with very high numbers of
recursive calls. If you imagine yourself reciting this in your head:

Seven factorial is seven times six factorial which is seven times
six times five factorial which is … which is seven times six
times five times four times three times two times one times zero
factorial; that last one is one so I can now finally multiply them
all together: seven times six times five times four times three
times two times one times one which is fivethousand and fourty.

you can see that you have to keep a lot of stuff in mind. The
nonrecursive algorithm:

def factorial_nonrecursive(n):
 assert(n > 0)
 result = 1
 for i in range(1, n+1):
 result = result * i
 return result

never juggles more than two numbers at once in its memory.

Another problem with recursive list-processing algorithms is that they
often have to shuffle around copies of the list data. The list
reversing algorithm in Listing 20.5.1 shows
how list slices like l[1:] cause most of the list data to be copied in
memory.

 21. Programming topics: sorting

21. Programming topics: sorting

[status: content-mostly-written]

21.1. Motivation, prerequisites, plan

There are several reasons to spend some time on sorting. Apart from
the usefulness of sorting a list of data, we will study it because:

	It illustrates programming techniques.

	We will go from an intuitive understanding of sorting to how that
can be expressed as an algorithm.

	It will give us a simple and yet rich example of how to study the
computational complexity of an algorithm: how the execution time
grows with the size of the data we work with.

Prerequisites:

	The 10-hour “serious programming” course.

Our plan is to start with an intuitive discussion of what sorting is,
and to distill an algorithm out of that. We will look in to sorted
insertion, and then into the bubblesort algorithm.

21.2. Experiment: a game of cards

Start by dealing out a game of cards. We can start with Poker, or
bridge if you and the other students have already seen it.

When you receive your hand you should:

	Describe their algorithm to your neighbor in class.

	Compare what happens when you sort 4 cards to when you sort 8 or 13
cards.

	Take notes on paper on how you sorted your hand so as to see all
the features in it.

21.3. Intuition to algorithm on card sorting

Take your description of the algorithm and try to write a python
function to implement that sorting. We will do so in the framework of
a small program that is ready to go as soon as you drop in your
sorting function.

21.4. Writing up the algorithm in Python

I show here a simple algorithm for sorting, which might look a lot
like what you have come up with. The Python function is called
sort_myveryown()

def sort_myveryown(l):
 """This function implements my very own sorting algorithm, which
 is basically an insertion sort. It takes the list l, sorts
 it, and returns the sorted result."""
 ## iterate through the whole list, skipping element 0
 for i in range(1, len(l)):
 ## having fixated on element i, look at all the ones
 ## *before* i and see if they are bigger and should
 ## be placed *after* i
 for j in range(i):
 if l[i] < l[j]:
 ## this is the case where l[j] is bigger. since
 ## all the j come *before* the i this means that
 ## the sort is incorrect and we must swap i and j
 # print('SWAP: %d/%d <--> %d/%d' % (i, l[i], j, l[j]))
 l[j], l[i] = l[i], l[j]
 return l

Look at the program in Listing 21.4.1 and put your
own code in for the function sort_myveryown(). You can look up
“insertion sort” in wikipedia for a very simple description of the
algorighm, and their “pseudocode” (a description of the algorithm that
is not in any specific programming language) can be translated to
Python quite easily. If you feel that your procedure was different
from insertion sort then adapt the code to match what you did.

Listing 21.4.1 sort_frame.py – Framework for trying out sorting
algorithms. You can drop your own into the function
sort_myveryown()

#! /usr/bin/env python3

"""This is a framework into which you can drop your Python sorting
routine. The function sort_myveryown() is empty (it just returns the
original list) and you can use it to put in your own sorting
function.

Two other functions are provided for comparison: one is a
hastily-written bubblesort routine, the other is the built-in python
list sorting method.

"""

import random
import inspect

def main():
 N = 20
 run_tests(N)

def run_tests(N):
 l_presorted = list(range(N))

 ## l_random will have random numbers with a non-fixed seed
 random.seed(None)
 l_random = [0]*N
 for i in range(len(l_random)):
 l_random[i] = random.randint(0, 99)
 random.seed(1234)

 ## l_random_fixed will always have the same random numbers
 l_random_fixed = [0]*N
 for i in range(len(l_random_fixed)):
 l_random_fixed[i] = random.randint(0, 99)

 ## l_turtle is designed to do quite poorly with some algorithms:
 ## it has a small value at the end
 l_turtle = list(range(1, N-1))
 l_turtle.append(0)

 list_name_dict = {'l_presorted' : l_presorted,
 'l_random_fixed' : l_random_fixed,
 'l_random' : l_random,
 'l_turtle' : l_turtle}

 for algo in (sort_quicksort, sort_python_builtin, sort_bubble, sort_myveryown):
 print('algorithm: %s' % algo.__name__)
 for which_list in list_name_dict.keys():
 print(' list: %s' % which_list)
 l_before = list_name_dict[which_list]
 l_sorted = algo(list_name_dict[which_list])
 print(' ', l_before, ' ----> ', l_sorted)

def sort_myveryown(l):
 ## FIXME: must insert my very own sorting function here
 return l

def sort_bubble(l):
 l2 = l[:]
 for i in range(len(l)):
 for j in range(len(l)-1):
 if l2[j] > l2[j+1]:
 l2[j], l2[j+1] = l2[j+1], l2[j]
 return l2

def sort_quicksort(l):
 l2 = l[:]
 do_quicksort(l2, 0, len(l)-1)
 return l2

def do_quicksort(l, low, high):
 if low < high:
 p = do_qsort_partition(l, low, high)
 do_quicksort(l, low, p-1)
 do_quicksort(l, p+1, high)

def do_qsort_partition(l, low, high):
 pivot = l[high]
 i = low-1
 for j in range(low, high):
 if l[j] < pivot:
 i = i + 1
 l[i], l[j] = l[j], l[i]
 if l[high] < l[i+1]:
 l[i+1], l[high] = l[high], l[i+1]
 return i+1

def sort_python_builtin(l):
 l2 = l[:]
 l2.sort()
 return l2

main()

21.5. Profiling the algorithm

21.5.1. Modify the program to print information

The term “profiling” is used in software to mean “figuring out how
much time a computer program spends in each of its functions. This is
an important tool to figure out how to improve performance.

As you have seen, the two operations which are called repeatedly in a
sorting algorithm are comparison and swap. This means that the
most important part of our profiling work will be to count how many
times we compare two values in the list and how many times we swap two
values in the list. Each algorithm will do differently on those two
issues.

The program in Listing 21.5.1 gives a
“framework” in which you can drop your own function and it will count
how many times it does a comparison or a swap. It then prints out the
results in a form that can be easily plotted.

The way the program does this is to have two functions:
increment_comparisons() and increment_swaps(). We will call
these functions every time we do a comparison or a swap.

The program sort_frame_profiling.py then prints out the number of
comparisons and number of swaps, as well as the size of the list, for
many different list sizes and for all the algorithms we use.

Listing 21.5.1 sort_frame_profiling.py – Framework for profiling
sorting algorithms. You can drop your own into the
function sort_myveryown() and add the increment_swaps()
and increment_comparisons() calls to profile the
complexity of each algorithm. Download it by clicking
here: sort_frame_profiling.py

#! /usr/bin/env python3

"""This is a framework for putting in your own sorting function, but
it also has hooks for profiling the sorting function by counting the
number of comparisons and swaps.

"""

import random
import sys

count_dict = {}

comparisons = 0
swaps = 0

def main():
 ## see if the user gave a command line argument for the list length
 if len(sys.argv) > 1:
 N_MAX = int(sys.argv[1])
 else:
 N_MAX = 100
 for N in range(N_MAX):
 run_sort_algorithms(N)

def run_sort_algorithms(N):
 l_presorted = list(range(N))

 ## l_random will have random numbers with a non-fixed seed
 random.seed(None)
 l_random = [0]*N
 for i in range(len(l_random)):
 l_random[i] = random.randint(0, 100)

 ## l_random_fixed will always have the same random numbers
 random.seed(1234)
 l_random_fixed = [0]*N
 for i in range(len(l_random_fixed)):
 l_random_fixed[i] = random.randint(0, 100)
 random.seed(None) # return the seed to be None

 ## l_turtle is designed to do quite poorly with some algorithms:
 ## it has a small value at the end
 l_turtle = list(range(1, N-1))
 l_turtle.append(0)

 ## here is the list of names of initial list layout, mapped to the
 ## actual lists
 list_name_dict = {'l_presorted' : l_presorted,
 'l_random_fixed' : l_random_fixed,
 'l_random' : l_random,
 'l_turtle' : l_turtle}

 for algo in (sort_python_builtin, sort_bubble, sort_myveryown, sort_quicksort):
 run_sort_single_algorithm(algo, N, list_name_dict)

def run_sort_single_algorithm(algo, N, list_name_dict):
 reset_stats(list_name_dict)
 # print('algorithm: %s' % algo.__name__)
 for which_list in list_name_dict.keys():
 # print('list: %s' % which_list)
 l_before = list_name_dict[which_list]
 l_sorted = algo(list_name_dict[which_list], which_list)
 # print(' ', l_before, ' ----> ', l_sorted)
 # print_stats(N, algo.__name__, which_list)
 print_stats(N, algo.__name__, list_name_dict)

def sort_myveryown(l, list_type):
 ## FIXME: must insert my very own sorting function here
 return l

def sort_bubble(l, list_type):
 l2 = l[:]
 for i in range(len(l)):
 for j in range(len(l)-1):
 increment_comparisons(list_type)
 if l2[j] > l2[j+1]:
 increment_swaps(list_type)
 l2[j], l2[j+1] = l2[j+1], l2[j]
 return l2

def sort_quicksort(l, list_type):
 l2 = l[:]
 do_quicksort(l2, 0, len(l)-1, list_type)
 return l2

def do_quicksort(l, low, high, list_type):
 if low < high:
 p = do_qsort_partition(l, low, high, list_type)
 do_quicksort(l, low, p-1, list_type)
 do_quicksort(l, p+1, high, list_type)

def do_qsort_partition(l, low, high, list_type):
 pivot = l[high]
 i = low-1
 for j in range(low, high):
 increment_comparisons(list_type)
 if l[j] < pivot:
 i = i + 1
 increment_swaps(list_type)
 l[i], l[j] = l[j], l[i]
 increment_comparisons(list_type)
 if l[high] < l[i+1]:
 increment_swaps(list_type)
 l[i+1], l[high] = l[high], l[i+1]
 return i+1

def sort_python_builtin(l, list_type):
 """Use the built-in sorting function provided by Python. Note that
 since we don't write the innards of this function, we cannot keep
 track of how many comparisons and swaps it does. We do know that
 Python's built-in list.sort() and sorted() functions use the
 Timsort algorithm which is a modified version of merge sort which
 uses insertion sort to arrange the list of items into conveniently
 mergeable sections. An exercise in the text discusses figuring out
 how to count comparisons in this algorithm."""
 return sorted(l)

def reset_stats(list_name_dict):
 """Resets the counts of comparisons and swaps."""
 global comparisons
 global swaps
 comparisons = {l_type: 0 for l_type in list_name_dict.keys()}
 swaps = {l_type: 0 for l_type in list_name_dict.keys()}

def increment_comparisons(list_type):
 """Increment the counter for the number of comparisons of this
 type of list."""
 global comparisons
 comparisons[list_type] += 1

def increment_swaps(list_type):
 """Increment the counter for the number of swaps of this type
 of list."""
 global swaps
 swaps[list_type] += 1

def print_stats(N, algo_name, list_name_dict):
 """Print a line with statistics on how this algorithm performs for the
 various lists with length N"""
 global comparisons
 global swaps
 list_types = sorted(list_name_dict.keys())
 ## open the file to write out this data
 fname = algo_name + '.out'
 if N == 0:
 ## first time around we zero out the file and write a header line
 f = open(fname, 'w')
 print('Starting to write to file %s' % fname)
 f.write('## ALGO: %s\n' % algo_name)
 f.write('## COMMENT: columns are "iter", "number-of-comparisons",\n')
 f.write('## COMMENT: "number-of-swaps" for various types of lists\n')
 f.write('## iter')
 for l_type in list_types:
 f.write(' %s ' % l_type)
 f.write('\n')
 else:
 f = open(fname, 'a')
 f.write('%5d' % N)
 for l_type in list_types:
 # print('ALGO_%s--LIST_%s--comparisons--swaps: %d %d %d'
 # % (algo_name, l_type, N, comparisons[l_type], swaps[l_type]))
 f.write(' %5d %5d' % (comparisons[l_type], swaps[l_type]))
 f.write('\n') # finish this line of data

 f.close()

main()

21.5.2. Run the program and make plots

When you run

mkdir sort-stats ## let's be tidy abogut where are files are
cd sort-stats
python3 sort_frame_profiling.py

you will notice that it takes a while to run (depending on the value
of N_MAX in main()), and when it is done you will have a few
files called sort_ALGO.out for each of the algorithms.

You don’t have to wait for it to finish! You can open another
terminal and type:

cd sort-stats
ls -lsat | head ## look at recently modified files
wc sort_*.out ## see how many lines each file has
head sort_*.out ## look at the start of each file
tail sort_*.out ## look at the end of each file

You can repeat that tail command several times as the run goes on
and you will get a feeling for the progress being made.

You can also make plots of the performance of the algorithms. Run gnuplot:

$ gnuplot

and in gnuplot run the following instructions:

Listing 21.5.2 Plot bubblesort and quicksort timing.

set grid
set xlabel 'N (size of list)'
set ylabel 'number of operations'
plot 'sort_bubble.out' using 1:4 with lines title 'bubble/random/comparisons', \
 'sort_bubble.out' using 1:5 with lines title 'bubble/random/swaps', \
 'sort_quicksort.out' using 1:4 with lines title 'quicksort/random/comparisons', \
 'sort_quicksort.out' using 1:5 with lines title 'quicksort/random/swaps'

[image: ../_images/plot-bubble-quick.svg]
Figure 21.5.1 The performance of bubblesort and quicksort on a random initial
list. Note that bubblesort operations grow as \(n^2\) while
quicksort operations grow as \(n \times log(n)\), which is a
much slower growth. This kind of plot shows how the number of
operations in an algorithm depends on the size of the problem.
This dependence is called the “computational complexity” of an
algorithm.

21.5.3. How do we understand these plots?

[TODO] Make some plots in gnuplot of x**2 and x log(x), then
introduce two bits of terminology: “computational complexity” and
“asymptotic behavior”.

21.5.4. Exercises

Exercise 21.1Modify sort_frame_profiling.py to count the number of
comparisons made by Python’s built-in sort function. One way to
do this is to use an argument to l.sort(my_compare) which
replaces Python’s built-in comparison function. You could then
write your own my_compare() function which would call
increment_comparison(l_type).

Exercise 21.2Research whether it is possible to count the number of swaps made
by Python’s built-in sort function.

21.6. Computational complexity

Make plots versus N and compare to \(N^2\) and \(N log(N)\)

21.7. Further reading

The wikipedia articles on various sorting methods are worth a read:

	https://en.wikipedia.org/wiki/Sorting_algorithm

	https://en.wikipedia.org/wiki/Bubble_sort

	https://en.wikipedia.org/wiki/Quicksort

	https://en.wikipedia.org/wiki/Insertion_sort

There is also a web site with animations of several sorting
algorithms:

	https://www.toptal.com/developers/sorting-algorithms

A youtube video that gives video and audio animation of a sort:

	https://www.youtube.com/watch?v=kPRA0W1kECg

 22. Birthday paradox

22. Birthday paradox

[status: usable-but-incomplete]

22.1. To get started

We start by going around the room and seeing how many people there
are. Then we ask everyone to estimate “what’s the chance that at
least two people have the same birthday?”

We look at the estimates and see how they vary, and ask students why
they picked the probability they did.

Then we talk about picking one person and asking what’s the
probability that someone else has their same birthday.

How is that a different question, and would the probability is the
same, smaller, or bigger?

22.2. A practical demonstration

Look at the code in Listing 22.2.1:

Listing 22.2.1 Simulate a party with several people and calculate the
probability that two of them share a birthday.

#! /usr/bin/env python3

"""Simulates the birthday paradox. You set how many people
are at the party. The program will assign a random birthday
to each person, and then calculate how mahy duplicate
birthdays are in that group."""

import random

def main():
 n_people = 25
 birthdays = make_birthdays(n_people) # randomly distributed
 print('## Single example with %d people:' % n_people)
 print('## birthdays:', birthdays)
 print('## birthdays_sorted:', sorted(birthdays))
 n_doubles, n_triplets = count_multiples(birthdays)
 print(f'## doubles: {n_doubles} triplets: {n_triplets}')
 # return # stop here for the simplest analysis
 n_tries = 200
 print('## running %d tries' % n_tries)
 for n_people in range(100):
 avg_doubles, avg_triplets = get_average_multiples(n_people, n_tries)
 print(f'n_people: {n_people} -- frac_doubles: {avg_doubles} frac_triplets: {avg_triplets}')

def make_birthdays(n_people):
 """Generate a birthday for each person, but we do it the easy way: a
 number from 1 to 365, so we don't handle leap years.
 """
 # the list "birthdays" will store the birthday of each person
 birthdays = [0]*n_people
 for person in range(n_people):
 day = random.randint(1, 365) # generate random b-day
 birthdays[person] = day # store it for that person
 return birthdays

def count_multiples(bdays):
 """Goes through the birthday list and sees if any two people
 have the same birthday. Returns how many times we find
 duplicate birthdays."""
 n_people = len(bdays)
 count_doubles = 0
 count_triplets = 0
 for person in range(n_people):
 this_bday = bdays[person]
 # we can look at just the "further on" entries in this list
 # since we have already looked for duplicates before this point.
 for other_dude in range(person + 1, n_people):
 other_bday = bdays[other_dude]
 # now see if two people have the same birthday
 if this_bday == other_bday:
 # we have a duplicate!
 count_doubles += 1
 # now look for a third dude; once
 # again I can look beyond this point
 for third_dude in range(other_dude + 1, n_people):
 third_bday = bdays[third_dude]
 if third_bday == other_bday:
 count_triplets += 1 # I have a third!!
 return count_doubles, count_triplets

def get_average_multiples(n_people, n_tries):
 """Estimates an expectation of finding people with the same birthday.
 Returns the probability of two and of three people having the same
 birthday.
 """
 n_with_doubles = 0
 n_with_triplets = 0
 for i in range(n_tries):
 bdays = make_birthdays(n_people)
 n_doubles, n_triplets = count_multiples(bdays)
 if n_doubles >= 1:
 n_with_doubles += 1
 if n_triplets >= 1:
 n_with_triplets += 1
 avg_doubles = (1.0*n_with_doubles) / n_tries
 avg_triplets = (1.0*n_with_triplets) / n_tries
 return avg_doubles, avg_triplets

main()

The result of running birthdays.py: this calculates the probability
that two people at a party will share the same birthday for party. We
put in population sizes of 0 to 50, but you can obviously extend that
all the way to 365 or more.

We can plot this output with:

python3 birthdays.py > bday_prob.out

and plot with:

gnuplot
then at the gnuplot> prompt type:
plot 'bday_prob.out' using 2:7 with linespoints

22.3. The theory

The calculation is a bit involved, but it is a very good example of
the field of combinatorics, and it teaches us a lot about how to
count things. Since this example was clearly counterintuitive, the
exercise of counting well is a good one.

The simplifying idea is to first calculate the opposite: the
probability that no two people have the same birthday.

Imagine a sequence of events in which people enter an empty room.

For one person the probability of no duplicate birthdays is 1, which
is the same as \(365/365 = 1.0\).

Let us say you have 2 people, then the probability that the second
person does not have the same birthday as the first is
\(364/365 \approx 0.99726\).

Add a 3rd person and you have \(363/365 \approx 0.99452\) chance that
the newcomer’s birthday does not match one of the other two.

To get the probability of no matches with 3 people you take the join
probability of the 3 situations: 1.0 when the first person
enters the room, times the probabilities of no matches with each
successive entry into the room:

\[\begin{split}P_{\rm no_dup}(n) = \frac{365}{365} \times \frac{364}{365}
\times \frac{363}{365} \approx 0.991795 \\
P_{\rm duplicates}(n) = 1 - P({\rm no_dup}) \approx 1 -
0.991795 \approx 0.00820417\end{split}\]

The general formula after \(n\) people have entered the room is:

\[\begin{split}P_{\rm no_dup}(n) & = & \frac{n}{n} & \times \frac{n-1}{n}
\times \frac{n-2}{n} \times \dots \times \frac{1}{365} \\
& = & & \frac{365 \times (365-1) \times \dots \times (365 - n +
1)}{365^n}\end{split}\]

Using the definition of factorial, we see that the numerator is:

\[\begin{split}{\rm numerator} = & 365 \times 364 \times 363 \times ... \times (365-n+1) =
\frac{365!}{(365-n)!} \\
& = n! \times { 365 \choose n}\end{split}\]

where we used the mathematical “choose” notation:

\[\begin{split}{n \choose k} & = & \frac{n (n-1) \dots (n - k + 1)}{k (k-1) \dots
1} \\
& = & \frac{n!}{k!(n-k)!}\end{split}\]

So our formula is:

\[\begin{split}P_{\rm no_dup}(n) = \frac{n! \times {365 \choose n}}{365^n} \\
P_{\rm duplicates}(n) = 1 - \frac{n! \times {365 \choose n}}{365^n}\end{split}\]

Do we believe this? Well, let us compare it to our monte carlo
calculation for the tipping point of \(n = 23\):

\[P_{\rm duplicates}(23) = 1 - \frac{365! \times {365 \choose
23}}{365^{23}} \approx 1 - 0.492703 \approx 0.507297\]

22.4. Take-home

What we have learned:

	Simulate a situation (in this case people sharing birthdays).

	Calculate the probability of an event with a random component. We
do this by running the event many times and averaging the outcome.

	Jargon: you could think of this as a very simple example of a “monte
carlo” simulation.

 23. Graphical user interfaces

23. Graphical user interfaces

[status: early stages]

Prerequisites

	The 10-hour “serious programming” course.

	A GNU/Linux system with python3 and python3-tk installed (on an
Ubuntu 16.04 system this can be done with sudo apt install python3-tk)

23.1. A chat about sources of input in a GUI

The programs we first write with text-based user interfaces, like the
tic-tac-toe program in the basic course, have a very simple flow:

	You get input from the keyboard (and only from the keyboard).

	You do some processing based on that input.

	You write some output to the terminal.

Later, in Section 2, we learned to
write programs which read data from a file. Still, even in this kind
of program you are always only reading input from one place at a time.

At this point I talk to the class about how there are two types of
programs that do things quite differently: network programs and
GUI programs.

In network programs you can have connections open to several different
hosts, and you might be reading input from several of them at once.

In A GUI program you can have input from the keyboard, you can also
have mouse movement and mouse clicks. The program also has to track
other events that can affect its behavior, like the movement of a
window so that a different portion of it is exposed.

GUI programs often use what’s called an *event loop*: you set
up your programs layout with windows and widgets and then go
in to an infinite loop where you call a function that checks if any
events (mouse, keyboard, …) have occurred.

In discussing this I would then to go the whiteboard and draw an
example of a simple GUI with a couple of buttons. With that up I
would discuss what happens when the user clicks on something?

This leads to the discussion of a *callback* or
callbacks function.

23.2. Widgets and widget sets

Discuss what are widgets? Little self-contained user interface bits
(like buttons and text entry fields and canvases) which you can place
in your program’s graphical interface.

As is often the case in the free software world, there is a dizzying
array of different *widget sets* available for programming in
Python. Tkinter, wxPython, PyQt, PyGTK, PySimpleGui, Kivy, …

The most basic widget set, Tkinter, is included as a standard part of
Python. It allows you to develop reasonable comprehensive graphical
interfaces, so I will use that as our starting point.

Another which has gained adoption since 2018 is PySimpleGUI, and we
will give it a quick glance at the end of this chapter.

23.3. The simplest programs

23.3.1. The programs

Simple single OK button program.

Listing 23.3.1 ok-simplest.py - program with an OK button.

#! /usr/bin/env python3

import tkinter as tk

root = tk.Tk()
okButton = tk.Button(root, text='OK')
okButton.pack()

root.mainloop()

Sure, but that does nothing. Let’s make it do something when you
press the button:

Listing 23.3.2 ok-callback.py - program with an OK button that does
something.

#! /usr/bin/env python3

import tkinter as tk

def printOK():
 print('OK!!')

def main():
 root = tk.Tk()
 okButton = tk.Button(root, text='OK', command=printOK)
 okButton.pack()

 root.mainloop()

main()

Now let’s make it able to quit with a “Quit” button:

Listing 23.3.3 ok-callback-quit.py - program with an OK button that does
something simple, and a Quit button that exits.

#! /usr/bin/env python3

import tkinter as tk

def printOK():
 print('OK!!')

def main():
 root = tk.Tk()
 okButton = tk.Button(root, text='OK', command=printOK)
 okButton.pack()
 quitButton = tk.Button(root, text='Quit', command=root.destroy)
 quitButton.pack()

 root.mainloop()

main()

Observing this simple program raises a couple of questions about
things we saw in it:

23.3.2. Packers: more than just one button

One concept in GUI programs is *geometry management*. How
does the program lay out all the widgets?

A programmer could say: put this widget at coordinages (12, 74), and
this other one at coordinates (740, 210), and so forth. This would be
terrible style. It would do the wrong thing if the window gets
resized, and it would become impossible to maintain when there are
more widgets.

Widget systems introduce the idea of “geometry management” to deal
with this. The calls to button.pack() that you saw in
ok-callback-quit.py are an example. We told the widgets to pack
themselves inside their parent window, and much was taken care of
automatically by doing that. We did not, for example, have to specify
the position of the buttons in the window. If you resize you will
notice that the buttons are kept in somewhat reasonable positions.

As we go on our tutorial tour of widgets let us pay attention to what
happens with the packing of widgets inside windows.

23.3.3. A tour of widgets

We only saw button widgets, but this is a chance to point out what
other widgets there are. It’s hard to get an exhaustive list since
one can write custom widgets, but here are some to mention:

	button

	canvas

	checkbutton

	combobox

	entry

	frame

	label

	labelframe

	listbox

	menu

	menubutton

	message

	notebook

	tk_optionMenu

	panedwindow

	progressbar

	radiobutton

	scale

	scrollbar

	separator

	sizegrip

	spinbox

	text

	treeview

23.4. Following a tutorial

We will now follow this tutorial:

https://www.tutorialspoint.com/python3/python_gui_programming.htm

This tutorial has links to most of the basic Tkinter widgets, with
examples of how to use each one. In the course I have the students
bring them up one by one, pasting them in to the python3 interpreter
to see them at work.

The one that might be most interesting is the Scale widget: it shows
three interacting widgets where the slider sets a value, the button
then reads that value and causes a label to be updated. I would go
through that example in greater detail.

23.5. Cellular automata on a canvas

Students might want to read this before going through this chapter:

https://en.wikipedia.org/wiki/Elementary_cellular_automaton

23.5.1. A simply drawing of the CA

We have an example of a cellular automaton elsewhere in the book
(Section 27). We can use the routines in that
program to compute the cellular automaton, and just add the graphical
portion in this program.

Download the simple_ca.py program from
Section 27.3 and save it in a file called
simple_ca.py.

Then take a look at the draw_ca.py program in
Listing 23.5.1 and try running it.

Listing 23.5.1 draw_ca.py - draws a cellular automaton graphically.

#! /usr/bin/env python3

"""draw a cellular automaton"""

import time
import math
import sys

sys.path.append('../emergent-behavior')
from simple_ca import *

we use the tkinter widget set; this seems to come automatically
with python3 on ubuntu 16.04, but on some systems one might need to
install a package with a name like python3-tk
from tkinter import *

def main():
 ## how many steps and cells for our CA
 n_steps = 200
 n_cells = 200
 ## we will make each cell be 4x4 pixels
 canvas_width = 4*n_cells
 canvas_height = 4*n_steps

 ## prepare a basic canvas
 root = Tk()
 ca_canvas = Canvas(root,
 width=canvas_width,
 height=canvas_height)
 ca_canvas.pack() # boiler-plate: we always call pack() on tk windows

 # row = set_first_row_random(n_cells)
 # row = set_first_row_specific_points(n_cells, [40])
 row = set_first_row_specific_points(n_cells, [12, 40, 51, 52, 60, 110, 111,
 160, 161, 162, 163, 164, 165,
 166, 167, 168, 169, 170, 171, 177])
 # row = set_first_row_specific_points(n_cells, list(range(int(n_cells/2), n_cells)))
 # row = set_first_row_specific_points(n_cells, [12, 13, 50, 51, 70, 71, 99, 100])

 ## now set the rule
 rule = '01101000' # the basic rule
 # rule = '00011110' # the famous rule 30
 # rule = '01101110' # the famous rule 110

 draw_row(ca_canvas, 0, row)
 for i in range(1, n_steps):
 row = take_step(rule, row)
 draw_row(ca_canvas, i, row)
 mainloop()

def draw_row(w, pos, row):
 color_map = ['black', 'white', 'red', 'green', 'blue', 'yellow']
 for i, cell in enumerate(row):
 color = color_map[cell % len(color_map)]
 w.create_rectangle(4*i, 4*pos, 4*i+4, 4*pos+4, fill=color)
 w.update()
 ## update the canvas
 # if i % 10 == 0:
 # w.update()
 w.update()

if __name__ == '__main__':
 main()

Change the initial conditions, the size of the automaton, experiment
with it.

Exercise 23.1Modify draw_ca.py to have a first row editor: a small canvas
which allows you to modify the cells in the first row so that you
can run any configuration you choose.

Exercise 23.2Modify draw_ca.py to have a rule editor: a small canvas which
allows you to modify the rule for the cellular automaton
evolution. You should also have widgets to allow a different
number of cells, a different number of rows, and more or less
states or neighbors.

Exercise 23.3You might have noticed that the drawing of the canvas gets slower
and slower as you have more and more squares. You can get around
this by commenting out the w.update() call so that the cellular
automaton only gets drawn at the end of the run, but then you miss
out on seeing the progression of the cellular automaton. Modify
draw_ca.py to be more efficient in drawing the canvas. You can
use the information at this stack overflow link as a guide:

https://stackoverflow.com/questions/10515720/tkinter-canvas-updating-speed-reduces-during-the-course-of-a-program

23.5.2. Adding controls to the program

Then save draw_ca_with_controls.py and study it and run
it. At this time the program is not yet too clean (FIXME: update this
text when I update the program), but we can discuss the new mechanisms
that appear in this program:

	The canvas does not just run automatically: we control it with the
buttons.

	We use the canvas’s after() function to make the canvas draw “in
the background” while the controls are still active. This means we
can pause, for example.

Exercise 23.4Introduce a “first row editor” widget between the controls and the
canvas. This recognizes mouse clicks and lets you set the initial
cell values so you don’t have to set them with code in the program.

Exercise 23.5introduce a “rule editor” widget, possibly on the same row as the
control widgets. You could start by just taking a number between 0
and 255. Them move on to 8 squares or checkboxes, where you would
click on them to activate the binary cells that end up in the rule
string. But the coolest might be to make a widget that shows the 3
cells and their child, with the 8 possible 3-cell configurations,
and picking if they turn in to 1 or 0.

23.6. Conway’s game of life

Goal: create a canvas which allows you to click to select initial cell
values. Then kick off Conway’s game of life rule.

I don’t have much explanatory text yet, but for now let’s discuss the
program we have.

Download the conway_life.py program from
Section 27.3 and save it in a file called
conway_life.py.

Then save draw_conway_life.py.

We study the programs together and see how the GUI version works, and
then run it.

23.7. Tic-tac-toe with buttons

Listing 23.7.1 ttt-gui.py - GUI for the tic-tac-toe program we wrote in
the basic Python course.

#! /usr/bin/env python3

import sys
import os
import tkinter as tk

import tic_tac_toe as ttt

class TTTGui(tk.Frame):
 def __init__(self, parent, _xHuman, _yHuman):
 """Draw the initial board"""
 tk.Frame.__init__(self, parent)
 ## set up some constant variables that last across games
 self.imBlank = tk.PhotoImage(file='green_background.png')
 self.imX = tk.PhotoImage(file='green_back_X.png')
 self.imO = tk.PhotoImage(file='green_back_O.png')
 self.marker2image = {' ': self.imBlank,
 'x': self.imX,
 'o': self.imO}
 ## zero out
 self.ResetGame(_xHuman=_xHuman, _yHuman=_yHuman)
 ngB = tk.Button(self, text='New game', command=lambda:
 self.ResetGame(_xHuman=_xHuman, _yHuman=_yHuman))
 ngB.grid(row=4, column=0)
 qB = tk.Button(self, text='Quit', command=self.Quit)
 qB.grid(row=4, column=1)
 self.grid(sticky=tk.N+tk.S+tk.E+tk.W)

 def ResetGame(self, _xHuman=True, _yHuman=False):
 ## rest the game state variables
 self.bd = ttt.new_board()
 self.gameState = {'xHuman': _xHuman,
 'yHuman': _yHuman,
 'toMove': 'x',
 'winner': ttt.find_winner(self.bd)}
 ## set up the board buttons from scratch
 self.buttons = [[None, None, None],
 [None, None, None],
 [None, None, None]]
 for row in range(3):
 for col in range(3):
 self.buttons[row][col] = tk.Button(self, image=self.imBlank)
 self.buttons[row][col].grid(row=row, column=col)
 ## we bind the button to the PlaceMarker() method,
 ## making sure to pass it the row and column
 self.buttons[row][col].bind('<Button-1>',
 lambda event, row=row, col=col:
 self.PlaceMarker(row, col))
 self.UpdateBoard()

 def PlaceMarker(self, row, col):
 if self.gameState['winner'] != ' ':
 print('GAME_IS_WON, not placing marker')
 return
 if ttt.board_is_full(self.bd):
 print('BOARD_IS_FULL, not placing marker')
 return
 if self.bd[row][col] == ' ':
 print('PLACE: %d, %d' % (row, col))
 ttt.set_cell(self.bd, row, col, self.gameState['toMove'])
 self.HandlePossibleEnd()
 self.UpdateBoard()
 self.gameState['toMove'] \
 = ttt.next_marker(self.gameState['toMove'])
 if self.gameState['winner'] == ' ':
 if (not self.gameState['xHuman']
 or not self.gameState['yHuman']):
 if not ttt.board_is_full(self.bd):
 self.TriggerComputerMove()
 else:
 print('ILLEGAL: %d, %d' % (row, col))
 pass # invalid move
 self.HandlePossibleEnd()

 def UpdateBoard(self):
 for row in range(3):
 for col in range(3):
 image = self.marker2image[self.bd[row][col]]
 self.buttons[row][col].configure(image=image)
 self.HandlePossibleEnd()

 def TriggerComputerMove(self):
 ttt.play_computer_opportunistic(self.bd, self.gameState['toMove'])
 self.gameState['toMove'] = ttt.next_marker(self.gameState['toMove'])
 self.UpdateBoard()
 self.HandlePossibleEnd()

 def HandlePossibleEnd(self):
 self.gameState['winner'] = ttt.find_winner(self.bd)
 print('WINNER: <%s>' % self.gameState['winner'])
 if ttt.board_is_full(self.bd):
 print('I *should* put up some info')
 print('WINNER: <%s>' % self.gameState['winner'])

 def Quit(self):
 self.master.destroy()

def main():
 app = TTTGui(tk.Tk(), True, False)
 app.mainloop()

if __name__ == '__main__':
 main()

You can use that GUI program with the underlying text-based program we
wrote in the basic Python course: tic_tac_toe.py

23.8. A glance at PySimpleGUI

Start with:

$ pip3 install PySimpleGUI

Following the tutorial at https://realpython.com/pysimplegui-python/
(archived at
https://web.archive.org/web/20231225142347/https://realpython.com/pysimplegui-python/
) let us create ok_psg.py:

ok_psg.py - simple introductory program for the
PySimpleGUI widgets.

#! /usr/bin/env python3

import PySimpleGUI as sg

layout = [[sg.Text("Hello from PySimpleGUI")], [sg.Button("OK")]]
layout = [[sg.Button("OK")]]

Create the window
window = sg.Window("OK button", layout)

Create an event loop
while True:
 event, values = window.read()
 # End program if user closes window
 if event == sg.WIN_CLOSED:
 break

window.close()

23.9. Other resources

https://tkdocs.com/tutorial/ (does many languages side-by-side)

http://zetcode.com/gui/tkinter/ (object oriented; this is too soon to
use OOP in this course)

https://likegeeks.com/python-gui-examples-tkinter-tutorial/ (maybe
good)

https://dzone.com/articles/python-gui-examples-tkinter-tutorial-like-geeks
(maybe good)

https://www.python-course.eu/tkinter_labels.php (maybe good because it
has modern preferences like “import tkinter as tk”, but maybe too
lengthy in the early examples)

https://www.tutorialspoint.com/python3/python_gui_programming.htm

 24. Drawing on a canvas

24. Drawing on a canvas

[status: content-mostly-written]

Prerequisites

	The 10-hour “serious programming” course.

	A GNU/Linux system with python3 and python3-tk installed (on an
Ubuntu 16.04 system this can be done with sudo apt install python3-tk)

24.1. Simplest canvas

Drawing is usually done with the help of a graphical toolkit library.
This library usually supports widgets and allows them to be arranged
in a window on the scren. The widget for drawing is called a canvas
and in Listing 24.1.1 is a simple example using
Python’s tkinter widget set.

Listing 24.1.1 Program which draws two circles and a line.

#! /usr/bin/env python3

"""simple canvas with two discs and a line between them
"""

we use the tkinter widget set; this seems to come automatically
with python3 on ubuntu 16.04, but on some systems one might need to
install a package with a name like python3-tk
from tkinter import *

canvas_width = 640
canvas_height = 480

def main():
 ## prepare a basic canvas
 root = Tk()
 w = Canvas(root,
 width=canvas_width,
 height=canvas_height)
 w.pack() # boiler-plate: we always call pack() on tk windows
 w.create_oval(210, 230, 230, 250, fill="yellow")
 w.create_oval(410, 230, 430, 250, fill="blue")
 w.create_line(220, 240, 420, 240)
 mainloop()

main()

Things to notice about this program:

	It uses the library tkinter which provides calls to create a
window and draw things in it.

	The calls root = Tk() and w.pack() and mainloop are
boiler-plate: almost all programs that use the tkinter toolkit will
use them.

	w = Canvas(...) creates a canvas with the given width and
height. w.pack() places that canvas into the window we are
using.

	After the drawing calls create_oval() and create_line() we
call mainloop(). This enters an event loop in which the
widget set is waiting for events, such as the click of a button. We
have not created any buttons, so mainloop() will just hang until
we interrupt the progrma.

24.2. Simplest animation

Animation can be done simply by drawing onto a canvas, then changing
the drawing after a small amount of time and refreshing the canvas.

In listing Listing 24.2.1

Listing 24.2.1 Program which animates a circle whose radius is growing
and shrinking.

#! /usr/bin/env python3

"""simple animation of a growing/contracting disc
"""

import time
import math

we use the tkinter widget set; this seems to come automatically
with python3 on ubuntu 16.04, but on some systems one might need to
install a package with a name like python3-tk
from tkinter import *

canvas_width = 640
canvas_height = 480

def main():
 ## prepare a basic canvas
 root = Tk()
 w = Canvas(root,
 width=canvas_width,
 height=canvas_height)
 w.pack() # boiler-plate: we always call pack() on tk windows
 for i in range(24*180): # 3 minutes if it's 24 frames/sec
 radius = 140 + 50*math.sin(i/24.0) # oscillating radius
 center = (canvas_width/2, canvas_height/2)
 color = 'blue'
 ## clear the canvas and then draw a new disc
 w.delete('all')
 w.create_oval(center[0]-radius, center[1]-radius,
 center[0]+radius, center[1]+radius,
 fill=color)
 ## update the canvas
 w.update()
 time.sleep(1.0/24.0) # 24 frames per second
 mainloop()

main()

Note that this kind of animation is not ideal: it works well, but it
does not allow the program to respond to any user input or other
events. For us this is OK because we are purely showing the
animation, and we are not setting up any buttons or other parts to the
program, but the tkinter library offers a more appropriate
approach to doing animations with a method called after() which
allows you to call your drawing routines and handle user interface
events at the same time.

24.2.1. Exercises

Exercise 24.1Modify the tirial animation program in
Listing 24.2.1 to write the current at the
bottom of the canvas. A web search for “tkinter write string on
canvas” might help.

Exercise 24.2Study how colors can be represented as combinations of red,
green and blue (RGB) values. Read the introductory part of the
Wikipedia article on the subject at
https://en.wikipedia.org/wiki/RGB_color_model and then use the
program gpick to examine how the various screen pixel colors can
be represented as red, green and blue. Explore the program in
detail, looking at how you can specify the RGB values and see what
the result is, but you can also pick them from a color wheel, and
you also use the screen picker FIXME…

Exercise 24.3Modify the trivial animation program in
Listing 24.2.1 to cycle through the colors
as well as the radius. Aim for a psychadelic effect. Note that
the fill= field in create_oval() can be a descriptive color
name (like the "blue" that we used) but it can also specify the
RGB (red, green, blue) values that form the color. A web search
for “tkinter colors” might help.

 25. The Traveling Salesman

25. The Traveling Salesman

[status: content-mostly-written]

Applications of optimization

Optimization in practice

The traveling salesman problem (TSP) is one of the best known
examples of optimization, which is a very important field. Its
solution is relevant to many large scale logistical efforts, such
as the most efficient path for school buses in a city, or airline
routing, or freight transportation. To show how important this is
regarded as, in 1962, the giant corporation Proctor and Gample ran
a contest to solve an instance of TSP with 33 U.S. cities. The
prize was $75000 in 2013 dollars. In the world of theoretical
computer science, the TSP spawned the development of many of the
most important advances in computer science. Although one might
not go as far as to quote Mandos in The Silmarillion and say that
the fate of Earth is linked to solutions to the TSP, it is hard to
overstate the importance of being able to find good solutions to
these types of problems.

Motivation

One of the most important things done by computer software is to find
approximations to mathematical problems that are too complex to
carry out exactly. We will examine one of these problems, the
Traveling Salesman Problem (TSP), which is easy to formulate and has
many practical applications.

Prerequisites

	The 10 hour “serious programming” course.

	A GNU/Linux system with python3 and python3-tk installed (on an
Ubuntu 16.04 system this can be done with sudo apt install python3-tk)

	The mini-course on drawing on canvases, in
Section 24

Plan

We will start by formulating what the problem looks like, then we will
discuss the general idea of optimization, after which we will write
programs in Python that find an easy (but not very good) solution with
the “greedy” algorithm. Finally we will write a program which uses
the “hill climbing” algorithm to find an approximate solution.

Throughout these examples we will use the simple drawing techniques we
learned in Section 24 to show rather cute
animations of our paths through the cities.

And this video snippet, which discusses Buddy Holly’s “Winter Dance
Tour”, mentions the poorly chosen route through the midwest:
https://youtu.be/NFdWrwbxNms?t=214 – the cities were, in this order:
Milwaukee WI, Kenosha Wi, Mankato MN, Eau Claire Wi, Montevideo MN,
St. Paul MN, Davenport IA, Fort Dodge IA, Duluth MN, Green Bay WI,
Clear Lake IA, Moorhead MN, Sioux City IA, Des Moines IA, Cedar Rapids
IA, Spring Valley IL, Chicago IL, Waterloo IA, Dubuque IA, Louisville
KY, Canton OH, Youngstown OH, Peoria IL, Springfield IL.

https://commons.wikimedia.org/wiki/File:Winter_Dance_Party_Tour_Schedule,_1959.svg

25.1. Cities and path lengths

Our cities are a list of \((x, y)\) coordinates within the canvas
size. A future improvement would be to use realistic latitude and
longitude values and fit those into a canvas.

The length of the path is the sum of the space between each successive
pair of cities, and the distance between two cities can be calculated
with the Pythagoras theorem (IMPROVEME: a simple picture would be nice
here). If the cities have coordinates \((x_1, y_1)\) and
\((x_2, y_2)\), then the x and y distances between them are
\((x_2-x_1)\) and \((y_2-y_1)\), and the distance “as the crow
flies” is given by the Pythagorean formula:

\[d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}\]

If we were to represent the coordinates of a city in Python with a
simple pair then we might represent two cities like this:

c1 = (14, 182)
c2 = (71, 50)

We might then write a function to calculate the distance between them
like this:

import math
...
def distance(city1, city2):
 x1 = city1[0] ## coordinates of the first city
 y1 = city1[1]
 x2 = city2[0] ## coordinates of the second city
 y2 = city2[1]
 r = math.sqrt((x2-x1)**2 + (y2-y1)**2)
 return r

Once we have this function we could calculate the distance like this:

c1 = (14, 182)
c2 = (71, 50)
d = distance(c1, c2)
print('The distance between the cities (%d, %d) and (%d, %d) is %g'
 % (c1 + c2 + (d,)))

The output would look like this:

The distance between the cities (14, 182) and (71, 50) is 143.781

To calculate the distance of the entire path we would add together
all the distances from the first city to the second, from the second
to the third, and so on until the last one. Finally we would add the
“return home” path length from the last city back to the first.

25.2. Solving the Traveling Salesman Problem

What does it mean to “solve” the TSP? It means to find the shortest
path between the cities. We will see that for larger sizes this is
not practically possible, but we will try to do better than a random
path, and to take some steps to further improve our solutions.

25.2.1. A digression on optimization

Show pictures of a search in 1d and 2d, possibly with simple 1-d and
2-d gaussian pictures.

The optimization task we are looking at (the traveling salesman
problem) is an interesting one, but let us digress to look at some
simpler optimization tasks for which we can make interesting plots.

Let us examine the following gaussian function \(e^{(-(x-3)^2)}\)
which you might remember from Section 4.7:

$ gnuplot
gnuplot> set samples 400
gnuplot> plot exp(-(x-3)**2)
gnuplot> set terminal svg
gnuplot> set output 'single-hill-1d.svg'
gnuplot> replot
gnuplot> quit

Note that you could have similar function that points downward:

$ gnuplot
gnuplot> plot -exp(-(x-3)**2)

In the first case our function has maximum, and in the second case
it has a minimum. The word optimum can refer to one or the
other.

[image: ../_images/single-hill-1d.svg]
Figure 25.2.1 An example of a one dimensional hill-shaped function. Note the
single optimum: the top of the hill for \(x = 3\)

Now try a two dimensional function with a clear single hill and single
optimum:

$ gnuplot
gnuplot> set pm3d
gnuplot> set samples 150
gnuplot> set isosamples 60
gnuplot> set hidden3d
gnuplot> splot exp(-(x-1)**2 - (y-0.5)**2)
gnuplot> set terminal svg
gnuplot> set output 'single-hill-2d.svg'
gnuplot> replot
gnuplot> quit

[image: ../_images/single-hill-2d.svg]
Figure 25.2.2 An example of a two dimensional hill-shaped function. Note the
single optimum: the top of the hill for \((x, y) = (1, 0.5)\)

In Figure 25.2.1 and Figure 25.2.2 we
see that some optimization problems are as simple as climbing to the
top of a single nearby hill. There are no other hills to confuse us
and it should be simple to find the optimal value of x (in one
dimension) or of x and y (in two dimensions).

These figures give a clear idea of what we are looking for in
optimization when we optimize a function of x or of x and y. The
picture is not so pretty when we try to optimize something more
complicated: there is no such visualization of the distance in the
traveling salesman problem, since city routes cannot be plotted as an
x axis or as x and y axes. When we get to it, we will visualize the
improvement in the TSP by showing an animation of the path through the
cities.

25.2.2. Generating and visualizing lists of cities

Examine and type in the program in Listing 25.2.1

Listing 25.2.1 Program which draws a simple set of random cities on a
canvas, in file cities_simple.py.

#! /usr/bin/env python3

"""This program demonstrates basic generation of a canvas: it makes a
list of random city coordinates, then draws them (with paths) on the
canvas.
"""

import random

we use the tkinter widget set; this seems to come automatically
with python3 on ubuntu 16.04, but on some systems one might need to
install a package with a name like python3-tk
from tkinter import *

canvas_width = 640
canvas_height = 480
n_cities = 25

def main():
 ## prepare a basic canvas
 root = Tk()
 w = Canvas(root,
 width=canvas_width,
 height=canvas_height)
 w.pack() # boiler-plate: we always call pack() on tk windows
 city_list = make_random_cities(0, canvas_width-1, 0, canvas_height-1, n_cities)
 draw_city_path(w, city_list)
 mainloop()

def draw_city_path(w, city_list):
 """draws lines between the cities"""
 for city in city_list:
 draw_city(w, city[0], city[1])
 draw_city(w, city_list[0][0], city_list[0][1], color='green', name='Home')
 ## now draw lines between them
 for i in range(len(city_list)-1):
 w.create_line(city_list[i][0], city_list[i][1],
 city_list[i+1][0], city_list[i+1][1])
 ## now draw a line that goes from the last city back to our home
 w.create_line(city_list[-1][0], city_list[-1][1],
 city_list[0][0], city_list[0][1])

def make_random_cities(xmin, xmax, ymin, ymax, n_cities):
 """returns a list of randomly placed cities in the given rectangle"""
 city_list = []
 for i in range(n_cities):
 x = random.randint(xmin, xmax)
 y = random.randint(ymin, ymax)
 city_list.append((x, y))
 return city_list

def draw_city(w, x, y, color='yellow', name=None):
 """draws a city; if a name is given also writes the name of it"""
 w.create_oval(x-5, y-5, x+5, y+5, fill=color)
 ## if a name was given, write in the name
 if name:
 w.create_text(x, y+10, text=name)

main()

Exercise 25.1Modify cities_simple.py to print some information about the
path of these cities at the bottom of the canvas. (An example can
be downloaded in cities_simple_with_info.py.)

25.2.3. Animating the drawing of cities

We can modify the program in Listing 25.2.1 quite
straightforwardly to modify some information about the list of cities
and animate the city drawing to visualize those changes.

You can download this program cities_animated.py and try
running it to see how it works.

Exercise 25.2Modify cities_animated.py to keep the starting point of the
search.

Exercise 25.3Write a function which calculates the distance between two cities,
then write a function which calculates the total length of a list
of cities.

Exercise 25.4Modify cities_simple.py and cities_animated.py to print the
total length of the path and other interesting information at the
bottom of the screen. (An example can be downloaded in this file:
cities_animated_with_info.py.)

25.3. Improvements to the route

25.3.1. Before you start

	https://www.youtube.com/watch?v=xi5dWND499g
(british fellow gives a hands-on demonstration of TSP with a map,
pushpins, and a length of string)

	https://www.youtube.com/watch?v=SC5CX8drAtU (attractive and
partially annotated visualization of greedy,
local-search/hill-climbing and simulated annealing algorithms)

25.3.2. Impossibile to compute the optimal solution

People will tell you that the traveling salesman problem cannot be
solved by “direct attack” because there are too many possible paths
for a computer to explore them all.

Let us look in to this with pencil and paper in hand and see if we
agree.

Draw three cities on a sheet of paper, pick a first city. Draw all
paths that start with that first city and eventually get you back home
to it. There should be 2 different paths.

Now do the same with 4 cities. There should be 6 paths.

Try to do the same with 5 cities. There should be 24 possible paths.

In general the equations is:

\[n_{paths}(n_{cities}) = (n_{cities}-1)! = (n_{cities}-1)\times(n_{cities}-2)\times ... \times 3 \times 2 \times 1\]

where the -1 in \(n_{cities}-1\) comes in because at the end of
the run you always return to the given home city.

Now try to argue with yourself and with your partners to convince
everyone that this factorial formula works for larger
\(n_{cities}\). And how rapidly does \((n_{cities}-1)!\)
grow? Remember from Section 20.4.1 that it grows at an
amazingly fast rate:

\[\begin{split}2! &= 2 \times 1 = 2 \\
3! &= 3 \times 2 \times 1 = 6 \\
4! &= 4 \times 3 \times 2 \times 1 = 24 \\
5! &= 5 \times ... \times 2 \times 1 = 120 \\
6! &= 6 \times ... \times 2 \times 1 = 720 \\
7! &= 7 \times ... \times 2 \times 1 = 5040 \\
8! &= 8 \times ... \times 2 \times 1 = 40320 \\
9! &= 9 \times ... \times 2 \times 1 = 362880 \\
10! &= 10 \times ... \times 2 \times 1 = 3628800 \\
 &... \\
20! &= 10 \times ... \times 2 \times 1 = 2432902008176640000 \\
 &... \\
32! &= 32 \times 31 \times ... \times 2 \times 1 = 263130836933693530167218012160000000\end{split}\]

So \(32!\) is a number with 35 digits, approximately
\(2.63131\times 10^{35}\), so clearly we cannot hope for a
computer to look at all possible paths. Thus we look for approximate
ways of doing it.

25.3.3. Greedy algorithm

One algorithm that comes to mind is to always travel to the city that
is closest to you and that you have not yet visited. This is not
the best way, but it is usually not the worst way either.

Exercise 25.1With pen and paper draw short routes (4 or 5 cities) and solve them
with the greedy algorithm. Discuss with your partners if this is
the optimal solution or not.

Exercise 25.2You can download this program tsp_solution_greedy.py
and try running it to see how it works. Change the number of
cities to be quite small and quite big.

Exercise 25.3Discuss with your partners what the term deterministic algorithm
might mean, and whether the greedy algorithm is deterministic.

Exercise 25.4With your partners try to figure out (with pen and paper) how many
times the greedy program calculates the distance between two
cities. This is called the computational complexity of the
algorithm. This number should be a function of n_cities.

Exercise 25.5Modify the program to count how many times it calculates the
distance between two cities. Then run it with a variety of
different values for n_cities.

Exercise 25.6Try to come up with a layout of cities in which the greedy
algorithm performs very poorly. After you have tried conjuring a
set of your own, you may look at [Bir15] for
some examples.

Exercise 25.7Try swapping triplets of cities instead of pairs and see if it does
better. A couple of things to consider as you try this:

	Triplets might make it harder to reach an optimum because
sometimes the best improvement in hill-climbing might come from a
simple 2-point swap. So you might need to explore sometimes
swapping 2, sometimes 3, maybe even more.

	To compare 2-swaps or 3-swaps or even more, you might want to set
the random number seed to a fixed value at the start so that you
can reproduce the same layout of cities. In python you can do
this with random.srandom(1234) near the start of the program.

Exercise 25.8Learn about the “basin hopping” algorithm provided by the scipy
python library, and see if it can be used to solve the traveling
salesman problem. Write a program which uses this method and run
it alongside the program we wrote which uses the hill climbing
algorithm.

25.3.4. A digression on hill climbing

25.3.4.1. Before you start

	Watch this video: https://www.youtube.com/watch?v=kOFBnKDGtJM
(Georgia Tech course on machine learning – hill-climbing section.
Pedagogically quite understandable.)

	Re-examine some of the plots in our tour of functions in
Section 4, specifically in
Section 4.7.

25.3.5. Hill climbing for the traveling salesman problem

So what is hill-climbing? It is a simple algorithm (expressed for
when we seek a maximum):

	Start at a certain location (random, or you can pick it if you know
something about the landscape).

	Try taking a step in a random direction.

	Calculate your function. If it is bigger, take that step; if it is
smaller, go back to where you were.

If we try to climb up the hills shown in above in
Figure 25.2.1 and Figure 25.2.2 we find
it quite straightforward: there is a single peak and we will find it
easily.

Now look at different type of hilly functions that we might need to
optimize. For example in one dimension we might look at the function
\(\sin(6*x)*e^{(x-3)^2}\)

We can generate a plot with:

gnuplot> set samples 400
gnuplot> plot[-4:] sin(6*x) * exp(-(x-3)**2)
gnuplot> set terminal svg
gnuplot> set output 'multiple-hills-1d.svg'
gnuplot> replot
gnuplot> quit

[image: ../_images/multiple-hills-1d.svg]
Figure 25.3.1 A one dimensional example of multiple hills with different heights.
The global maximum is for a value of x near 3.3.

Now look at a 2-dimensional situation where the function could be
\(e^{-(x^2+y^2)/7} \times \cos(2.5\times \sqrt{x^2 + y^2})\)

set pm3d
set samples 250
set isosamples 80
set hidden3d
splot exp(-(x**2 + y**2)/7.0) * cos(2.5*sqrt(x*x + y*y))
set terminal svg
set output 'multiple-hills-2d.svg'
replot

[image: ../_images/multiple-hills-2d.svg]
Figure 25.3.2 A two dimensional example of multiple maxima. The global maximum
is near \((x, y) = (0, 0)\).

In the functions show in Figure 25.3.1 and
Figure 25.3.2 we will run in to the problem of
climbing to a local maximum. This is similar to when you go hiking
and it’s foggy and you think you reached the peak of the main
mountain, but then the sky clears and you realize that you got stuck
on one of the lesser peaks.

Another thing to say about the hill-climbing algorithm is that it is a
stochastic approach. This means that some of the decisions made by
the algorithm involve generating random numbers.

You can download and run the program
tsp_solution_hillclimbing.py. Examine the source code,
then run it a few times.

You will see that it starts out with a random and rather chaotic path
through the cities. Then it will attempt to swap two cities picked
randomly in the path and that swap will stick when the new path is
shorter than the previous one.

25.3.5.1. Exercises

	Use the terminal output from tsp_solution_hillclimbing.py to
make a plot of the path distance as a function of how many steps
have been taken. You could do so by redirecting the output into a
file called hill.out and using gnuplot to plot columns 2 and 3.

	Discuss with your class how far apart are the cities get swapped
successfully. Are they near each other on the list? Are they far
apart? Are they near each other in distance? Does that change as
we get further in the run?

	Add more information to the print() statement to show how far
apart the swapped cities are in the list and in distance. Plot how
those distances change in the course of a search.

25.3.6. Further study

These lectures on youtube are at a more advanced level than what we do
here.

	https://www.youtube.com/watch?v=boTeFM-CVFw&t=45s
(Delightful discussion of hill climbing.)

	https://www.youtube.com/watch?v=j1H3jAAGlEA&t=998s
(Extensive discussion of search.)

	https://www.youtube.com/watch?v=eczhFRfo3mI
(Extensive theoretical discussion.)

	https://www.youtube.com/watch?v=K7vc60jn1KU (Georgia Tech course on
machine learning – simulated annealing section. Nice pedagogical
introduction.)

	http://aperiodical.com/2015/03/apiological-part-3/ (A discussion
with examples of how the greedy algorithm can fail.)

	https://ocw.mit.edu/courses/sloan-school-of-management/15-053-optimization-methods-in-management-science-spring-2013/lecture-notes/MIT15_053S13_lec17.pdf
a slide show from MIT courseware which seems very clear and
systematic. It also discusses facility location problems.

	https://diego.codes/post/som-tsp/
Diego Vicente’s “Using Self-Organizing Maps to solve the Traveling
Salesman Problem” article.

25.4. Where do you go from search

	Machine learning: https://www.youtube.com/watch?v=nKW8Ndu7Mjw

	minimizing “wrongness”

	look at the cookie goodness
https://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer

 26. Basic Agent-Based Modeling

26. Basic Agent-Based Modeling

Section author: Almond Heil <almondheil@gmail.com>

26.1. Motivation, Prerequisites, and Plan

In this chapter, we will learn the basics of agent-based modeling by
creating and customizing a simple model using the Mesa
framework. While following along, you should keep in mind that the
Mesa framework is one of many ways to approach agent-based modeling in
Python.

An agent-based model takes a bottom-up approach to solving a problem,
by considering the smallest indiviual members (or agents) that make up
a larger system and examining how they interact with each other.

Before you start, make sure you fulfill the following prerequisites.

	The 10-hour “serious programming” course

	Installing the required packages with pip

$ pip3 install mesa

Now that you’re ready, here’s what we’ll be doing in today’s course!

	Learn about the basics of agent-based modeling and object-oriented
programming

	Create the classes for a simple infection model

	Place agents in space and move them

	Create a visualization of the model

	Manage infection spread among agents

	Gather and plot data

26.2. Conceptualizing the model

When building an agent-based model, it’s important to consider
the basic building blocks that will make up our model. Based on the
broad idea of how diseases spread, we will narrow our focus to how
diseases spread by direct contact.

To understand our model as it develops, it’s important to understand a
few terms, both from agent-based modeling and object-oriented
programming. Some short definitions appear below.

26.2.1. Agent-Based Modeling Concepts

	model
	An abstraction of reality seeking to distill the behaviors of a complex
system so we can understand it more easily.

In Mesa, the model is specifically the structure that manages setting up
and running your program, including the agents inside of it.

	agent
	One of the entities within an agent-based model (wow, what a circular
definition!) It can interact with other agents and the world in various
ways.

	step
	A single unit of time in the model. Can also refer to a method an
agent follows every time unit.

26.2.2. Object-Oriented Programming Concepts

	class
	An object-oriented programming concept which refers to a structure
containing the framework for making objects–what they can do, what data
they hold, etc.

	object
	One instance of a class, which inherets the structure that’s been set up
for it. We’ll take advantage of this to create many agent objects based on
a single class.

	method
	A function that belongs to a class, and can be called by any object based
on that class. For instance, we might expect each agent to be able to move
around with an agent.move() method.

26.3. Classes and steps

To implement these concepts, we’ll create a model. Create a file
called direct_contact.py and enter this code.

Listing 26.3.1 direct_contact.py

#!/usr/bin/python3

from mesa import Agent, Model
from mesa.time import RandomActivation

class InfectionAgent(Agent):
 def __init__(self, unique_id, model):
 super().__init__(unique_id, model)
 self.infected = False

 def step(self):
 print(f"agent {self.unique_id}; infected {self.infected}")

class InfectionModel(Model):
 def __init__(self, N):
 self.num_agents = N
 self.schedule = RandomActivation(self)

 for i in range(self.num_agents):
 a = InfectionAgent(i, self)
 self.schedule.add(a)
 def step(self):
 self.schedule.step()

Above, we define two classes. InfectionAgent is based on Mesa’s agent
class, and we define how it acts when it initializes and when it
steps. By using super().__init__(unique_id, model) in the
InfectionAgent’s intialization code, we tell it to take arguments for
those two variables from whatever created it. In this case, that means
the model that the user defines. We also set the agent’s infected
status to false, which we’ll edit down the line to start an infection.

InfectionModel is based on Mesa’s model class. When it initializes,
it creates a schedule to run the model with and adds agents to it,
passing them the unique_id and model parameters.

Now, it’s time to see the code in action! In your terminal, open a
live Python session by typing python3 and enter the following.

>>> from direct_contact import *
>>> model = InfectionModel(10)
>>> model.step()

You will see the program output something like this.

agent: 1 infection: False
agent: 5 infection: False
agent: 9 infection: False
agent: 8 infection: False
agent: 4 infection: False
agent: 3 infection: False
agent: 7 infection: False
agent: 2 infection: False
agent: 6 infection: False
agent: 0 infection: False

If you repeat model.step(), you will notice that the order the
agents call out is different each time. This is because of the
RandomActivation we added which tells the model how to progress when
it takes a step.

Exercise 26.1: Scheduling methodsTo see the difference the scheduling method makes, switch out the
random activation we added in favor of BaseScheduler or another
activation method from the Mesa time module [https://mesa.readthedocs.io/en/master/apis/time.html]. Notice
how this affects the order in which agents act when
model.step() is called. If you do this, you will also need to
import BaseScheduler instead of RandomActivation at the top of the
program.

When you want to test changes you’ve made to your model, make sure
to exit your python interpreter with Control+D or by typing
exit(). Then, start a new session and import the code again to
see your most recent changes take effect.

26.4. Space and movement

Now that each agent is able to take steps, we will add space and
movement to our model. For this example we will be using a grid for
simplicity, as well as Mesa’s built-in support for grid visualization.

First, we import the necessary components to our project. In this case
we want to use a MultiGrid, so that multiple agents can be on top of
each other in the same grid cell.

Listing 26.4.1 direct_contact.py

from mesa.space import MultiGrid

Then, we can edit out model’s __init__ method to let it take width and
height parameters. We also change our method of placing agents to give
them random positions using the model’s random number generator. This
generator functions just like the normal Python random module, but it
allows us to easily set seeds if we want to reproduce our results down
the line.

Listing 26.4.2 direct_contact.py > InfectionModel

class InfectionModel(Model):
 def __init__(self, N, width, height):
 self.num_agents = N
 self.schedule = RandomActivation(self)
 self.grid = MultiGrid(width, height, torus=True)

 for i in range(self.num_agents):
 a = InfectionAgent(i, self)
 x = self.random.randrange(self.grid.width)
 y = self.random.randrange(self.grid.height)
 self.grid.place_agent(a, (x, y))
 self.schedule.add(a)

The third argument of MultiGrid represents whether the space is
toroidal, meaning that agents who walk of one edge of the grid will
reappear on the other side. This emulates an infinite space, and helps
us avoid issues with agents hiding in corners or being trapped and
unable to move.

To add movement, we need to change what happens when an agent takes a
step. First, add the move method, which tells the agent to move to a
random cell near itself:

Listing 26.4.3 direct_conract.py > InfectionAgent

def move(self):
 x, y = self.pos
 x_offset = self.random.randint(-1, 1)
 y_offset = self.random.randint(-1, 1)
 new_position = (x + x_offset, y + y_offset)
 self.model.grid.move_agent(self, new_position)

Now we’ve defined how the agent moves, but we don’t tell it to do that when
step() gets called. Go ahead and add the instruction to move, and also
update the print statement to tell us the agent’s position–right now
nothing’s going to show up onscreen.

Listing 26.4.4 direct_contact.py > InfectionAgent

def step(self):
 self.move()
 print(f"agent {self.unique_id}; pos {self.pos}; infected {self.infected}")

Now, try running the code again–with one difference. Now that the model
takes parameters for its width and height, we need to provide those when we
create it like so.

>>> from direct_contact import *
>>> model = InfectionModel(10, 30, 20)
>>> model.step()

If you’re having any issues, go ahead and check your work so far against this
example. You can do so using the diff tool in the command line. Of
course, I’m not going to stop you from copy-pasting this working example, but
c’mon.

Listing 26.4.5 direct_contact.py

#!/usr/bin/python3

from mesa import Agent, Model
from mesa.time import RandomActivation
from mesa.space import MultiGrid

class InfectionAgent(Agent):
 def __init__(self, unique_id, model):
 super().__init__(unique_id, model)
 self.infected = False

 def move(self):
 x, y = self.pos
 x_offset = self.random.randint(-1, 1)
 y_offset = self.random.randint(-1, 1)
 new_position = (x + x_offset, y + y_offset)
 self.model.grid.move_agent(self, new_position)

 def step(self):
 self.move()
 print(f"agent {self.unique_id}; pos {self.pos}; infected {self.infected}")

class InfectionModel(Model):
 def __init__(self, N, width, height):
 self.num_agents = N
 self.schedule = RandomActivation(self)
 self.grid = MultiGrid(width, height, torus=True)

 for i in range(self.num_agents):
 a = InfectionAgent(i, self)
 x = self.random.randrange(self.grid.width)
 y = self.random.randrange(self.grid.height)
 self.grid.place_agent(a, (x, y))
 self.schedule.add(a)

 def step(self):
 self.schedule.step()

26.5. Visualization

Now we are able to move the agents, but we have no idea of where they
are going. Of course, you could add the print statement back in, but
with the constant movement and random schedule order it becomes
difficult to keep track of what’s going on. To make this easier, we
want to add visualization.

First, we need to add one instruction to our main
direct_contact.py file. In the init method for InfectionModel, add
the line self.running = True. It should now match the code below.

Listing 26.5.1 direct_contact.py > InfectionModel

def __init__(self, N, width, height):
 self.num_agents = N
 self.schedule = RandomActivation(self)
 self.grid = MultiGrid(width, height, torus=True)
 self.running = True

Now, we need to create a visualizer which will display our model and
let us interact with it. In this case, we’ll be using Mesa’s built-in
visualization tools because they’re accessible and work well for our
purposes. Create a new file called visualization.py and add the
following to it.

Listing 26.5.2 visualization.py

#!/usr/bin/python3

from mesa.visualization.modules import CanvasGrid
from mesa.visualization.ModularVisualization import ModularServer

change this to match your file name if it's not direct_contact.py!
from direct_contact import *

The parameters we run the model with.
Feel free to change these!
params = {"N": 30,
 "width": 50,
 "height": 40}

def agent_portrayal(agent):
 portrayal = {"Shape": "circle",
 "Color": "grey",
 "Filled": "true",
 "Layer": 0,
 "r": 0.75}
 if agent.infected:
 portrayal["Color"] = "LimeGreen"
 portrayal["Layer"] = 1
 return portrayal

grid = CanvasGrid(agent_portrayal,
 params["width"],
 params["height"],
 20 * params["width"],
 20 * params["height"])

server = ModularServer(InfectionModel,
 [grid],
 "Infection Model",
 params)
server.launch()

There’s a lot to unpack in this block of code, because a lot is going
on under the hood with Mesa’s modules. First, we create a dictionary
called params. It holds the names and values for each parameter
the model takes in its __init__. Under the hood, Mesa is unpacking
this dictionary to use the values as keyword arguments or kwargs,
which are used in "name": value pairs to initialize the model.

Next, we define the function agent_portrayal. It takes an
individual agent from the model as input, and outputs the necessary
information to draw the agents. Mesa takes care of its visualization
with a web browser window, which handles graphics and user interaction
with JavaScript.

Luckily, we don’t have to deal with the JavaScript side of the
equation because Mesa’s CanvasGrid module takes care of it—all you
will notice is a new tab in your browser pop up. We only need to pass
it the portrayal method to use, the dimensions of the grid, and the
pixel size of the grid to be displayed.

Finally, we define the server. It unites several data structures we’ve
already created. The first term is the model to use. The second holds
a list of the display methods to use (such as the grid we just
defined). The third is simply the title to display, and the fourth is
the parameters to run the model with.

See also

If you’re interested in how this system works or want to write your
own module you can learn more about it in the Mesa documentation.

The python module CanvasGridVisualization.py [https://github.com/projectmesa/mesa/blob/main/mesa/visualization/modules/CanvasGridVisualization.py]
feeds our data into the JavaScript module CanvasModule.js [https://github.com/projectmesa/mesa/blob/main/mesa/visualization/templates/js/CanvasModule.js],
which draws everything in the web server.

Finally, the python module ModularVisualization.py [https://github.com/projectmesa/mesa/blob/main/mesa/visualization/ModularVisualization.py]
creates a webserver and passes the relevant config data to your
model through it.

With all this done, we can run the model with a single command from the
terminal!

$ python3 visualization.py

Once the server has started it will open a browser window and you can
click the “Start” button in the top right to run your model, or the
“Step” button move forward incrementaly.

With the server running, you will see a display like this. At this
point, you’ll only see the agents wandering around, but we’ll have
them spread infection to each other in the next step.

[image: Grid with several grey agents populating it.]

Note

The server won’t automatically quit when you click “Stop” or close
the browser tab that is displaying it. To stop the model fully, you
have to go to the terminal running the model and press Control+C.

26.6. Interactions between agents

First, let’s add a method for the InfectionAgent class that allows
agents to infect each other. In this method, we use Mesa’s built-in
get_neighbors method to collect a list of all the agents next to a
given point. The parameters “moore” and “include_center” specify what
counts as a neighboring space. Moore means that diagonal spaces are
included, and include_center counts the space that an agent is on.

Listing 26.6.1 direct_contact.py > InfectionAgent

def infect_neighbors(self):
 neighbors = self.model.grid.get_neighbors(self.pos,
 moore=True,
 include_center=True)
 for neighbor in neighbors:
 if self.random.random() < 0.25:
 neighbor.infected = True

Next, we’ll edit the agent step method to infect any neighbors only
if it is infected.

Listing 26.6.2 direct_contact.py > InfectionAgent

def step(self):
 self.move()
 if self.infected:
 self.infect_neighbors()
 print(f"agent {self.unique_id}; pos {self.pos}; infected {self.infected}")

Exercise 26.1: Routes of infectionAs you’ll notice, we take an extremely simple aproach to infection: For each
of our direct neighbors, we have a 25% chance of infecting them.

What other ways might this disease spread (for instance, only by touch when
we stood on the same grid cell as another person)? How might you change the
code to reflect these differences?

Finally, we need to add a way for agents to start off infected. Right
now we set all agents to be uninfected when initializing the model no
matter what, but this means an infection can never start in the
model.

First, we’ll change the agent’s initialization method. Originally we
automatically set the agent’s infection to False, but now we will take
input on whether or not the agent is infected.

Listing 26.6.3 direct_contact.py > InfectionAgent

def __init__(self, unique_id, model, infected):
 super().__init__(unique_id, model)
 self.infected = infected

We’ll decide whether the agent is infected when creating it in the
model. To do this, we just make the first agent infected by default.

Listing 26.6.4 direct_contact.py > InfectionModel > __init__

for i in range(self.num_agents):
 infected = True if (i == 0) else False
 a = InfectionAgent(i, self, infected)
 x = self.random.randrange(self.grid.width)
 y = self.random.randrange(self.grid.height)
 self.grid.place_agent(a, (x, y))
 self.schedule.add(a)

When you run the model now, it will look something like this. This
screenshot was taken after 161 steps, and the infection has spread to
about half of the population.

[image: Grid populated with agents, some normal and some infected.]
If something isn’t running properly, make sure your code matches
what’s below by running diff or using another method.

Listing 26.6.5 direct_contact.py

#!/usr/bin/python3

from mesa import Agent, Model
from mesa.time import RandomActivation
from mesa.space import MultiGrid

class InfectionAgent(Agent):
 def __init__(self, unique_id, model, infected):
 super().__init__(unique_id, model)
 self.infected = infected

 def move(self):
 x, y = self.pos
 x_offset = self.random.randint(-1, 1)
 y_offset = self.random.randint(-1, 1)
 new_position = (x + x_offset, y + y_offset)
 self.model.grid.move_agent(self, new_position)

 def infect_neighbors(self):
 neighbors = self.model.grid.get_neighbors(self.pos,
 moore=True,
 include_center=True)
 for neighbor in neighbors:
 if self.random.random() < 0.25:
 neighbor.infected = True

 def step(self):
 self.move()
 if self.infected:
 self.infect_neighbors()

class InfectionModel(Model):
 def __init__(self, N, width, height):
 self.num_agents = N
 self.schedule = RandomActivation(self)
 self.grid = MultiGrid(width, height, torus=True)
 self.running = True

 for i in range(self.num_agents):
 infected = True if (i == 0) else False
 a = InfectionAgent(i, self, infected)
 x = self.random.randrange(self.grid.width)
 y = self.random.randrange(self.grid.height)
 self.grid.place_agent(a, (x, y))
 self.schedule.add(a)

 def step(self):
 self.schedule.step()

26.7. Data collection & plotting

Now, we’re going to use Mesa’s built in DataCollector module, which can
automatically collect the data for us as we run our model. Of course, we could
also collect the data ourselves just by saving it as we run the model, but here
we’ll use tools from Mesa instead.

26.7.1. Collecting data from the code

To start off, import the data collector into
direct_contact.py.

Listing 26.7.1 direct_contact.py

from mesa.datacollection import DataCollector

Then, we’ll create a function separate from the agent and model
classes which will let us collect the number of infected agents in a
model. Next, within the model class, we will initialize a
DataCollector and point it to the function we just defined so it can
collect data.

Listing 26.7.2 direct_contact.py

def compute_infected(model):
 infected = 0
 for agent in model.schedule.agents:
 if agent.infected:
 infected += 1
 return infected

class InfectionModel(Model):
 def __init__(self, N, width, height):
 self.num_agents = N
 self.schedule = RandomActivation(self)
 self.grid = MultiGrid(width, height, True)
 self.running = True
 self.datacollector = DataCollector(
 model_reporters = {"Infected": compute_infected})

 for i in range(self.num_agents):
 infected = True if (i == 0) else False
 a = InfectionAgent(i, self, infected)
 x = self.random.randrange(self.grid.width)
 y = self.random.randrange(self.grid.height)
 self.grid.place_agent(a, (x, y))
 self.schedule.add(a)

 def step(self):
 self.schedule.step()
 self.datacollector.collect(self)

The data collector can also collect two other types of variables, agent-level
variables and tables. Model-level variables are like the total number of
infected agent’s we’re now collecting–summaries across the whole model. On the
other hand, agent-level variables are unique to each agent. Tables are a bit
of a catch-all, and they let you track things that don’t match either of those
two categories.

26.7.2. Plotting from the command line

Now, we’ll collect data from the model–first with a command-line
approach. To start off, once again type python3 in the terminal an
import the model as shown. Then, use a loop to step the model up to a
certain point.

>>> from direct_contact import *
>>> model = InfectionModel(30, 40, 50)
>>> for i in range(400):
... model.step()

Note

In this course, we use a small-scale solution that becomes
cumbersome if you try to scale it up. If you want to run several instances
and collect data from all of them, you can write your own code to handle
the problem or use Mesa’s BatchRunner module [https://github.com/projectmesa/mesa/blob/main/mesa/batchrunner.py].

As per usual, your choice! The BatchRunner does a lot of the work for you, but
it’s worth it to understand what’s going on too.

Once the loop has finished running, we want to collect data from the model.
By running the code below, we can use the datacollector to generate a Pandas
dataframe of the collected data.

>>> data = model.datacollector.get_model_vars_dataframe()

Once you have the dataframe, you can do anything you want with it,
including plotting it with matplotlib or doing data analysis on the
spot. Today, we’ll export it to a CSV file and plot it with
gnuplot.

>>> data.to_csv("model_data.csv", index_label="Steps")

Now, exit the python prompt and start a gnuplot session by typing
gnuplot into your terminal. Enter these lines to generate a graph
of the model. It will look something like the graph below.

set datafile separator ","
set key autotitle columnhead
set key left top
set xlabel "Time (steps)"
set ylabel "Infected"
set title "Agents infected over time"
plot "model_data.csv" with lines

[image: Gnuplot of infected agents over time.]

26.7.3. Plotting as the live model runs

If you care less about having workable data and more about getting an idea
of the numbers as the model runs, it makes sense to add a graph component
to your live visualization. To do this, first import the relevant module
in your visualization.py file.

Listing 26.7.3 visualization.py

from mesa.visualization.modules import ChartModule

Then, create an instance of the ChartModule that will use the data
collector to keep track of the agents alive. It’s important that the
definition of infected_chart goes after the rest of the code but
before we define the server, so that it will be loaded when the server
starts. Also, make sure to add infected_chart to the list of modules
that the server will draw!

Listing 26.7.4 visualization.py

infected_chart = ChartModule([{"Label": "Infected",
 "Color": "LimeGreen"}],
 data_collector_name='datacollector')

server = ModularServer(InfectionModel,
 [grid, infected_chart],
 "Infection Model",
 params)

Now, when you run the model you will se the usual grid, but there will
also be a graph of the number of infected agents. Below is a graph that
the model generated after 150 steps.

[image: Line graph showing the number of infected agents in green.]

26.8. Source code

Here are the completed versions of the two files we have used:

direct_contact.py

visualization.py

Remember to run

$ python3 visualization.py

to have the code run and visualize in your browser.

26.9. Making an SIR model

Here are files with a partial implementation of an SIR model based on
the simple infection model above.

Download these files:

sir_model.py

sir_vis.py

Remember to run

$ python3 sir_vis.py

to have the code run and visualize in your browser.

26.10. Further reading

You’ve completed this course, but there’s more to look
into in this book and elsewhere if you’re interested in agent-based
modeling and how agents behave together! Feel free to check out some
of the resources below.

	The mini-course in Section 27, which covers
emergent behavior or how complex behavior emerges from simple rules.

	This webpage about SIR and SEIR models [http://people.wku.edu/lily.popova.zhuhadar/]
for disease. While it uses equations to describe the trends of
disease spread, it is possible to extend the model we made here to
create a basic SIR model as well!

	The Mesa example boid_flockers [https://github.com/projectmesa/mesa/tree/main/examples/boid_flockers],
which models bird movement in a flock in continuous space based on
Craig Reynolds’ boids [http://www.red3d.com/cwr/boids/]

	The Wikipedia page and related materials covering
Conway’s game of life [https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life], an
excellent example of emergent behavior

	This journal article going in-depth about
modeling the dynamics of disease spread [https://dx.doi.org/10.1186%2F1476-072X-8-50].
It’s particularly interesting to see what they decided to model and
what they didn’t!

Exercise 26.1: A real SIR model!If you feel up to it, see if you can build on the model we made here to make
an actual SIR model, where agents only stay infected for a limited amount of
time before being removed from the population (or recovered, if you want to
put a positive spin on it.)

There are some ordinary differential equations behind SIR models, so based
on your mathematical experience you might feel more or less comfortable
dealing with them (I’ll admit, they definitely can be scary).

If you’re looking for a place to start, try adding a way for agents to
become no longer infected by the disease, and see what questions and
problems stem off of that.

 27. Emergent behavior

27. Emergent behavior

[status: content-mostly-written]

27.1. Motivation, prerequisites, plan

Purpose: a fun exploration of how complex large-scale behavior emerges
from very simple rules on the small scale.

Prerequisites:

	The 10-hour “serious programming” course.

27.2. Before you start

	Watch some of the videos from Melanie Mitchell’s course
“Introduction to Complexity”. At this time only watch the video for
Section 1.1 (overall introduction to complexity) and all the videos
for Section 6.3 (introduction to 1-dimensional cellular automata):
https://www.youtube.com/playlist?list=PLF0b3ThojznRyDQlitfUTzXEXwLNNE-mI

	Read the Nova slides on Everyday Examples of Emergence (4min)
http://www.pbs.org/wgbh/nova/nature/emergence-examples.html

	Watch the video “How do schools of fish swim in harmony?” (6min)
https://www.youtube.com/watch?v=dkP8NUwB2io

27.3. Write the simple_ca.py program which implements a cellular automaton

You can download the simple_ca.py program and we can read
through it to see how it works.

27.4. Conway’s game of life

You can download the conway_life.py program and we can
read through it to see how it works.

27.5. Install and run the golly program

Command line: type “golly”, it will tell you how to install it.
Experiment with drawing your own initial cells and use TAB to advance
one at a time, or the run button to advance more.

Then explore the library of starting positions, specifically:

Life -> Guns -> 2c5spaceship-gun-p416

Life -> Guns -> golly-ticker

27.6. Further study

27.6.1. Play with the simple_ca.py program

Make modifications to simple_ca.py to make it

	Run longer runs so you can see more of the patterns.

	Have more cells in each row – make it as wide as your terminal will
go.

	You will find the following lines of python code in simple_ca.py:

new_row[i] = new_cell(neighbors)
NOTE: new_cell_with_rule() is part of the extended code (at
the bottom)
new_row[i] = new_cell_with_rule(neighbors)

comment out the line that sets new_row[i] to be the result of
new_cell(), and uncomment the line that sets it to be
new_cell_with_rule(). Then look at the code in new_cell_with_rule()
and play with setting different rules and seeing what the cellular
automata look like.

27.7. Further reading

	Godel, Escher, Bach

Read the dialogues “Prelude … Ant Fugue”. All the dialogues in
the book might be quite interesting to you.

	Watch the rest of the online course on Complexity

In the prerequisites I had you watch some sections of Melanie
Michtell’s online course on Complexity. You could watch the rest of
the series. At a very minimum watch the sections on genetic
algorithms and the game of life.

https://www.youtube.com/playlist?list=PLF0b3ThojznRyDQlitfUTzXEXwLNNE-mI

 28. Web scraping

28. Web scraping

[status: mostly-complete-needs-polishing-and-proofreading]

28.1. Motivation, prerequisites, plan

The web is full of information and we often browse it visually with a
browser. But when we collect a scientific data set from the web we do
not want to have a “human in the loop”, rather we want an automatic
program to collect that data so that our results can be reproducible
and our procedure can be fast and automatic.

Although my focus here is mainly on scientific applications, web
scraping can also be used to mirror a web site.

Prerequisites

	The 10-hour “serious programming” course.

	The “Data files and first plots” mini-course in
Section 2

	You should install the program wget:

$ sudo apt install wget

Plan

Our plan is to find some interesting data sets on the web.

In our first approach in Section 28.3 we will
download them to our disk using the command line program wget and
plot them with gnuplot. Then in
Section 28.4 we will show how you can
retrieve data in your python program.

Finally in Section 28.5 we will scratch
the surface of all the amazing scientific data sets that can be found
on the web.

We will try to look at both time history and image data. Time
histories are data sets where we look at an interesting quantity as it
changes in time.

Examples of time histories include temperature as a function of time
(in fact, all sorts of weather and climate data) and stock market
prices as a function of time.

Examples of image data include telescope images of the sky and
satellite imagery of the earth and of the sun.

28.2. What does a web page look like underneath? (HTML)

To introduce students to the staples of a web page, remember:

	Not everyone knows what HTML is.

	Few people have seen HTML.

So we introduce HTML (hypertext markup language) by example first, and
then point out what “hypertext” and “markup” mean.

So I type up a quick html page, and the students watch on the
projector and type their own. The page I put up is a simple hello
page at first, then I add a link.

<html>
 <head>
 <title>A simple web page</title>
 </head>

 <body>
 <h1>Mark's web page</h1>
 <p>This is Mark's web page</p>
 <p>Now a paragraph with some <i>text in italics</i>
 and some text in boldface
 </p>
 </body>
</html>

Save this to a file called, for example, myinfo.html in your
home directory and then view it by pointing a web browser to
file:///home/MYLOGINNAME/myinfo.html (yes, there are three slashes
in the file URL file:///...).

That simple web page lets me explain what I mean by markup: bits of
text like <p> and <i> and <head> are not text in the
document: they specify how the document should be rendered (for
example and <i> specify how the text should look, <p>
breaks the text into paragraphs). Some of the tags don’t affect the
text at all, but tell us how the document should be understood (for
example the metadata tags <html> and <title>).

Then let’s add a hyperlink: a link to the student’s school. My html
page now looks like:

Listing 28.2.1 A simple web page with an anchor (hyperlink) element in
it.

<html>
 <head>
 <title>A simple web page</title>
 </head>

 <body>
 <h1>Mark's web page</h1>
 <p>This is Mark's web page</p>
 <p>Now a paragraph with some <i>text in italics</i>
 and some text in boldface
 </p>
 <p>Mark went to high school at
 Liceo Parini
 </p>
 </body>
</html>

Then save and reload the page in your browser.

Here I’ve introduced the hyperlink. In HTML this is made up of an
element called <a> (anchor) which has an attribute called href
which has the URL of the hyperlink.

So as we write programs that pick apart a web page we now know what
web pages look like. If we want to find the links in a web page we
can use the Python string find() method to look for <a and
then for and to use the text in between the two.

28.3. Command line scraping with wget

In Section 8.1 we had our first glimpse
of the command wget, a wonderful program which grabs a page from
the web and puts the result into a file on your disk. This type of
program is sometimes called a “web crawler” or “offline browser”.

wget can even follow links up to a certain depth and reproduce the web
hierarchy on a local disk.

In areas with poor network connectivity people can use wget when there
is a brief moment of good newtorking: they download all they need in a
hurry, then point their browser to the data on their local disk.

28.3.1. First download with wget

Let us make a directory in which to work and start getting data.

$ mkdir scraping
$ cd scraping
$ wget https://raw.githubusercontent.com/fivethirtyeight/data/master/alcohol-consumption/drinks.csv

We now have a file called drinks.csv - how do we explore it?

I would first use simple file tools:

less drinks.csv

shows lines like this:

country,beer_servings,spirit_servings,wine_servings,total_litres_of_pure_alcohol
Afghanistan,0,0,0,0.0
Albania,89,132,54,4.9
Algeria,25,0,14,0.7
Andorra,245,138,312,12.4
Angola,217,57,45,5.9
...

If you like to see data in a spreadsheet you could try to use
libreoffice or gnumeric:

libreoffice drinks.csv

28.3.2. Simple analysis of the drinks.csv file

Sometimes you can learn quite a bit about what’s in a file with simple
shell tools, without using a plotting program or writing a data
analysis program. I will show you a some things you can do with one
line shell commands.

Looking at drinks.csv we see that the fourth column is the number
of wine servings per capita drunk in that country. Let us use the
command sort to order the file by wine consumption.

A quick look at the sort documentation with man sort shows us
that the -t option can be used to use a comma instead of white
space to separate fields. We also find out that the -k option can
be used to specify a key and -g to sort numerically (including
floating point). Put these together to try running:

sort -t , -k 4 -g drinks.csv

this will show you all those countries in order of increasing wine
consumption, rather than in alphabetical order. To see just the last
few 15 lines you can run:

sort -t , -k 4 -g drinks.csv | tail -15

This is a great opportunity to laugh at the confirmation of some
stereotypes and the negation of others.

If you look at the last few lines you see that the French consume the
most wine per capita, followed by the Portuguese.

If you sort by the 5th column you will see the overall use of alcohol
and the 3rd column will show you the use of spirits (hard liquor)
while the 2nd column shows consumption of beer.

28.3.3. Looking at birth data

$ wget https://raw.githubusercontent.com/fivethirtyeight/data/master/births/US_births_2000-2014_SSA.csv
$ tr '\r' '\n' < US_births_2000-2014_SSA.csv > births_2000-2014_SSA-newline.csv
$ gnuplot
gnuplot> set datafile separator ","
gnuplot> plot 'births_2000-2014_SSA-newline.csv' using 5 with lines

28.4. Scraping from a Python program

28.4.1. Brief interlude on string manipulation

$ python3
>>> s = 'now is the time for all good folk to come to the aid of the party'
>>> s.split()
['now', 'is', 'the', 'time', 'for', 'all', 'good', 'folk', 'to', 'come', 'to', 'the', 'aid', 'of', 'the', 'party']
now we've seen what that looks like, save it into a variable
>>> words = s.split()
>>> words
['now', 'is', 'the', 'time', 'for', 'all', 'good', 'folk', 'to', 'come', 'to', 'the', 'aid', 'of', 'the', 'party']
>>>
now try to split where the separator is a comma
>>> csv_str = 'name,age,height'
>>> words = csv_str.split()
>>> csv_str = 'name,age,height'
>>> words = csv_str.split()
>>> words
['name,age,height']
didn't work; try telling split() to use a comma
>>> words = csv_str.split(',')
>>> words
['name', 'age', 'height']

28.4.2. The birth data from Python

Listing 28.4.1 get-birth-data.py - A program which downloads birth data.

#! /usr/bin/env python3

import urllib.request

day_map = {1: 'mon', 2: 'tue', 3: 'wed', 4: 'thu', 5: 'fri',
 6: 'sat', 7: 'sun'}

def main():
 f = urllib.request.urlopen('https://raw.githubusercontent.com/fivethirtyeight/data/master/births/US_births_2000-2014_SSA.csv')
 ## this file has carriage returns instead of newlines, so
 ## f.readlines() won't work in all cases. I read the whole
 ## file in, and then split it into lines
 entire_file = f.read()
 f.close()
 lines = entire_file.split()
 print('lines:', lines[:3])
 dataset = []
 for line in lines[1:]:
 # print('line:', line, str(line))
 line = line.decode('utf-8')
 words = line.split(',')
 # print(words)
 values = [int(w) for w in words]
 dataset.append(values)
 day_of_week_hist = process_dataset(dataset)
 print_histogram(day_of_week_hist)

def process_dataset(dataset):
 ## NOTE: the fields are:
 ## year,month,date_of_month,day_of_week,births
 print('dataset has %d lines' % len(dataset))
 ## now we form a histogram of births according to the day of the
 ## week
 day_of_week_hist = {}
 for i in range(1, 8):
 day_of_week_hist[i] = 0
 for row in dataset:
 day_of_week = row[3]
 month = row[1]
 n_births = row[4]
 day_of_week_hist[day_of_week] += n_births
 return day_of_week_hist

def print_histogram(hist):
 print(hist)
 keys = list(hist.keys())
 keys.sort()
 print('keys:', keys)
 for day in keys:
 print(day, day_map[day], hist[day])

main()

28.5. Finding neat scientific data sets

https://www.dataquest.io/blog/free-datasets-for-projects/ (they
mention fivethirtyeight)

https://github.com/fivethirtyeight/data

28.5.1. Time histories

Temperature

Births

wget https://raw.githubusercontent.com/fivethirtyeight/data/master/births/US_births_2000-2014_SSA.csv

28.5.2. Images

NASA nebulae

Goes images of the sun

28.6. Beautiful Soup

Beautiful Soup is a powerful python package that allows you to scrape
web pages in a structured manner. Unlike the code we have seen so
far, which does brute-force parsing of html text chunks in Python,
beautiful soup is aware of the “document object model” (DOM).

Start by installing the python package. You can probably install with
pip, or on debian-based distributions you can run:

sudo apt install python3-bs4

Now enter the program in Listing 28.6.1:

Listing 28.6.1 Download the Billboard Hot 100 list using Beautiful Soup.

#! /usr/bin/env python3

"""This program was inspired by Jaimes Subroto who had written a
program that worked with the 2018 billboard html format. Billboard
has changed its html format quite completely in 2023, so this is a
re-implementation that handles the new format.
"""

import urllib
from bs4 import BeautifulSoup as soup

def main():
 url = 'https://www.billboard.com/charts/hot-100'
 # url = 'https://web.archive.org/web/20180415100832/https://www.billboard.com/charts/hot-100/'

 # boiler plate stuff to load in an html page from its URL
 url_client = urllib.request.urlopen(url)
 page_html = url_client.read()
 url_client.close()

 # let us save it to a local html file, using utf-8 decoding so
 # that we turn the byte stream into simple ascii text
 open('page_saved.html', 'w').write(page_html.decode('utf-8'))

 # boiler plate use of beautiful soup: use the html parser on the file
 page_soup = soup(page_html, "html.parser")

 # now for the part where you need to know the structure of the
 # html file. by inspection I found that in 2023 they use
 # list elements with the attribute "o-chart-restults-list-row", so
 # this is how you find those elements in beautiful soup:
 list_elements = page_soup.select('ul[class*=o-chart-results-list-row]') # *= means contains
 # now that we have our list are ready to read things in, we also prepare
 outfname = 'billboard_hot_100.csv'
 with open(outfname, 'w') as fp:
 headers = 'Song, Artist, Last Week, Peak Position, Weeks on Chart\n'
 fp.write(headers)
 # Loops through each list element
 for element in list_elements:
 handle_single_row(element, fp)
 print(f'\nBillboard hot 100 table saved to {outfname}')

def handle_single_row(element, fp):
 all_list_items = element.find_all('li')
 title_and_artist = all_list_items[4]
 # try to separate out the title and artist. title should be an
 # <h3> element, artist is a element
 title = title_and_artist.find('h3').text.strip()
 artist = title_and_artist.find('span').text.strip()
 # now the rest of the columns
 last_week = all_list_items[7].text.strip()
 peak_pos = all_list_items[8].text.strip()
 weeks_on_chart = all_list_items[9].text.strip()
 # we have enough to write an entry in the csv file
 csv_line = f'"{title}", "{artist}", {last_week}, {peak_pos}, {weeks_on_chart}'
 print(csv_line)
 fp.write(csv_line + '\n')

if __name__ == '__main__':
 main()

If you run:

$ chmod +x billboard_hot_100_scraper_2023.py
$./billboard_hot_100_scraper_2023.py

The results can be seen in the CSV file billboard_hot_100.csv:

Table 28.6.1 Billboard Hot 100

	Song

	Artist

	Last Week

	Peak Position

	Weeks on Chart

	Paint The Town Red

	Doja Cat

	2

	1

	8

	Snooze

	SZA

	3

	2

	42

	Fast Car

	Luke Combs

	4

	2

	27

	Cruel Summer

	Taylor Swift

	6

	3

	21

	I Remember Everything

	Zach Bryan Featuring Kacey Musgraves

	5

	1

	5

	Last Night

	Morgan Wallen

	8

	1

	35

	Vampire

	Olivia Rodrigo

	7

	1

	13

	Fukumean

	Gunna

	9

	4

	15

	Calm Down

	Rema & Selena Gomez

	11

	3

	56

	Dance The Night

	Dua Lipa

	10

	6

	18

	Barbie World

	Nicki Minaj & Ice Spice With Aqua

	12

	7

	14

	Slime You Out

	Drake Featuring SZA

	1

	1

	2

	Religiously

	Bailey Zimmerman

	14

	13

	21

	Sarah’s Place

	Zach Bryan Featuring Noah Kahan

	
	

	14

	1

	Flowers

	Miley Cyrus

	15

	1

	37

	Bad Idea Right?

	Olivia Rodrigo

	13

	7

	7

	Thinkin’ Bout Me

	Morgan Wallen

	17

	9

	30

	Agora Hills

	Doja Cat

	
	

	18

	1

	All My Life

	Lil Durk Featuring J. Cole

	16

	2

	20

	Need A Favor

	Jelly Roll

	22

	14

	26

	Anti-Hero

	Taylor Swift

	26

	1

	49

	Used To Be Young

	Miley Cyrus

	23

	8

	5

	Rich Men North Of Richmond

	Oliver Anthony Music

	20

	1

	7

	Greedy

	Tate McRae

	33

	24

	2

	Kill Bill

	SZA

	27

	1

	42

	Boys Of Faith

	Zach Bryan Featuring Bon Iver

	
	

	26

	1

	Dial Drunk

	Noah Kahan With Post Malone

	34

	25

	15

	What Was I Made For?

	Billie Eilish

	29

	14

	11

	Watermelon Moonshine

	Lainey Wilson

	35

	29

	14

	Creepin’

	Metro Boomin, The Weeknd & 21 Savage

	32

	3

	43

	Karma

	Taylor Swift Featuring Ice Spice

	38

	2

	29

	What It Is (Block Boy)

	Doechii Featuring Kodak Black

	43

	32

	21

	Great Gatsby

	Rod Wave

	30

	30

	2

	Get Him Back!

	Olivia Rodrigo

	21

	11

	3

	I Know ?

	Travis Scott

	45

	11

	9

	Good Good

	Usher, Summer Walker & 21 Savage

	57

	36

	7

	Daylight

	David Kushner

	49

	37

	24

	Peaches & Eggplants

	Young Nudy Featuring 21 Savage

	42

	33

	17

	Try That In A Small Town

	Jason Aldean

	47

	1

	11

	Lady Gaga

	Peso Pluma, Gabito Ballesteros & Junior H

	37

	35

	14

	Qlona

	Karol G & Peso Pluma

	44

	28

	7

	Meltdown

	Travis Scott Featuring Drake

	46

	3

	9

	Love You Anyway

	Luke Combs

	41

	15

	33

	Bongos

	Cardi B & Megan Thee Stallion

	31

	14

	3

	Deep Satin

	Zach Bryan

	
	

	45

	1

	Boyz Don’t Cry

	Rod Wave

	25

	25

	2

	Save Me

	Jelly Roll With Lainey Wilson

	58

	47

	15

	Come See Me

	Rod Wave

	19

	19

	4

	Single Soon

	Selena Gomez

	54

	19

	5

	Call Your Friends

	Rod Wave

	18

	18

	6

	Turks & Caicos

	Rod Wave Featuring 21 Savage

	24

	24

	2

	Hey Driver

	Zach Bryan Featuring The War And Treaty

	50

	14

	5

	Seven

	Jung Kook Featuring Latto

	53

	1

	11

	Nine Ball

	Zach Bryan

	
	

	54

	1

	El Jefe

	Shakira X Fuerza Regida

	
	

	55

	1

	All-American Bitch

	Olivia Rodrigo

	36

	13

	3

	White Horse

	Chris Stapleton

	68

	31

	10

	Mi Ex Tenia Razon

	Karol G

	64

	22

	7

	LaLa

	Myke Towers

	69

	43

	12

	500lbs

	Lil Tecca

	
	

	60

	1

	Tourniquet

	Zach Bryan

	60

	20

	5

	One More Time

	Blink-182

	
	

	62

	1

	Strangers

	Kenya Grace

	88

	63

	2

	The Grudge

	Olivia Rodrigo

	52

	16

	3

	Un Preview

	Bad Bunny

	
	

	65

	1

	Pain, Sweet, Pain

	Zach Bryan

	
	

	66

	1

	Lose Control

	Teddy Swims

	67

	67

	7

	SkeeYee

	Sexyy Red

	74

	66

	4

	Everything I Love

	Morgan Wallen

	77

	14

	31

	Popular

	The Weeknd, Playboi Carti & Madonna

	72

	43

	17

	HG4

	Rod Wave

	51

	51

	2

	El Amor de Su Vida

	Grupo Frontera & Grupo Firme

	92

	72

	6

	Truck Bed

	HARDY

	82

	55

	15

	Lil Boo Thang

	Paul Russell

	99

	74

	2

	Long Journey

	Rod Wave

	39

	39

	2

	My Love Mine All Mine

	Mitski

	
	

	76

	1

	Telekinesis

	Travis Scott Featuring SZA & Future

	78

	26

	9

	Tulum

	Peso Pluma & Grupo Frontera

	76

	43

	13

	Sabor Fresa

	Fuerza Regida

	84

	26

	14

	Spotless

	Zach Bryan Featuring The Lumineers

	70

	17

	5

	Girl In Mine

	Parmalee

	95

	81

	9

	Deli

	Ice Spice

	81

	41

	10

	Segun Quien

	Maluma & Carin Leon

	
	

	83

	1

	Lacy

	Olivia Rodrigo

	59

	23

	3

	Oh U Went

	Young Thug Featuring Drake

	89

	19

	14

	Nostalgia

	Rod Wave & Wet

	40

	40

	2

	Johnny Dang

	That Mexican OT, Paul Wall & DRODi

	91

	65

	11

	HVN On Earth

	Lil Tecca & Kodak Black

	
	

	88

	1

	Bipolar

	Peso Pluma x Jasiel Nunez x Junior H

	90

	60

	3

	In Your Love

	Tyler Childers

	85

	43

	9

	Crazy

	Rod Wave

	48

	48

	2

	Demons

	Doja Cat

	
	

	46

	2

	Making The Bed

	Olivia Rodrigo

	62

	19

	3

	Logical

	Olivia Rodrigo

	63

	20

	3

	East Side Of Sorrow

	Zach Bryan

	75

	18

	5

	Standing Room Only

	Tim McGraw

	
	

	61

	4

	Checkmate

	Rod Wave

	55

	55

	2

	Can’t Have Mine

	Dylan Scott

	
	

	98

	1

	On My Mama

	Victoria Monet

	
	

	98

	2

	Love Is Embarrassing

	Olivia Rodrigo

	65

	25

	3

 29. Getting to philosophy

29. Getting to philosophy

[status: content-mostly-written]

29.1. Motivation, prerequisites, plan

Motivation

Go to any Wikipedia page and follow the first link in the body of its
text, and then you follow the first link of that page, and so forth.
For almost all Wikipedia pages this procedure will eventually lead you
to the Wikipedia page on Philosophy. This observation has its own
wikipedia page:

https://en.wikipedia.org/wiki/Wikipedia:Getting_to_Philosophy

Note

When we say “first link” on a wikipedia page, we mean the first
link of the article content, after all the “for other uses”, “(from
Greek …)”, and other frontmatter – these are not part of the
article itself.

This is not a rigorous or deep observation, but it allows us to write
some software to analyze and visualize this assertion, and that
journey will teach us some very cool programming techniques.

	Explore the “Getting to Philosophy” observation.

	Learn how to do a bit of web scraping and text manipulation.

	Use recursive programming for a real world application.

	Learn about the remarkable graphviz software.

Prerequisites

	The 10-hour “serious programming” course.

	The “Data files and first plots” mini-course in
Section 2.

	Recursion from Section 20.

	Web scraping from Section 28.

Plan

So how do we write programs that study and visualize this idea? We
will:

	Review what web pages look like.

	Write programs that retrieve and pick apart web pages looking for
links.

	Learn about graphviz.

	Use graphviz to analyze the flow of links in our simple web pages.

	Make those programs more subtle to search through the more complex
HTML structure in Wikipedia articles.

	Output the “first link” chain in various Wikipedia pages to a file
so that graphviz can show us an interesting visualization of the
that chain.

29.2. Parsing simple web pages

You should quickly review the brief section on what web pages look like in
Section 28.2 before
continuing in this section.

Let us start with the simple web page we had in
Listing 28.2.1 back in
Section 28.2

Now write a program which finds the first hyperlink in a web page.
There are many ways of doing this using sophisticated Python
libraries, but we will start with a simple approach that simply uses
Python’s string methods. An example is in
Listing 29.2.1.

Listing 29.2.1 Look through the text of a page for the first hypertext link.

#! /usr/bin/env python3

import sys

def main():
 ## get the entire html text from the file
 f = open(sys.argv[1])
 text = f.read()
 f.close()
 pos, link_url = find_first_link(text)
 print('pos, link URL:', pos, link_url)
 print('last_part:', url2last_part(link_url))

 link_ending = url2last_part(link_url)

def find_first_link(text):
 """Finds the first hyperlink in a string of HTML (which might be the
 entire HTML file). Returns a pair with the position of the first
 link and the href attribute of the link.
 """
 ## search for bits of string that show we're at the start of an anchor
 start_of_anchor = text.find('<a')
 remaining_text = text[start_of_anchor:]
 ## now search for the start of the link, which comes right after href="
 start_of_link = remaining_text.find('href="') + len('href="')
 ## find the end of the link
 text_from_start_of_link = remaining_text[start_of_link:]
 end_of_link = text_from_start_of_link.find('"')
 ## now we have the end of the link, so we take a slice of text
 ## that ends there
 link_url = text_from_start_of_link[:end_of_link]
 ## finally let's keep track of the position in the file of the
 ## start of the link
 link_pos = start_of_anchor + start_of_link
 return link_pos, link_url

def url2last_part(url):
 """Take a URL and pick out the last part, without the .html"""
 url = url.strip()
 last_slash_ind = url.rfind('/')
 last_dot_ind = url.rfind('.')
 if last_slash_ind == -1:
 last_slash_ind = 0
 return url[last_slash_ind:last_dot_ind]

if __name__ == '__main__':
 main()

Running this program will give the position and text of the first
hyperlink in that HTML file:

$./find_first_link.py myinfo.html
pos, link URL: 330 myinfo.html
last_part: myinfo

29.3. Making vertex and edge graphs

Graph can mean many things. In computer science it is a picture
that shows connections between things. The “things” are shown as
shapes and the connections are shown as lines or arrows.

There is a very cool program called graphviz which lets you make a
simple text file and get a graph drawn from it. In
Listing 29.4.1: there is a simple example that shows a bit
of president Kennedy’s family tree:

Listing 29.3.1 The Kennedy family tree

you can process this with
dot -Tpdf -O kennedys.dot

digraph family_trees {
 Rose_Fitzgerald_Kennedy -> John_Fitzgerald_Kennedy;
 Mary_Josephine_Hannon -> Rose_Fitzgerald_Kennedy;
 Joseph_P_Kennedy_Jr -> John_Fitzgerald_Kennedy;
 Mary_Augusta_Hickey -> Joseph_P_Kennedy_Jr;
 Patrick_Joseph_Kennedy -> Joseph_P_Kennedy_Jr;
 John_F_Fitzgerald -> Rose_Fitzgerald_Kennedy;
}

You can then generate the picture with:

dot -Tsvg -O kennedys.dot
dot -Tpng -O kennedys.dot
dot -Tpdf -O kennedys.dot

[image: ../_images/kennedys.dot.svg]
Figure 29.3.1 The immediate family tree of president Kennedy, rendered with
graphviz.

You can see more elaborate and sometimes quite visually striking
examples at the graphviz web site: http://www.graphviz.org/Gallery.php

You can see that it would be illustrative to make such a graph of the
paths through Wikipedia pages.

But first let’s take some baby steps: to get more comfortable with how
graphviz works, students should create their own .dot file with
their own family tree. This requires some fast typing, but then they
can process it with dot and view the picture generated by
graphviz.

29.4. A program to get to philosophy

The program I show you here is quite elaborate because it has to deal
with some possible scenarios that confuse the issue of which is the
“first link” in a wikipedia page. We have provisions that:

	exclude links that come in parentheses

	exclude links before the start of the first paragraph

	exclude links to wikipedia “meta pages”, those that start with
File:, Help:, Wikipedia: and that end with .svg

In Listing 29.4.1 we get to see a couple of the types of
algorithms we invent as we do this kind of text processing: the code
counts the number of open parentheses that have not yet been closed.

Now enter the program in Listing 29.4.1:

Listing 29.4.1 Examine the “Getting To Philosophy” principle on
wikipedia.

#! /usr/bin/env python3

"""Getting to philosophy: "scrape" a Wikipedia page and follow its
first link recursively to see if you end up at the Philosophy page
https://en.wikipedia.org/wiki/Wikipedia:Getting_to_Philosophy

"""
import urllib.request
import os
import sys

this is the Philosophy URL -- if we reach this we terminate
philosophy_list = ['Philosophy', 'Philosophical', 'Existence', 'Semiotics', 'Logic', 'Knowledge']
philosophy_list = ['Philosophy', 'Philosophical', 'Existence',
'Semiotics', 'Semantics', 'Knowledge', 'Linguistics', 'Logic',
'Reasoning']
philosophy_list = ['Philosophy', 'Philosophical', 'Existence']
philosophy_list = ['Philosophy']

this is the default list of topics we experiment with
topics_default = ['https://en.wikipedia.org/wiki/Xkcd',
 'https://en.wikipedia.org/wiki/GNU_Project',
 'https://en.wikipedia.org/wiki/Bertrand_Russell',
 'https://en.wikipedia.org/wiki/Plague_of_Justinian',
 'https://en.wikipedia.org/wiki/Spark_plug',
 'https://en.wikipedia.org/wiki/Quantum_entanglement',
 'https://en.wikipedia.org/wiki/Hipparchia_of_Maroneia',
 'https://en.wikipedia.org/wiki/Toilet_paper']

def main():
 topics = topics_default
 if len(sys.argv) > 1:
 # if user gives URLs on the command line then we use those
 # instead of the default topics
 topics = sys.argv[1:]
 if len(topics) > 1:
 graphviz_fname = 'gtp_graph.dot' # default output file
 else:
 ## if we request a single topic then we can use that as a
 ## filename
 graphviz_fname = topics[0].split('/')[-1] + '.dot'
 print('# GRAPHVIZ_FNAME:', topics, graphviz_fname)
 # canonicalize the filename to remove things like ':' and add .dot
 graphviz_fname = canonicalize_topic(graphviz_fname)
 ## give an error message if the program "dot" (from the package
 ## graphviz) is not available
 if not os.path.exists('/usr/bin/dot'):
 print('Error: the program "dot" does not seem to be installed;')
 print('you can install it with "sudo apt install graphviz"')
 print('and start again')
 sys.exit(1)
 start_graphviz_file(graphviz_fname)
 ## now analyze all the topics
 for topic_url in topics:
 print(f'INITIAL_TOPIC: {url2topic(topic_url)}')
 try:
 url_list = analyze_url([topic_url])
 except RecursionError:
 print(f'Recursion limit exceeded on {topic_url}')
 continue
 except RuntimeError:
 print(f'Recursion limit exceeded on {topic_url}')
 continue
 write_graph_file(url_list, graphviz_fname)
 ## now print some information about what we just did
 print(f'{url2topic(topic_url)} went through {len(url_list)} topics', end="")
 print(f' to reach {(url2topic(url_list[-1]))}')
 ## put the closing line in the graphviz file
 end_graphviz_file(graphviz_fname)
 print('graph information written to file %s' % graphviz_fname)
 ## now run graphviz (the command line is "dot") to make pdf, svg
 ## and png files
 os.system('dot -Tpdf -O %s' % graphviz_fname)
 os.system('dot -Tsvg -O %s' % graphviz_fname)
 os.system('dot -Tpng -O %s' % graphviz_fname)
 print('used "dot" to generate the files %s, %s, %s'
 % (graphviz_fname + '.pdf', graphviz_fname + '.svg',
 graphviz_fname + '.png'))

def analyze_url(urls_so_far):
 """This function analyzes a URL. We first grab the "next" URL (the
 first link in the page). If the URL is the arrival point
 (i.e. the Philosophy article) then we return right away with the
 list of URLs visited so far. If the URL has already appeared
 before then we declare we are in a loop. If we have had more than
 100 URLs then we return without analyzing further. The above were
 all terminations, but if *none* of those conditions happen then we
 recursively call this function again to analyze the next URL.
 """
 url = urls_so_far[-1] # analyze the last one added
 # before we analyze it, first see if they just gave the topic
 # without the full https:// URL
 wikipedia_prefix = 'https://en.wikipedia.org/wiki/'
 if not url.startswith(wikipedia_prefix):
 url = wikipedia_prefix + url
 # then do the analysis recursively
 page_html = urllib.request.urlopen(url).read()
 next_url = analyze_page(url, str(page_html))
 urls_so_far.append(next_url)
 ## print it out - we pad it with zeros and then end it with \r
 ## instead of \n so that we get that cheap animation feel
 # print(f'HOP {len(urls_so_far)} -- {url2topic(next_url)}' + ' '*80,
 # end="\r")
 # print(f'{url2topic(next_url)} -- HOP {len(urls_so_far)}' + ' '*80,
 # end="\r")
 print(f'{url2topic(urls_so_far[0])} -- HOP {len(urls_so_far)} -- {url2topic(next_url)}' + ' '*20,
 end="\r")
 if url2topic(next_url).strip('/') in philosophy_list:
 return (urls_so_far)
 elif urls_so_far.count(next_url) > 1:
 return (urls_so_far + urls_so_far[-2:])
 elif len(urls_so_far) > 100:
 return (urls_so_far)
 else:
 return analyze_url(urls_so_far)

def analyze_page(master_url, page_html):
 """Finds the first href (hyptertext link) in the given page."""
 first_href = find_first_href_after_paragraph(master_url, page_html)
 first_href = 'https://en.wikipedia.org%s' % first_href
 return first_href

def find_first_href_after_paragraph(master_url, page_html):
 """Find the first hyperlink after the first <p> tag in the document.
 This is becuase in wikipedia the article content actually starts
 with a <p> tag after all the warnings and other frontmatter have
 been put out.
 """
 # first_p_ind = page_html.find('<p>')
 first_p_ind = page_html.find('<p>')
 # print('first_p_ind:', first_p_ind)
 # print(page_html[first_p_ind+3:first_p_ind+6])
 # if page_html[first_p_ind+3:first_p_ind+6] == '':
 # first_p_ind = page_html.find('<p>', first_p_ind+3)
 html_after_p = page_html[first_p_ind:]
 anchor_split = html_after_p.split('')
 anchor_tag = '<a href="'
 endtag = '"'
 end = 0 # FIXME: what should the end default be?
 ## FIXME: must exclude the "warning" type of text, which might be
 ## enclosed in this kind of tags: <td class="mbox-text">
 open_parentheses_until_here = 0
 for i, anchor_text in enumerate(anchor_split):
 if anchor_tag in anchor_text:
 # ind = anchor_text.index(anchor_tag)
 base_pos = html_after_p.find(anchor_text)
 pos_after_anchor = anchor_text.find(anchor_tag)
 ## we must also exclude URLs that come up in parentheses,
 ## so we must review all the text leading up to the URL
 ## for open parentheses
 open_parentheses_until_here = count_open_parentheses(master_url, html_after_p,
 base_pos + pos_after_anchor)
 ## trim the text
 anchor_text = anchor_text[pos_after_anchor + len(anchor_tag):]
 try:
 end = anchor_text.index(endtag)
 except:
 break
 href_url = anchor_text[:end]
 if open_parentheses_until_here > 0:
 continue # skip anchors that are in parentheses
 ## there only some URLs we consider: those that don't start
 ## with wiki ('cause they point within wikipedia), those that
 ## end with html (otherwise we'd be getting images), ...
 # print('URL_CONSIDERED:', href_url)
 if (href_url.startswith('/wiki/')
 and not href_url.endswith('.svg')
 and not href_url.startswith('/wiki/File:')
 and not href_url.startswith('/wiki/Help:')
 and not href_url.startswith('/wiki/Wikipedia:')):
 # print(f'FOUND_HREF_URL!', href_url,)
 return anchor_text[:end]
 assert(False) # we should never get here

def write_graph_file(url_list, graphviz_fname):
 """write our list of URLs to a graphviz file"""
 with open(graphviz_fname, 'a') as f:
 prev_topic = url2topic(url_list[0])
 for url in url_list[1:]:
 brief_topic = url2topic(url)
 f.write(' "%s" -> "%s";\n'
 % (canonicalize_topic(prev_topic),
 canonicalize_topic(brief_topic)))
 prev_topic = brief_topic
 f.flush()

def start_graphviz_file(fname):
 """put opening information for graphviz at the start of a file"""
 with open(fname, 'w') as f: # zero it out
 f.write('digraph gtp {\n')

def end_graphviz_file(fname):
 """put closing/footer information at the end of a graphviz file"""
 with open(fname, 'a') as f:
 f.write('}\n')

def url2topic(url):
 """Takes a wikipedia URL and strips the boiler plate information to
 give just the name of the topic"""
 # last_slash = url.rfind('/')
 # brief_topic = url[last_slash+1:]
 brief_topic = url.split('/')[-1].strip('/')
 return brief_topic

def canonicalize_topic(topic):
 result = topic
 ## first change the %xx escape sequences used by http URLs back to
 ## their single characters
 result = urllib.parse.unquote(result)
 ## then remove parentheses and hashtags and dashes, replacing them
 ## with underscores
 result = result.replace('(', '_')
 result = result.replace(')', '_')
 result = result.replace('#', '_')
 result = result.replace('-', '_')
 result = result.replace(':', '_')
 return result

def count_open_parentheses(master_url, text, ind):
 """counts how many levels of parentheses are open leading up to this
 index in the text"""
 n_open = 0
 for i, char in enumerate(text[:ind+1]):
 if char == '(':
 n_open += 1
 if char == ')':
 n_open -= 1
 return n_open

main()

If you run:

$ python3 gtp.py

The results can be seen in Figure 29.4.1.

[image: ../_images/gtp_graph.dot.svg]
Figure 29.4.1 A graph that shows what happens when you keep clicking the first
link in a Wikipedia page. This often ends up in the Wikipedia
entry on Philosophy [http://en.wikipedia.org/wiki/Philosophy].

You can also run python3 gtp.py with one or more arguments. These
arguments can be full Wikipedia URLs or they can be just the final
portion. For example:

$ chmod 755 gtp.py
$./gtp.py https://en.wikipedia.org/wiki/Asterix
$ evince Asterix.pdf &

or, alternatively:

$ chmod 755 gtp.py
$./gtp.py Asterix
$ evince Asterix.pdf &

[image: ../_images/Asterix.dot.svg]
Figure 29.4.2 The chain of first clicks starting at Asterix, obtained with
./gtp.py Asterix – it is amusing to note that the chain passes
through the article on Logic.

29.5. When things go wrong

Note

Wikipedia pages can change for several reasons. These include the
ordinary editing of pages, as well as the media wiki software
that generates the web site from the original wiki markup.

At this time (2023-10-05) the examples I give below show possible
failures in the gtp.py program, but at another time these might
have been fixed. Still, it is likely that there will always be
wikipedia pages that break the assumptions made here.

Ordinary wikipedia articles seem to start the main line text with a
<p> element, which has helped us use the simple instruction:

first_p_ind = page_html.find('<p>')

to find the start of the useful text. But some wikipedia pages have a
different structure, like list or topic pages.

But even some pages that are not special might break this: at the time
of writing this section, the Complex system page is organized with a
right side bar which has <p> elements in it, and these come before
the main text.

So running ./gtp.py Complex_system goes to
Collective_intelligence instead of system which the ends up
taking us into a loop with no progress:

$ chmod 755 gtp.py
$./gtp.py Complex_system
$ evince Complex_system.pdf &

[image: ../_images/Complex_system.dot.svg]
Figure 29.5.1 The chain of first clicks starting at Complex_system, obtained with
./gtp.py Complex_system. This is a failure of our program:

29.6. When we simply don’t “get to philosophy”

Sometimes an article just breaks the mold. At the time in which I
wrote an earlier version of this section, Roman_Empire would loop back
and forth to Octavian.

While this might be semi-humorously seen as an insightful comment by
the “getting to philosophy” meme, it is worth noting that our software
had worked well: if you looked at the articles on Roman Empire and
Octavian at that time you would have seen that they do indeed
reference each other as first links.

So this was a failure of the meme, not of our program.

As it turns out, at the time of revising (2023-11-06) I find that the
Roman Empire article has been revised to start with a link to the
Roman Republic, rather than first linking to Octavian. This restores
the Getting to Philosophy meme for “Roman Empire”, although we can
expect this to occur in other articles.

In Figure 29.6.1 I show the graph I had gotten at
that time.

[image: ../_images/Roman_Empire.dot.svg]
Figure 29.6.1 The chain of first clicks starting at Roman_Empire, obtained with
./gtp.py Roman_Empire on October 10 2023 when the article had a
different first link. This was not a failure of our program: it
was simply a different structuring of the Wikipedia articles by
their authors.

 30. Music basics

30. Music basics

Areas: acoustics, physics, curiosity

[status: just-starting]

30.1. Motivation, prerequisites, plan

As I write in 2020 we listen to recorded music almost exclusively
through a computer. It is interesting, instructive, and useful to
understand how the computer represents music, how it is stored,
compressed, manipulated, and how interesting things get done with it.

To work through this material you should be comfortable with making
plots, discussed in Section 2. You
should also install the packages ffmpeg and sox.

We will start by discussing what sound is. Then we will discuss how
it can be represented mathematically. Finally we will look at the
various formats that have been devised for computers to store sound
files, and how to convert between them.

30.2. What is sound?

Sound is a wave-like sequence of compression and decompression of the
air (or other medium). The compression/decompression “front” pushes
the next layer of air forward and backwards along the direction of
motion. This is called a longitudinal wave.

This can be contrasted with different types of waves, like water waves
or electromagnetic waves (light, radio, x-rays, …), where the “up
and down” of the wave is perpendicular to the direction in which it
moves. Those are called transverse waves.

[image: ../_images/Onde_compression_impulsion_1d_30_petit.gif]

Figure 30.2.1 Longitudinal waves: the expansion/contraction happens along the
direction of motion. (Image from wikipedia.)

[image: ../_images/Onde_cisaillement_impulsion_1d_30_petit.gif]

Figure 30.2.2 Transverse waves: the expansion/contraction happens perpendicular
to the direction of motion. (Image from wikipedia.)

Some gentle introductions to sound can be found at:

https://www.mediacollege.com/audio/01/sound-waves.html

https://www.youtube.com/watch?v=qV4lR9EWGlY

In class we discuss the quantities of interest in talking about
sound. Some of these are

	amplitude/sound pressure/intensity

	frequency/pitch

	wavelength

	period

	speed

	pure tone versus superposition of frequencies

30.3. How is sound generated?

Ask the class to discuss various ways in which they have seen sound
generated.

Some could be: drum head, guitar soundboard, loudspeaker diaphragm,
tweeters, wooferes, …

30.4. Measuring and recording

The human year, before it has been over-exposed to repetitive
sounds, can hear from 20 Hz to 20000 Hz (20 kHz).

Microphones usually try to pick up a very clean (non-distorted) signal
in the same frequency.

How do microphones work to translate vibration of air into an
electrical voltage that changes in time? The lover’s phone, then the
carbon microphone, then it gets modern.

[image: ../_images/lovers_telephone.png]

Figure 30.4.1 Robert Hooke’s “Lover’s Telephone”. (Image from wikipedia.)

[image: ../_images/Carbon_microphone.svg]
Figure 30.4.2 A diagram of how the carbon microphon microphone works. When the
air compresses it, it conducts more, so you have a higher voltage
signal coming out. (Image from wikipedia.)

Can someone research the technical specs of microphones? What is a
“frequency response curve”? What would it be for a high quality
studio microphone, versus various types of smartphones?

[image: ../_images/Oktava319vsshuresm58.png]

Figure 30.4.3 A “frequency response” curve for two different microphones: the
Oktava 319 and the Shure SM58. (Image from wikipedia.)

30.5. What is music

An art form whose medium is sound. Music uses modulations of pitch
and amplitude to achieve aesthetical effects.

Discuss some concepts like stereo.

Interesting definitions of “music” proposed by students:

“A sound that is pleasant, has many different …, and doesn’t have to
be liked by everyone.”

and

“Many frequencies that move together in a pattern that makes it
pleasant to hear.”

30.6. Understanding what we plot in an amplitude plot

Make the following simple plot:

$ gnuplot
gnuplot> plot sin(x)

That shows a basic \(sin()\) wave, but it does not connect to the
physical quantities involved. To see how frequency might enter the
picture try this out:

gnuplot> A = 2.5 # amplitude of 2.5
gnuplot> freq_hz = 440 # 440 hertz - a middle A frequency
gnuplot> set xlabel 'time'
gnuplot> set ylabel 'amplitude'
gnuplot> plot A * sin(2 * pi * freq_hz * x)

This frequency is rather high, so the plot not really showing enough
information. To see a bit more you can make the gnuplot sampling
higher:

gnuplot> set samples 10000
gnuplot> plot A * sin(2 * pi * freq_hz * x)

Clearly we have to zoom in. To show just a few full periods of the
wave let us restrict the domain:

gnuplot> plot [-0.01:0.01] A * sin(2 * pi * freq_hz * x)

Now we are ready to talk about how to read those axes. Look for the
period, understand how the amplitude, frequency, and period appear on
it. Discuss why the \(2 \pi\) is in there.

30.7. How does the GNU/Linux microphone work?

We will use the programs rec and play, both of which are part
of the sox package in most distributions.. rec will record a
sound, and play will play it back.

As we saw in Section 6, you can invoke them like
this:

rec myvoice.dat

then speak in to it, or play some music in to it, and hit control-C
after just a couple of seconds.

You can play it back with

play myvoice.dat

If you list your directory you will find that the file myvoice.dat
has been created, and it has three columns: time, left channel, right
channel.

We will plot this file like this:

$ gnuplot
gnuplot> plot 'myvoice.dat' using 1:2 with lines # you can also try 1:3

30.8. Generating your own musical tone

30.8.1. A single tone

So how would you generate a tone yourself?

Listing 30.8.1 play_freq.py - play a single note. The one we have put
in here is a “middle A (La)” which has a frequency of
440 Hz.

#! /usr/bin/env python3

"""Demonstrate generating a pure sin() tone, and printing it out in the sox
simple ascii format.

Run this with
./play_freq.py > tone.dat
and play it to the speaker with
play tone.dat
"""

from math import sin, pi

def main():
 play_freq(2, 200.00, 90000, 4) # play 90000 samples at 48kHz
 play_freq(2, 440.00, 90000, 1) # play 90000 samples at 48kHz
 play_freq(2, 523.25, 40000, 3.0) # play 70000 samples at 48kHz
 play_freq(2, 1000.00, 40000, 0.2) # play 70000 samples at 48kHz
 play_freq(2, 261.63, 40000, 0.6) # play 70000 samples at 48kHz
 # you could duplicate this line with further tones, like with
 # frequency 523.25 Hz

 # you could also play a sequence:
 # freq_sequence = [261.63, 293.66, 329.63, 349.23, 392.00, 440.00, 493.88, 523.25]
 # for freq in freq_sequence:
 # play_freq(2, freq, 10000)

def play_freq(time, freq, n_samples, amplitude):
 """Plays the note specified by freq, for a duration of n_samples,
 starting at the given time. Note that if freq is zero then we
 are basically playing a rest note."""
 # 48 kHz seems to be common, and laptop microphones seem to sample
 # at that rate, so let's use it
 sample_rate = 48000
 print('; Sample Rate %d' % sample_rate) # put headers at the top of the file
 print('; Channels 2')

 for i in range(int(n_samples)):
 time = time + 1.0 / 48000.0
 left = amplitude * sin(2*pi*freq*time) # simple sin wave
 right = amplitude * sin(2*pi*freq*time)
 print('%16.10f %16.10f %16.10f' % (time, left, right))
 return time

def square_wave(x):
 if x % (2*pi) < pi:
 return 1
 else:
 return -1

main()

Put this into a file with:

chmod +x play_freq.py
./play_freq > note.dat
play note.dat

The frequencies for “do, re, mi, fa, sol, la, si, do”
(C,D,E,F,G,A,B,C) are (in Hertz): 261.63, 293.66, 329.63, 349.23,
392.00, 440.00, 493.88, 523.25.

Note that you could change your main() function to play a full
scale of notes, and it might look like this:

Listing 30.8.2 Play a few notes by invoking play_freq() multiple
times.

def main():
 play_freq(2, 440.00, 70000) # play 100000 samples at 48kHz
 play_freq(2, 523.25, 70000) # play 100000 samples at 48kHz
 # freq_sequence = [261.63, 293.66, 329.63, 349.23, 392.00, 440.00, 493.88, 523.25]
 # for freq in freq_sequence:
 # play_freq(2, freq, 10000)

30.8.2. From notes to frequencies

Let us take the Italian (Do, Re, Mi, Fa, Sol, La, Si) or
German/English (A, B, C, D, E, F, G) notation for musical notes and
figure out how to convert those into frequencies. This will allow us
to write more versatile programs that take a music specification and
play it out.

The general mathematical formula is:

\[freq = A4_{freq} * 2^{n_{steps}/12.0}\]

where \(A4_{freq}\) is the frequency of the “A above middle C”
note, 440 Hz. This is discussed in more detail at
https://en.wikipedia.org/wiki/Musical_note#Note_frequency_(hertz)

If we want to convert English

Listing 30.8.3 Convert a note specification (which consists of octave,
note, and shartp_or_flat) and generate the frequency of
that note.

def note2freq(octave, note, sharp_or_flat):
 """Takes a note specification and returns the frequency of that note.
 If note is 'rest' then we return a frequency of zero."""
 ## refer to https://en.wikipedia.org/wiki/Musical_note#Note_frequency_(hertz)
 if note == 'rest':
 freq = 0
 else:
 A4_freq = 440 # A above middle C
 n_steps = note2steps(octave, note, sharp_or_flat)
 freq = A4_freq * math.pow(2, n_steps/12.0)
 return freq

This function relies on another function note2steps() which is too
long to put here, so we will make a link to a full music generating
program generate_music.py which you can study and modify.

You can generate_music.py and save it to a file and play it to
your speaker with:

chmod +x generate_music.py
./generate_music.py > popcorn.dat
play popcorn.dat

30.9. File formats

The .dat files we have seen are in the simplest possible format.
They are not very expressive and they would become huge if we had a
long signal. Even those 2-second files were much too big.

We will explore .dat, .au, .aiff, .mp3, .ogg, .webm, .wav, .flac,
discussing how each one comes up.

https://en.wikipedia.org/wiki/Timeline_of_audio_formats

https://en.wikipedia.org/wiki/Data_compression#Audio

Section 6.6.2

30.10. Converting our ascii music .dat files to other formats

Some of the file formats are very well defined: they can be decoded
and played by a program that knows the specification for that format.
Sometimes there is even an international expert panel which proposes
and maintains the specification for that format. There have been
oddities associated with this process: due to an oversight by the mp3
standard group, they allowed the mp3 format to involve a patented
algorithm, which for a long time made the format unusable by free
software. (The patent has expired now.)

The ascii .dat files we have been using here are not one of those
well-specified formats. As far as we can tell, they are only used by
the programs in sox (sound exchange) software swite: rec,
play, and sox.

On the other hand these ascii files are extremely useful for us to
understand them, plot them, and write programs that read and write
them. Our play_freq.py and generate_music.py programs
generate this format with no effort at all.

To convert our output file popcorn.dat (generated in
Section 30.8.2) into the more standard
.flac or .mp3 formats. The sox utility will get us out of the
non-standard .dat format by turning it into a .aif file. From
there we can then use the ffmpeg program to convert it into dozens
of other formats.

For example:

./generate_music.py > popcorn.dat
sox popcorn.dat popcorn.aif
ffmpeg -i popcorn.aif popcorn.flac
ffmpeg -i popcorn.aif popcorn.mp3
ls -lsh popcorn.*

Here is the output I get from listing those music files in their
various formats:

5.9M -rw-rw-r-- 1 markgalassi markgalassi 5.9M Jan 14 13:26 popcorn.aif
 45M -rw-rw-r-- 1 markgalassi markgalassi 45M Jan 14 13:26 popcorn.dat
1.1M -rw-rw-r-- 1 markgalassi markgalassi 1.1M Jan 14 13:26 popcorn.flac
252K -rw-rw-r-- 1 markgalassi markgalassi 251K Jan 14 13:27 popcorn.mp3

This gives a really interesting look at the effect of using these
various file formats. The original popcorn.dat file is 45
megabytes in size (this should strike you as way too big). Once you
convert to the 1988 vintage audio interchange file format (aif) file
popcorn.aif it is down to about 6 megabytes. The modern free
lossless audio codec (flac) format is 1.1 megabytes, and if you are
willing to lose a small amount of musical quality with the “lossy”
mp3 format you can get it down to a quarter of a megabyte.

You could now play the flac or mp3 file using a music or video
program. A quick way from the command line is to run:

vlc popcorn.flac

30.11. Effects filters

https://linuxgazette.net/issue73/chung.html

 31. Collecting mp3s

31. Collecting mp3s

[status: content-mostly-written]

NOTE: before having anyone work on this project you should make sure
that the videos you are downloading from youtube are all “OK” to be
downloaded. Check the copyright on the videos and youtube’s terms for
them.

31.1. Purpose: turn audio from youtube into mp3s

Take some URLs with songs. I will show some that are licensed with an
appropriate Creative Commons license, which means you will not get in
trouble if you download and reuse this music.

	https://www.youtube.com/watch?v=hz_twrj4fMo

	https://www.youtube.com/watch?v=waoUychgyXs

	https://www.youtube.com/watch?v=-5QvPfj1k_s

	https://www.youtube.com/watch?v=oQpwHMLzwqU

	https://www.youtube.com/watch?v=FHbwpfxARb0

31.2. preparation/prerequisites

	have youtube-dl installed. You can do so with any of the methods
described here:

https://github.com/rg3/youtube-dl/blob/master/README.md#installation

but since youtube formats move fast, you probably don’t want the stock
system youtube-dl.

Easiest is probably to use pip. We do:

$ sudo apt-get install python3-pip
$ pip3 install --user --upgrade youtube-dl

	the programs easytag and id3info

$ sudo apt-get install easytag libid3-tools

	ffmpeg for converting formats

$ sudo apt-get install ffmpeg

	the media player vlc

$ sudo apt-get install vlc

	a music player. Your system probably come with rhythmbox; another
is “clementine”. You can install them with:

$ sudo apt-get install rhythmbox

or

$ sudo apt-get install clementine

31.3. Get the video

Grab the video with:

$ youtube-dl -t "https://www.youtube.com/watch?v=FHbwpfxARb0"

you can see any files that might have been downloaded with:

$ ls -sh

then canonicalize and clean up the file name a bit with something like:

$ mv Hartmut\ Lindemann\ Plays\ Paganini\ -\ Sonata\ per\ la\ Gran\ Viola-FHbwpfxARb0.mp4 Hartmut_Lindemann_Plays_Paganini-Sonata_per_la_Gran_Viola.mp4

(Note that that “mv” command could use a lot of “TAB” for filename
completion so as to nail the backslashes.)

Now that the filename does not have spaces it is much more manageable.

List again with:

$ ls -sh

31.4. Verify that it’s a good video file

You can now play this on your own computer (even disconnected from the
network!):

$ vlc Hartmut_Lindemann_Plays_Paganini-Sonata_per_la_Gran_Viola.mp4

31.5. Extracting the audio portion

Now extract the mp3 audio from the video with:

$ ffmpeg -i Hartmut_Lindemann_Plays_Paganini-Sonata_per_la_Gran_Viola.mp4 Hartmut_Lindemann_Plays_Paganini-Sonata_per_la_Gran_Viola.mp3

And now a listing with

$ ls -sh

shows that you have the mp3 file.

31.6. Tagging the mp3 file

There is a format called “id3” which lets you put information about a
piece into a music file. This allows music players to form a database
of your music and to display information about when you play it.

Edit the file with

$ easytag Stevie-Wonder_Blowin-in-the-wind-Live.mp3

Set the track title and artist.

You can verify that the id3 tags are set with:

$ id3info Stevie-Wonder_Blowin-in-the-wind-Live.mp3

Now you can put it in your ~/Music/ directory and your music player
will pick it up.

Note that you can use the –extract-audio option for youtube-dl to
extract the audio immediately, but it might use an obscure format like
“.opus”, so you’d still need to use ffmpeg to convert it to mp3.

31.7. A shortcut to the mp3

We wanted to see the details of how we can convert files with ffmpeg,
but here is a short cut using some of youtube-dl’s options:

youtube-dl -t -f bestaudio --extract-audio --audio-format mp3 --audio-quality 0 'https://www.youtube.com/watch?v=FHbwpfxARb0'

the next one is considered best practice for title extraction:
youtube-dl -o "%(title)s.%(ext)s" -f bestaudio --extract-audio --audio-format mp3 --audio-quality 0 'https://www.youtube.com/watch?v=3SL0oRcD7t0'

See this answer on askubuntu.com:

https://askubuntu.com/questions/634584/how-to-download-youtube-videos-as-a-best-quality-audio-mp3-using-youtube-dl

 32. Computer art

32. Computer art

[status: content-partly-written]

Sadly the fractal flame screensaver ElectricSheep was made proprietary
several years ago, so it cannot grace our computer monitors anymore.
But there is much good computer art that can be generated using free
software tools.

Here are some references to explore to see if it is possible to
develop a chapter for this book on computer art. At this time these
references are focused on evolutionary art, but other possibilities
should be examined. Connections to 1d and 2d (like Conway’s life)
cellular automata should be explored.

Preqrequisites:

sudo apt install -y geeqie imagemagick
sudo apt install -y gimp

32.1. Understanding photos and images

32.1.1. Discussion of graphics formats

Show a PDF and a .png or .jpg and try to zoom in on them. Talk about
vector formats vs. raster formats.

32.1.2. Photo collection management

Introduce shotwell and digikam. Urge students to take pictures with a
camera or phone, but bring a cheap camera to have students take some
80 photos at the start of class, then download them to the computer
with a USB cable.

I have also prepared an archive of NASA’s “astronomy picture of the
day” (APOD) images dating back to 1994 or so, and put htem in an
archive file. You can download them like this:

prepare a space under ~/Pictures for NASA APOD photos
mkdir ~/Pictures/apod
cd ~/Pictures/apod
wget https://www.galassi.org/mark/.tmp/for-courses/apod-just-a.tar
tar -xvf apod-just-a.tar

after this you could also get a bigger set, if you can let it run
during dinner or overnight:

wget https://www.galassi.org/mark/.tmp/for-courses/apod-big-archive.tar
tar -xvf apod-big-archive.tar

Here is another one that I have put up:

prepare a space under ~/Pictures for stock photos
cd ~/Pictures
mkdir stock
cd stock
get a couple of sets of images
wget https://www.galassi.org/mark/.tmp/for-courses/eric-kim-stock-photos.zip
unzip eric-kim-stock-photos.zip

And one from NASA:

prepare a space under ~/Pictures for other NASA photos
cd ~/Pictures
mkdir nasa
cd nasa
wget https://solarsystem.nasa.gov/system/downloadable_items/1304_JPG.zip
unzip -d NASA_1304 1304_JPG.zip

This should be enough to get started. But we can get more from the
https://creativity103.com/ web site, using a tip on recursive wget
from stackoveflow:

https://stackoverflow.com/questions/4602153/how-do-i-use-wget-to-download-all-images-into-a-single-folder-from-a-url

32.1.3. Image manipulation: command line and GUI

32.1.3.1. Introduce ImageMagick

Work through some of the filters shown in the ImageMagick cookbook at:

https://www.imagemagick.org/Usage/transform/#art

Start with everyone taking their favorite image. They should name it
myimage-original.jpg

If you don’t have a favorite image handy then you can download NASA’s
“Pillars of Creation”:

wget https://upload.wikimedia.org/wikipedia/commons/6/68/Pillars_of_creation_2014_HST_WFC3-UVIS_full-res_denoised.jpg
mv Pillars_of_creation_2014_HST_WFC3-UVIS_full-res_denoised.jpg myimage-original.jpg

Then give it a workable size so things dont’ take too long for the
purpose of this class. I recommend it be approximately 1500x700
pixels in size so that it’s not too slow to process, but if students
want to use a photo with a modern phone camera (which have many more
pixels than that) they can do so and then reduce them with something
like:

convert -resize 1500x myimage-original.jpg myimage.jpg

So from here on let’s call our picture myimage.jpg, so rename
your picture to that filename.

Next we see how the pixel spread works:

convert myimage.jpg -spread 5 myimage-spread-005.jpg
convert myimage.jpg -rotate 5 myimage-rotate-005.jpg

Now we’ll create a sequence of files with different pixel spreads
using a quick inline shell script:

for i in `seq -w 0 100`
do
 echo $i
 convert myimage.jpg -spread $i myimage-spread${i}.jpg
done

Now make a film with:

ffmpeg -framerate 3 -i myimage-spread%03d.jpg spread-movie.mp4

and view it with

totem spread-movie.mp4 &

for i in `seq -w 0 360`
do
 echo $i
 convert myimage.jpg -rotate $i myimage-rotate${i}.jpg
done

ffmpeg -framerate 20 -i myimage-rotate%03d.jpg rotate-movie-fr20.mp4

32.1.3.2. Introduce the Gimp

Everyone should know how to start and use the GIMP. Here is a
collection of 40 tutorials:

https://www.noupe.com/inspiration/tutorials-inspiration/best-of-gimp-40-professional-tutorials-to-level-up-your-skills-79428.html

We pick one of them and work through part of it with the students.

32.2. metapixel and photomosaics

	Collect a bunch of photos in a hurry, possibly with some cool use of
wget and an image search. For example, creativity103.com has
archives of images licensed under the “creative commons
“attribution” license: https://creativecommons.org/licenses/by/3.0/

	I already showed how to beef up your Pictures folder with commands
like wget -r -np -nc https://creativity103.com/

	Install metapixel on Linux

	the metapixel tutorial I have found has pointless racy images, so I
need to find another one.

	install the webcollage screensaver:
sudo apt install xscreensaver-screensaver-webcollage

	we have beefed up our personal ~/Pictures directory so we can use
that to make the photomosaic database

mkdir ~/mp
metapixel-prepare -r ~/Pictures ~/mp --width 32 --height 32

once the database is ready we can make our metapixel photo with:

metapixel --metapixel --library ~/mp --scale=2 myimage.jpg myimage-mp2.jpg
and a scaled-by-4 version with:
metapixel --metapixel --library ~/mp --scale=4 myimage.jpg myimage-mp4.jpg

Now use geeqie with its “control+scrollwheel” zooming feature to zoom
in on the individual tiles in the photomosaic.

32.3. ASCII art

What is ASCII? Explain encoding of characters, and show man
ascii.

What is ASCII art?

Tools for drawing ASCII art.

Fun and amusing tools. Some of these can be found at
https://www.binarytides.com/linux-fun-commands/

echo an example of figlet | figlet
banner "have a nice day"
cowsay hey dude
cowsay -f dragon "Run for cover, I feel a sneeze coming on."
cowsay -l
cowsay -f ghostbusters Who you Gonna Call
sl

The grand old UNIX fortune command is still available, an dyou can
pipe it to others:

fortune -s # repeat a few times
fortune -s | cowsay

cmatrix uses the UNIX curses library to draw a matrix animation on
your terminal.

Converting raster images to ASCII art. jp2a on GNU/Linux systems:
let us take pictures of famous computer scientists Margaret Hamilton
and Dennis Ritchie:

wget https://upload.wikimedia.org/wikipedia/commons/6/6f/Margaret_Hamilton_-_restoration.png
wget https://upload.wikimedia.org/wikipedia/commons/2/23/Dennis_Ritchie_2011.jpg

make your terminal very big and try
jp2a -f Margaret_Hamilton_-_restoration.png
jp2a -f --color Margaret_Hamilton_-_restoration.png
jp2a -f Dennis_Ritchie_2011.jpg
jp2a -f --color Dennis_Ritchie_2011.jpg

To see jp2a work better, make your terminal have really tiny fonts (in
many terminal programs you can do this with ctl+-), then resize
the window to be really big, and then run the jp2a commands again.
You might be astonished at the results.

emacs has an ASCII art drawing mode. It might be worth exploring.

Joyce Levine has pointed me to tilde town: https://tilde.town/ which
might be worth exploring.

There was a famous ascii art movie of Star Wars that one could reach
with

telnet towel.blinkenlights.nl

but it has gone offline recently. You can find videos of it on
youtube. A real tour-de-force. According to this thread on reddit it
has been taken down:

https://www.reddit.com/r/sysadmin/comments/pbv7xm/is_towelblinkenlightsnl_dead/

but you can get it (without the fancy ascii colors) by typing a telnet
command followed by typing starwars:

telnet telehack.com
starwars

A discussion of the ascii animation used there can be found at:

https://www.asciimation.co.nz/index.php

https://www.asciimation.co.nz/asciimation/ascii_faq.html

A few more things to type:

sl
fortune
factor 12103 # factoring numbers? can we use this to search for Mersenne primes?
factor `echo "2^7-1" | bc` ; factor `echo "2^11-1" | bc` ; factor `echo "2^13-1" | bc`
pi 50
espeak "Hello Linux, where are the penguins"
aafire -driver curses

32.4. Evolutionary art

	https://en.wikipedia.org/wiki/Electric_Sheep

	https://en.wikipedia.org/wiki/Software_art

	https://en.wikipedia.org/wiki/Evolutionary_art

	https://iasl.uni-muenchen.de/links/GCA-IV.3e.html

	transcend https://transcend.sourceforge.net/

32.5. Image manipulation from your own Python program

We will learn to use Pillow, the python imaging library (PIL).

At the shell:

sudo apt install python3-pil

Also give yourself a photo to work with. For this tutorial let’s keep
it small so it’s faster and views better. You can use a command like:

convert -resize 800 my_big_picture.jpg myimage.jpg

In the python interpreter, following the tutorial at
https://pillow.readthedocs.io/en/stable/handbook/tutorial.html

import the Image portion of the PIL library
from PIL import Image
load an image
im = Image.open('myimage.jpg')
show its information
print(im.format, im.size, im.mode)
show the picture itself
im.show()
then close that window

We now have an image stored in the object im and we can work on
manipulating it.

32.5.1. Geometric transformations

import os, sys
from PIL import Image

size = 128, 128

infile = 'myimage.jpg'
outfile = os.path.splitext(infile)[0] + '.thumbnail' + '.jpg'
print(outfile)
thumb = Image.open(infile)
thumb.thumbnail(size)
thumb.save(outfile, 'JPEG')

copy a rectangle from the image
box = (300, 300, 600, 600)
region = im.crop(box)

now play with that rectangle, then paste it back in
region = region.transpose(Image.ROTATE_90)
now paste it back in
im.paste(region, box)
now box is the image with the small region we chose
im.show()
im.save('myimage_pasted.jpg', 'JPEG')

You will now see that the region we cut out of the photo has been
rotated 90 degrees.

reload the image from scratch
im = Image.open('myimage.jpg')
rotate 45 degrees counterclockwise
rotated = im.rotate(45)
rotated.save('myimage_rotated_45.jpg', 'JPEG')
now make an animation
various_rotations = []
for i in range(360):
 rotated = im.rotate(i)
 fname = 'myimage_rotated_%03d.jpg' % i
 print('writing out %s' % fname)
 rotated.save(fname, 'JPEG')

If you type ls you will see that you now have many files with
names like myimage_rotated_17.jpg. You can use geeqie to
view them and even get a crude animation by holding the space bar
down. You can also use what we learned in
Section 12.13 and try this:

make a movie with:
ffmpeg -framerate 24 -i myimage_rotated_%03d.jpg myimage_animated.mp4
view it with:
vlc myimage_animated.mp4 &

32.5.2. Filters and enhancement

from PIL import Image
from PIL import ImageFilter
load an image
im = Image.open('myimage.jpg')
out = im.filter(ImageFilter.DETAIL)
out.save('myimage_detail.jpg', 'JPEG')
out = im.filter(ImageFilter.CONTOUR)
out.save('myimage_contour.jpg', 'JPEG')
out = im.filter(ImageFilter.EMBOSS)
out.save('myimage_emboss.jpg', 'JPEG')
out = im.filter(ImageFilter.FIND_EDGES)
out.save('myimage_edges.jpg', 'JPEG')
out = im.filter(ImageFilter.SMOOTH)
out.save('myimage_smooth.jpg', 'JPEG')
out = im.filter(ImageFilter.BLUR)
out.save('myimage_blur.jpg', 'JPEG')

NOTE: in the next one we start from "out", the smoothed photo
restored = out.filter(ImageFilter.EDGE_ENHANCE)
restored.save('myimage_restored.jpg', 'JPEG')

out = im.filter(ImageFilter.SMOOTH_MORE)
out.save('myimage_smooth_more.jpg', 'JPEG')

Now compare all the images we produced. In particular, look carefully
at myimage_smooth.jpg and myimage_restored.jp to see how
the EDGE_ENHANCE transformation takes away the fuzziness that had been
introduced by SMOOTH.

32.6. Topics for further study

Another Pillow tutorial which starts slowly but gets into interesting examples:

https://www.tutorialspoint.com/python_pillow/python_pillow_quick_guide.htm

https://realpython.com/fingerprinting-images-for-near-duplicate-detection/

https://www.imagemagick.org/script/compare.php

https://askubuntu.com/questions/209517/does-diff-exist-for-images

https://jeremykun.com/2012/01/01/random-psychedelic-art/

Take one of those classic old “over the top” movie transition effects,
or a modern parody of one, like this one from Spinal Tap:
https://youtu.be/QrJlyapt6OY?t=114

Try to take an image and create your own over the top transition using
Pillow.

 33. Image filtering

33. Image filtering

[status: in progress]

33.1. Motivation, prerequisites, plan

33.1.1. Motivation

It hardly seems worth mentioning: nowadays image filtering seems to
come up everywhere. We have explored some command-line filtering when
looking at computer art in Section 32. Here we will
look at manipulating images from Python programs. Some techniques we
will learn are:

	Blurring images.

	Sharpening images.

	Finding features in images.

33.1.2. Prerequisites

	The 10-hour “serious programming” course.

	The “Data files and first plots” mini-course in
Section 2

	Installing the python3-numpy, python3-scipy and python3-pil
packages.

	Being comfortable with user-level programs which manipulate images.
Specifically, you should learn to run eog, geeqie,
convert and gimp.

33.1.3. Plan

We will first explore the filtering of images that can be done with
ImageMagick on the command line. Then on to using the Pillow/PIL
libraries to manipulate images in Python. Then we will use OpenCV for
similar manipulation of static images.

Finally we will move on to getting comfortable with tensorflow, the
machine learning library which can tackle so many areas of AI. We
will use it to find objects in images and in video streams.

33.2. Manipulating images with command line programs

FIXME: to be written.

33.3. How computers store images, disk and memory

We have frequently seen files saved in a variety of image formats.
Probably the most common are .png and .jpg files, although
there are many other image formats as well.

When images are stored in memory the format can be quite different.
We are more interested in the speed with which we our program can
process the image, rather than its long term storage requirement on
disk.

We seldom deal directly with the image storage: we almost always use
function calls from a library. In our case we will use the Python
Imaging Library Pillow (formerly called PIL), which has uses an
abstract representation of the image in memory. This means that we do
not have to understand the details of how it is stored.

33.4. First example: blurring and other effects with PIL

Here we show how to use the Pillow library (the new version of PIL,
the Pythin Imaging Library). First we install the library with:

pip3 install Pillow

Then a simple example using an image file I got off the web. Try to
get your own, for example do a web image search for “person with cat”
and make sure you search for images that are “Labeled for reuse with
modification”. My image is called person-cat-small.jpg

from PIL import Image, ImageFilter # imports the library

im_fname = 'person-cat-small.jpg'
original = Image.open(im_fname) # load an image from the hard drive
blurred = original.filter(ImageFilter.BLUR) # blur the image
embossed = original.filter(ImageFilter.EMBOSS) # emboss the image
contours = original.filter(ImageFilter.CONTOUR) # find contours

for img in (original, blurred, embossed, contours):
 img.show() # display all images

33.5. The cycle of training and running an AI system

The general cycle is that you train your model, and then apply it to data:

[image: digraph foo { "prepare training data" -> "train model on data" -> "apply model to new data"; }]

But sometimes you get a model which someone else has trained, so the
cycle is:

[image: digraph foo { "get model from some random person on the web" -> "apply model to new data"; }]

33.6. Miscellaneous examples in various areas

33.6.1. Astronomy example with scipy image kit

You can find information on how to use Python to do astronomical image
processing with Pillow, scikit-iamge and pyfits at:

http://prancer.physics.louisville.edu/astrowiki/index.php/Image_processing_with_Python_and_SciPy

And this article discusses the skyimage library used with matplotlib,
including :

https://www.analyticsvidhya.com/blog/2014/12/image-processing-python-basics/

Both of those articles discuss finding stars within the images.

33.6.2. Extracting the portion of a scan which has text

https://www.danvk.org/2015/01/07/finding-blocks-of-text-in-an-image-using-python-opencv-and-numpy.html

33.6.3. Thresholding

https://pythontic.com/image-processing/pillow/thresholding

33.7. Learning OpenCV

On a GNU/Linux system you can install OpenCV with

sudo apt install python3-opencv

33.7.1. numpy and opencv

https://medium.com/@manivannan_data/drawing-image-using-numpy-and-opencv-565abdbb3670

33.7.2. Image manipulation with OpenCV

Many tutorials on OpenCV are at:

https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_watershed/py_watershed.html

33.7.2.1. Rotation

Let us use examples from:

https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_geometric_transformations/py_geometric_transformations.html#geometric-transformations

Assuming your picture is called person-cat-small.jpg you can
try:

import cv2
import numpy as np

img = cv2.imread('person-cat-small.jpg', 0)

show original image
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

now rotate it
rows,cols = img.shape
M = np.float32([[1,0,100],[0,1,50]]) ## make a rotation matrix
dst = cv2.warpAffine(img,M,(cols,rows))

then show it
cv2.imshow('img',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

33.7.2.2. Finding objects

Some OpenCV sample images can be found at:

https://github.com/opencv/opencv/tree/master/samples/data

We download box.png and box_in_scene.png:

wget https://raw.githubusercontent.com/opencv/opencv/master/samples/data/box.png
wget https://raw.githubusercontent.com/opencv/opencv/master/samples/data/box_in_scene.png

Now following this page:

https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html#matcher

(but with some adjustments for OpenCV version 3, like ORB() ->
ORB_create() and adding a None argument in the drawMatches() routine)

Try this:

import numpy as np
import cv2
from matplotlib import pyplot as plt

img1 = cv2.imread('box.png',0) # queryImage
img2 = cv2.imread('box_in_scene.png',0) # trainImage

Initiate SIFT detector
orb = cv2.ORB_create()

find the keypoints and descriptors with SIFT
kp1, des1 = orb.detectAndCompute(img1,None)
kp2, des2 = orb.detectAndCompute(img2,None)

create BFMatcher object
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)

Match descriptors.
matches = bf.match(des1,des2)

Sort them in the order of their distance.
matches = sorted(matches, key = lambda x:x.distance)

Draw first 10 matches.
img3 = cv2.drawMatches(img1,kp1,img2,kp2,matches[:10], None, flags=2)

cv2.imwrite('object-matches.png', img3)

plt.imshow(img3),plt.show()

33.8. Using tensorflow with ImageAI to find objects

ImageAI offers the dream of a brief (they claim 10 lines!) python
program that finds objects in images.

To install needed software use:

pip3 install tensorflow
pip3 install opencv-python
pip3 install keras
pip3 install imageai --upgrade

Let’s also mention what some of these components are:

	tensorflow
	Google’s widely used machine learning library.

	OpenCV
	A library for computer vision which allows the analysis of video
streams

	Keras
	A Python library offering an abstraction of the machine learning

33.8.1. ImageAI + tensorflow from Fritz AI article

Tutorials is at:

https://heartbeat.fritz.ai/detecting-objects-in-videos-and-camera-feeds-using-keras-opencv-and-imageai-c869fe1ebcdb

They have you download a data set with a model and a video:

wget https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5
wget https://github.com/OlafenwaMoses/IntelliP/raw/master/traffic-mini.mp4

33.8.1.1. From a fixed video file

Then put this program in a file called FirstVideoDetection.py

Listing 33.8.1 Program which analyzes a video stream for objects.

#! /usr/bin/env python3
from imageai.Detection import VideoObjectDetection
import os

execution_path = os.getcwd()

detector = VideoObjectDetection()
detector.setModelTypeAsYOLOv3()
detector.setModelPath(os.path.join(execution_path , "yolo.h5"))
detector.loadModel()

input_video_path = os.path.join(execution_path, "improv.mp4")
input_video_path = os.path.join(execution_path, "traffic-mini.mp4")
input_video_path = os.path.join(execution_path, "godzilla.mp4")
output_video_path = input_video_path[:-4] + '_detected_1'
video_path = detector.detectObjectsFromVideo(input_file_path=input_video_path,
 output_file_path=output_video_path,
 frames_per_second=29, log_progress=True)
print(video_path)

Now you can run it with:

$ chmod +x FirstVideoDetection.py
$./FirstVideoDetection.py

It will produce a file called traffic_mini_detected_1.avi
which you can view with your favorite video viewer – for example:

vlc traffic_mini_detected_1.avi

So that finds objects in moving images!

33.8.1.2. From your computer’s camera

This is much more exciting.

Put this program in a file called FirstCameraDetection.py

Listing 33.8.2 Program which analyzes a camera stream for objects.

#! /usr/bin/env python3

from imageai.Detection import VideoObjectDetection
import os
import cv2

execution_path = os.getcwd()

camera = cv2.VideoCapture(0)

detector = VideoObjectDetection()
detector.setModelTypeAsYOLOv3()
detector.setModelPath(os.path.join(execution_path , "yolo.h5"))
detector.loadModel()

output_video_path=os.path.join(execution_path, "camera_detected_1")
video_path = detector.detectObjectsFromVideo(camera_input=camera,
 output_file_path=output_video_path,
 frames_per_second=29, log_progress=True)
print(video_path)

Now you can run it with:

$ chmod +x FirstCameraDetection.py
$./FirstCameraDetection.py

Note

You will have to interrupt the program yourself when you want to
start collecting video. You can do this with control-c or control-

It will produce a file called camera_detected_1.avi
which you can view with your favorite video viewer – for example:

vlc camera_detected_1.avi

So that finds objects in moving images!

The web page referenced above describes the step-by-step explanation
of what’s being done by the ImageAI and Tensorflow libraries as you
run both of these programs.

33.8.2. ImageAI + tensorflow from towarddatascience

Tutorial is at:

https://towardsdatascience.com/object-detection-with-10-lines-of-code-d6cb4d86f606

They use a pre-defined model that finds people and vehicles and
backpacks. This is in the file resnet50_coco_best_v2.0.1.h5

We must get the hdf5 file with model weights:

wget https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5

from imageai.Detection import ObjectDetection
import os

execution_path = os.getcwd()

detector = ObjectDetection()
detector.setModelTypeAsRetinaNet()
detector.setModelPath(os.path.join(execution_path , "resnet50_coco_best_v2.0.1.h5"))
detector.loadModel()
detections = detector.detectObjectsFromImage(input_image=os.path.join(execution_path , "image.jpg"), output_image_path=os.path.join(execution_path , "imagenew.jpg"))

for eachObject in detections:
 print(eachObject["name"] , " : " , eachObject["percentage_probability"])

33.9. Using tensorflow from their own tutorials

Warning

At this time the versions of all the libraries are not working well
at crucial points where you save and reload a model.

33.9.1. The tutorial from tensorflow.org

Install with:

pip3 install tensorflow
pip3 install numpy
pip3 install scipy
pip3 install pillow
pip3 install matplotlib
pip3 install h5py
pip3 install keras=2.3.1

Following:

https://www.tensorflow.org/tutorials/quickstart/beginner

Now run this in python:

import tensorflow as tf

set eager execution - we will need it when we call model(...).numpy()
tf.enable_eager_execution()

Load and prepare the MNIST dataset. Convert the samples from
integers to floating-point numbers:

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

Build the tf.keras.Sequential model by stacking layers. Choose
an optimizer and loss function for training:

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10)
])

For each example the model returns a vector of "logits" or
"log-odds" scores, one for each class.

predictions = model(x_train[:1]).numpy()
predictions

result should be:
array([[-0.40252417, -0.36244553, -0.6254247 , 0.3470046 , 0.53377753,
-0.25291196, 0.42313334, -0.85892683, 0.16624598, 0.01534149]],
dtype=float32)

The tf.nn.softmax function converts these logits to
"probabilities" for each class:

tf.nn.softmax(predictions).numpy()

result should be:
array([[0.06724608, 0.06999595, 0.05380994, 0.14229287, 0.17151323,
0.07809851, 0.15354846, 0.04260433, 0.11876287, 0.10212774]],
dtype=float32)

Note: It is possible to bake this tf.nn.softmax in as the
activation function for the last layer of the network. While
this can make the model output more directly interpretable,
this approach is discouraged as it's impossible to provide an
exact and numerically stable loss calculation for all models
when using a softmax output.

The losses.SparseCategoricalCrossentropy loss takes a
vector of logits and a True index and returns a scalar loss
for each example.

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

This loss is equal to the negative log probability of the true
class: It is zero if the model is sure of the correct class.

This untrained model gives probabilities close to random (1/10
for each class), so the initial loss should be close to
-tf.log(1/10) ~= 2.3.

loss_fn(y_train[:1], predictions).numpy()

should be 2.5497844

model.compile(optimizer='adam',
 loss=loss_fn,
 metrics=['accuracy'])

The Model.fit method adjusts the model parameters to minimize the
loss:

model.fit(x_train, y_train, epochs=5)

The Model.evaluate method checks the models performance, usually
on a "Validation-set" or "Test-set".

model.evaluate(x_test, y_test, verbose=2)

The image classifier is now trained to ~98% accuracy on this
dataset. To learn more, read the TensorFlow tutorials.

If you want your model to return a probability, you can wrap the
trained model, and attach the softmax to it:

probability_model = tf.keras.Sequential([
 model,
 tf.keras.layers.Softmax()
])

probability_model(x_test[:5])

33.9.2. For more on training the network

https://www.datacamp.com/community/tutorials/tensorflow-tutorial

33.9.3. The most complete tutorial on preparing training sets and doing the training

Run through this example of cats and dogs:

https://www.tensorflow.org/tutorials/images/classification

It all works. There is only one typo where they have “accuracy”
instead of “acc” in a few places, and it’s easy to fix.

It is quite long because it trains poorly and then really well.

Save with:

os.system(“mkdir -p saved_models/”)
model.save(‘saved_models/cats_dogs_initial.h5’)
model_new.save(‘saved_models/cats_dogs_improved.h5’)

 34. Cryptography

34. Cryptography

[status: content-mostly-written]

We will discuss a narrow slice of cryptography. We will start with a
weak approach, and then look at how you could get a stronger
encryption with key exchange and a pseudorandom number generator.

34.1. Preliminary: ASCII values

A key aspect of some of the techniques we will use is that each
character correponds to an integer value. In English such integers
are called the ASCII values of characters, and they are sequential
for sequential letters. ASCII stands for “American Standard Code for
Information Interchange”.

To familiarize yourself with the ASCII codes for each character take a
look at the man page for ascii:

man ascii

and pay attention to the decimal and hex encoding of the various
characters. You will recognize digits (ascii values 48 to 57), upper
case letters (65 to 90) and lower case letters (97 to 122). There are
also many standard keyboard symbols as well as control characters.

In Python you convert from a character to its ASCII value with
ord(ch). You can convert the other way from an ascii value to a
char with chr(num). For example, in the python interpreter you
could type:

>>> print(ord('e'))
>>> print(ord('r'))
>>> print(ord('r') - ord('e'))
>>> print(chr(97))
>>> print(chr(68))
now look at the difference between digits and their ascii values
>>> print(chr(51))
>>> print(chr(51) - chr(49))

34.2. Weak crypto

We will look at two types of weak cyphers: Caesar and substitution
cyphers. We will write programs that encode text with these cyphers,
and then we will look at how to write programs to attack the cyphers
and possibly decrypt messages.

34.2.1. A simple Caesar encryptor

In a Caesar code we shift each letter in the alphabet by a given
number. If the shift is 5 then ‘a’ becomes ‘f’, ‘l’ becomes ‘q’, ‘x’
becomes ‘c’ and so forth. The world ‘hello’ rotated by 5 becomes
‘mjqqt’, and ‘hello’ rotated by 13 becomes ‘uryyb’.

This program will rotate its input by 13 characters. Our program will
shift the ascii values and then produce the corresponding characters.
Type the program caesar.py in Listing 34.2.1 into a file
caesar.py.

Listing 34.2.1 caesar.py – simple Caesar cypher: rotate the characters
in the input 13.

#! /usr/bin/env python3
import sys

def main():
 shift = 13
 encrypted_line = ''
 fname = ''
 if len(sys.argv) > 2:
 print('error: usage is "%s [filepath]"' % sys.argv[0])
 sys.exit(1)
 elif len(sys.argv) == 2:
 fname = sys.argv[1]
 f = open(fname, 'r')
 else:
 fname = 'standard-input'
 f = sys.stdin
 ## now go through the file, one character at a time
 for c in f.read():
 if c < 'a' or c > 'z': # we only handle 'a' <= c <= 'z'
 encrypted_line = encrypted_line + c # add it with no encryption
 continue
 ascii_value = ord(c)
 ## find the new character by shifting this character
 crypt_char = ascii_value + 13
 if crypt_char > ord('z'):
 ## if we go beyond z we wrap back around to 'a'
 crypt_char = (crypt_char - ord('a')) % 26 + ord('a')
 # print(c, '->', crypt_char)
 encrypted_line = encrypted_line + chr(crypt_char)
 print('encrypted: ', encrypted_line)

main()

Exercise 34.1A very simple exercise: change caesar.py to take an argument
which is the shift number for the Caesar cipher, that way it does
not have to be 13. You would see if sys.argv[1] is set, and if
so use int(sys.argv[1]) as your offset.

Exercise 34.2As a slightly more elaborate exercise you could take caesar.py
and adapt it to handle upper case characters as well as lower case
ones.

34.2.2. Substitution ciphers

A simple substitution makes a table between clear text letters and
encrypted letters. They don’t have have to be shifted by a fixed
amount: the shift can be different for each character, but each clear
text character will always map to the same secret encrypted letter.

Here is an example of substitution in which ‘a’ is mapped to ‘b’, ‘b’
to ‘o’, ‘c’ to ‘m’, ‘d’ to ‘l’, and so forth up to ‘z’ being mapped to
‘p’. There seems to be no rhyme or reason to the mapping. The word
‘hello’ woulud become ‘itxxn’:

abcdefghijklmnopqrstuvwxyz
bomltzhiqjgxwdnsvackeuyfrp

Note that the substitute characters do not have to be letters of the
alphabet, as long as there is a bijective mapping (one-to-one
correspondence) between the substitute characters and the letters of
the alphabet.

A program which encrypts with that substitution cypher is
substitution.py in Listing 34.2.2.

Listing 34.2.2 substitution.py – simple substitution cypher: replace
each character with its substitute.

#! /usr/bin/env python3
import sys

def main():
 original = list('abcdefghijklmnopqrstuvwxyz')
 #substitute = list('bomltzhiqjgxwdnsvackeuyfrp')
 substitute = list('omltzniqjgxwdhsvackeuyfrpb')

 encrypted_line = ''
 fname = ''
 if len(sys.argv) > 2:
 print('error: usage is "%s [filepath]"' % sys.argv[0])
 sys.exit(1)
 elif len(sys.argv) == 2:
 fname = sys.argv[1]
 f = open(fname, 'r')
 else:
 fname = 'standard-input'
 f = sys.stdin
 ## now go through the file, one character at a time
 for c in f.read():
 if c < 'a' or c > 'z': # we only handle 'a' <= c <= 'z'
 encrypted_line = encrypted_line + c
 continue
 ## pos is the position in the original list
 pos = ord(c) - ord('a')
 ## find the new character by taking that position in the
 ## substitute list
 crypt_char = substitute[pos]
 # print(c, '->', crypt_char)
 encrypted_line = encrypted_line + crypt_char
 print('encrypted: ', encrypted_line)

main()

34.2.3. A “literary” substitution cypher

Edgar Allan Poe wrote a short story called “The Gold-Bug” (see
https://www.gutenberg.org/files/2147/2147-h/2147-h.htm#link2H_4_0006
and https://en.wikipedia.org/wiki/The_Gold-Bug and
http://self.gutenberg.org/articles/eng/The_Gold-Bug)

In this story a Mr. Legrand is obsessed with decrypting a cryptogram
purportedly written by the famous pirate Captain Kidd, giving
directions to his mythical buried treasure. The cryptogram reads:

53‡‡†305))6*;4826)4‡.)4‡);806*;48†8
¶60))85;;]8*;:‡*8†83(88)5*†;46(;88*96
?;8)‡(;485);5*†2:*‡(;4956*2(5*—4)8
¶8*;4069285);)6†8)4‡‡;1(‡9;48081;8:8‡
1;48†85;4)485†528806*81(‡9;48;(88;4
(‡?34;48)4‡;161;:188;‡?;

34.2.4. Preparing to attack substitution cyphers: frequency analysis

The field of cryptanalysis is more than a thousand years old. Most
classical cyphers were substitution cyphers, and the method of
frequency analysis is effective in attacking those.

To see how this works, let us remember the words of Mr. Legrand in
Edgar Allan Poe’s “The Gold-Bug”:

“Now, in English, the letter which most frequently occurs
is e. Afterwards, succession runs thus: a o i d h n r s t u y c f g
l m w b k p q x z. E predominates so remarkably that an individual
sentence of any length is rarely seen, in which it is not the
prevailing character.

“Here, then, we leave, in the very beginning, the groundwork for
something more than a mere guess. The general use which may be made
of the table is obvious […]

The key words are “[…] groundwork for something more than a mere
guess”: the happiest words for a code breaker to hear.

Let us make a histogram plot of the frequency with which letters
occur in English. How do we make such a plot? And how do we get a
statistically valid sample of English text so that we can count how
often letters typically occur?

To make the plot we can write the program letter_frequency.py in
Listing 34.2.3.

Listing 34.2.3 letter_frequency.py – calculate and plot the frequency
of each letter.

#! /usr/bin/env python3

import sys

def main():
 fname = ''
 if len(sys.argv) > 2:
 print('error: usage is "%s [filepath]"' % sys.argv[0])
 sys.exit(1)
 elif len(sys.argv) == 2:
 fname = sys.argv[1]
 f = open(fname, 'r')
 else:
 fname = 'standard-input'
 f = sys.stdin

 letter_count = [0]*26
 for c in f.read():
 if not c.isalpha(): # special cases: character is not alphabetic
 continue
 if ord(c) > 127: # or not ascii
 continue
 ## special case: character is uppercase, so we fold it down to
 ## lowercase
 if c.isupper():
 c = c.lower()
 ## now we have a lower chase char, so we find its position in
 ## the alphabet
 pos = ord(c) - ord('a')
 ## now increase the letter_count histogram for that position
 letter_count[pos] += 1
 f.close()
 print_frequency_histogram(fname, letter_count, offset=ord('a'))

def print_frequency_histogram(title, hist, offset=0):
 print('====== frequency histogram for %s ======' % title)
 for i in range(len(hist)): # simple ascii table+histogram
 c = chr(i+offset)
 if not (i + offset in range(ord('A'), 1+ord('Z'))
 or i + offset in range(ord('a'), 1+ord('z'))
 or i + offset in range(ord('0'), 1+ord('9'))):
 c = ' '
 print('%3d -- %s %8d -- '
 % (i, c, hist[i]), end="")
 # % (i, chr(i + ord('a')), hist[i]), end="")
 ## now print a histogram of the letter X, but scale it down so
 ## the max has some 50 Xs
 n_Xs_to_print = float(hist[i]) * 50.0 / max(hist)
 for j in range(int(n_Xs_to_print)):
 print('X', end="")
 print()

if __name__ == '__main__':
 main()

Now let us analyze three different samples of English words with our
letter_frequency.py program.

34.2.4.1. /usr/share/dict/words

The easiest is probably to start with /usr/share/dict/words since
this dictionary is already present in every GNU/Linux system. We will
write a program which reads in the file, counts all the letters, and
then puts out a simple list of how much they occur.

You can see the output of this program on /usr/share/dict/words:

====== frequency histogram for /usr/share/dict/words ======
 0 -- a 67956 -- XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 1 -- b 16446 -- XXXXXXXX
 2 -- c 33242 -- XXXXXXXXXXXXXXXXX
 3 -- d 29683 -- XXXXXXXXXXXXXXX
 4 -- e 92097 -- XX
 5 -- f 11146 -- XXXXX
 6 -- g 23682 -- XXXXXXXXXXXX
 7 -- h 20490 -- XXXXXXXXXX
 8 -- i 69461 -- XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 9 -- j 2080 -- X
 10 -- k 9057 -- XXXX
 11 -- l 43064 -- XXXXXXXXXXXXXXXXXXXXXX
 12 -- m 23656 -- XXXXXXXXXXXX
 13 -- n 59577 -- XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 14 -- o 51269 -- XXXXXXXXXXXXXXXXXXXXXXXXXX
 15 -- p 23100 -- XXXXXXXXXXXX
 16 -- q 1604 --
 17 -- r 59717 -- XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 18 -- s 95874 -- XX
 19 -- t 54763 -- XXXXXXXXXXXXXXXXXXXXXXXXXXXX
 20 -- u 27214 -- XXXXXXXXXXXXXX
 21 -- v 8436 -- XXXX
 22 -- w 8002 -- XXXX
 23 -- x 2312 -- X
 24 -- y 13164 -- XXXXXX
 25 -- z 3478 -- X

You will notice something strange: the letter ‘s’ seems to occur about
as much as the letter ‘e’, or even a bit more. This goes against what
Mr. Legrand had stated. An exercise below will address this issue.

34.2.4.2. A work by Shakespeare

King Lear by William Shakespeare can be found at
http://www.gutenberg.org/ebooks/1128
and the plain text version is at:
http://www.gutenberg.org/cache/epub/1128/pg1128.txt

We can download its text and analyze it with:

wget --output-document king-lear.txt http://www.gutenberg.org/cache/epub/1128/pg1128.txt
python3 ./letter_frequency.py king-lear.txt

...

====== frequency histogram for king-lear.txt ======
 0 -- a 8373 -- XXXXXXXXXXXXXXXXXXXXXXXXX
 1 -- b 1734 -- XXXXX
 2 -- c 2602 -- XXXXXXXX
 3 -- d 4519 -- XXXXXXXXXXXXX
 4 -- e 16159 -- XX
 5 -- f 2512 -- XXXXXXX
 6 -- g 2580 -- XXXXXXX
 7 -- h 7046 -- XXXXXXXXXXXXXXXXXXXXX
 8 -- i 7300 -- XXXXXXXXXXXXXXXXXXXXXX
 9 -- j 89 --
 10 -- k 1290 -- XXX
 11 -- l 5150 -- XXXXXXXXXXXXXXX
 12 -- m 3244 -- XXXXXXXXXX
 13 -- n 7317 -- XXXXXXXXXXXXXXXXXXXXXX
 14 -- o 9751 -- XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 15 -- p 1841 -- XXXXX
 16 -- q 78 --
 17 -- r 7703 -- XXXXXXXXXXXXXXXXXXXXXXX
 18 -- s 7150 -- XXXXXXXXXXXXXXXXXXXXXX
 19 -- t 10796 -- XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 20 -- u 4494 -- XXXXXXXXXXXXX
 21 -- v 481 -- X
 22 -- w 2726 -- XXXXXXXX
 23 -- x 120 --
 24 -- y 2794 -- XXXXXXXX
 25 -- z 34 --

34.2.4.3. A contemporary English book

Looking at the books on Project Gutenberg sorted by release date at

https://www.gutenberg.org/ebooks/search/?sort_order=release_date

we can pick “An Ocean Tragedy” by William Clark Russell and download
its text and then run our program with:

wget --output-document ocean-tragedy.txt https://www.gutenberg.org/files/56363/56363-0.txt
python3 ./letter_frequency.py ocean-tragedy.txt

...

====== frequency histogram for ocean-tragedy.txt ======
 0 -- a 64744 -- XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 1 -- b 12390 -- XXXXXX
 2 -- c 18785 -- XXXXXXXXX
 3 -- d 34787 -- XXXXXXXXXXXXXXXXXX
 4 -- e 95677 -- XX
 5 -- f 20728 -- XXXXXXXXXX
 6 -- g 18775 -- XXXXXXXXX
 7 -- h 53974 -- XXXXXXXXXXXXXXXXXXXXXXXXXXXX
 8 -- i 59395 -- XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 9 -- j 973 --
 10 -- k 7401 -- XXX
 11 -- l 34322 -- XXXXXXXXXXXXXXXXX
 12 -- m 19202 -- XXXXXXXXXX
 13 -- n 54177 -- XXXXXXXXXXXXXXXXXXXXXXXXXXXX
 14 -- o 60199 -- XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 15 -- p 13126 -- XXXXXX
 16 -- q 820 --
 17 -- r 44082 -- XXXXXXXXXXXXXXXXXXXXXXX
 18 -- s 51953 -- XXXXXXXXXXXXXXXXXXXXXXXXXXX
 19 -- t 71954 -- XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 20 -- u 22794 -- XXXXXXXXXXX
 21 -- v 6639 -- XXX
 22 -- w 21089 -- XXXXXXXXXXX
 23 -- x 1308 --
 24 -- y 14615 -- XXXXXXX
 25 -- z 586 --

34.2.4.4. Conclusion: signatures

Take a close look at the three histograms, the one from
/usr/share/dict/words has a certain feeling

34.2.4.5. Exercises

Exercise 34.3Discuss with your fellow students why the histogram of letters in
/usr/share/dict/words does not resemble that in actual books.

Exercise 34.4Are there significant differences in the letter frequency between
Shakespeare and the modern book? Discuss this with your fellow
students.

Exercise 34.5Study the differnce in letter frequency distributions between short
and long bits of text. Take a few single-paragraph files and look
at their letter distribution and compare it to what you got with a
full book.

Exercise 34.6Look at books in other languages and see what the letter
distribution is there. Can you identify the language a book was
written in just by looking at the distribution of letters? Note:
the program letter_frequency.py will run on a european language
file that has accented letters (like Italian or German or French)
which are not part of ASCII, but it will do so by dropping all
those characters. You will want to adapt it to handle those
special accented characters.

34.2.5. Applying the frequency analysis to a message

Let’s do this as a sequence of exercises:

Exercise 34.7First type a reasonably long message in English into a file. Then
run your caesar.py or substitution.py on that file to
encrypt it and save the output to another file.

Exercise 34.8Email that file to a “friend” and to a hypothetical “foe”. Only
tell your friend what the Caesar shift or the substitution map is,
and see if the foe can crack the code.

Exercise 34.9Alternate being writer, friend and foe so that everyone in your
group gets to decrypt a message.

Exercise 34.10Is it easier to decode short or long messages?

Exercise 34.11The foe should try to crack the code without knowing what the
substitution table is. How can she use the letter_frequency.py
program to do this?

34.3. Strong crypto

We have seen how easy it is to break simple substitution cyphers.
Those patterns in the distribution of letters are a clear sign that we
are not encrypting very intelligently.

Between the 1880s and 1910s stronger methods of encryption were
invented. The one time pad is a theoretically unbreakable method of
encryption. Both sender and recipient have the same random sequence
of symbols, and each character they send gets folded in some way with
the next symbol in the one time pad.

We will implement something similar to the one time pad, but first we
need to review some aspects of binary representation of numbers.

34.3.1. Binary numbers, XOR, hiding the byte

Remember that characters are represented by their ASCII codes. The
ASCII code for ‘g’ is 103 in decimal, 0x67 in hex, and 01100111 in
binary.

We want to find a way to fold ‘g’ with some random byte (remember: a
byte is an 8-bit number). Let’s choose 01101010. We could fold the
two together in many different ways, but we want to then be able to
separate them back out.

The approach that is usually used is to use the XOR operator. What is
this?

We will apply the various logic operators to bits: if 0 means false
and 1 means true, then we have the following truth tables:

0 OR 0 = 0
0 OR 1 = 1
1 OR 0 = 1
1 OR 1 = 1

0 AND 0 = 0
0 AND 1 = 0
1 AND 0 = 0
1 AND 1 = 1

NOT 0 = 1
NOT 1 = 0

Sometimes people find the behavior of OR to be counter-intuitive
because “1 OR 1 = 1”. People sometimes remember their parents saying
“you can have cake OR you can have ice cream but not both”. That
violates “1 OR 1 = 1”, but parents don’t usually accept this logic.
For parents and cryptographers we have another logical operation
called XOR (exclusive OR). The truth table for XOR is:

0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

This was done one bit at a time. Suppose you have the character
‘g’ (01100111) and our pattern 01101010. The XOR of those two is done
bit-by-bit:

01100111 ('g')
 XOR
01101010 (number from one time pad)
 |
 v
00001101 (encrypted number)

The cool thing about the XOR function is that if you XOR with the same
number again you get back the original: all those bits get flipped
back:

01100111 XOR 01101010 -> 00001101 (the encrypted number)
00001101 XOR 01101010 -> 01100111 (back to 'g'!)

What does this mean? It means that if you know the secret number you
can encrypt your numbers, and you can also decrypt them! And someone
who does not have have the secret number cannot make any progress.

34.3.2. Manipulating bits in python

Python offers us the “bitwise xor” operator which uses the symbol
^

Let us see examples of how to use it:

in the python interpreter, at the >>> prompt, type the following
x = int('01100111', 2)
y = int('01101010', 2)
z = x ^ y
print('%d ^ %d = %d' % (x, y, z))
print('0x%x ^ 0x%x = 0x%x' % (x, y, z))
print('%s ^ %s = %s' % (bin(x), bin(y), bin(z)))
print('to restore the original number:')
print('%s ^ %s = %s' % (bin(x), bin(z), bin(z^y)))
print(bin(x), bin(z^y), x == z^y)

34.3.3. Revisiting random number generators

We have explored random numbers before, but our angle here is slightly
different. We are now interested in how two different people can get
the same stream of random numbers.

First let us look at an example of how to get the first ten numbers in
a stream. At the Python interpreter type:

import random
for i in range(10):
 print(i, random.randint(0, 255))

Now run the same thing in a different terminal. You will see that the
two streams are quite different, even though you are using the same
random number generator in both examples.

The reason for the difference is that the starting point for the
sequence is different. This starting point is called the random
number seed, and by default it is set to a value determined by some
real time event, like the current wall clock time.

But almost all random number generators allow you to set the seed to
a given value, so now let us try running the following code in two
different terminals:

import random
random.seed(7419)
for i in range(10):
 print(i, random.randint(0, 255))

The output will be the same for both: when we set an identical seed,
the random sequences are identical.

Note that the seed (which I set to 7419) could be any integer – each
different seed will produce a different sequence, but the if you use
that integer twice then you get the same sequence.

This setting of the random number seed will be crucial to allowing a
person to decrypt our message.

34.3.4. Implementing tougher encryption

The idea is be to generate a stream of random numbers, use them to
encrypt a stream of bytes with the XOR operation. Later we will use
that same sequence to decrypt the encrypted bytes.

The program which will encrypt text is pad_encrypt.py in
Listing 34.3.1.

Listing 34.3.1 pad_encrypt.py – Simple encrypting program which uses a
one-time pad (in our case a sequence of random numbers)
to encrypt a file.

#! /usr/bin/env python3
import sys
import random

def main():
 ## we need a known sequence, so we use a known random number seed
 seed = 1234
 random.seed(seed)
 fname = ''
 if len(sys.argv) > 2:
 print('error: usage is "%s [filepath]"' % sys.argv[0])
 sys.exit(1)
 elif len(sys.argv) == 2:
 fname = sys.argv[1]
 f = open(fname, 'r')
 else:
 fname = 'standard-input'
 f = sys.stdin
 ## now process the file
 encrypted_text = ''
 for c in f.read():
 # print(c, ord(c), bin(ord(c)))
 ascii_value = ord(c) # turn char into an integer
 if ascii_value > 255:
 continue
 next_random = random.randint(0, 255) # get next random number
 ## find the new character by XORing it with the random number
 crypt_char = ascii_value ^ next_random
 ## add the encrypted character to the stream of encrypted text
 encrypted_text = encrypted_text + chr(crypt_char)
 dump_bytes_as_hex(encrypted_text)

def dump_bytes_as_hex(bytes, show_ascii=False):
 """print out a stream of bytes as 2-digit hex bytes; optionally
 also show if there are valid ASCII substrings"""
 hex_line = ''
 ascii_line = ''
 for i in range(len(bytes)):
 if i > 0 and i % 15 == 0:
 print_line(hex_line, ascii_line, show_ascii)
 hex_line = ''
 ascii_line = ''
 hex_line += ' 0x%02x' % ord(bytes[i])
 if bytes[i].isalnum():
 ascii_line += bytes[i]
 else:
 ascii_line += '.'
 ## print the final bytes
 print_line(hex_line, ascii_line, show_ascii)

def print_line(hex_line, ascii_line, show_ascii):
 print(hex_line, end="")
 if show_ascii:
 ## attempt at being "clever": print 4 spaces plus some extra
 ## if the line is shorter, so that the printable part is
 ## always aligned
 print(' '*(4 + 5*(15 - len(ascii_line))), end="")
 print(ascii_line, end="")
 print()

main()

You can look at the result of encrypting a small file by typing a
paragraph into a text file and running pad_encrypt.py filename and
for very short snippets you can do something like echo "just three
words" | python3 pad_encrypt.py and get:

 0x8b 0x4e 0x70 0x5a 0x31 0x5e 0x5a 0xc7 0x1c 0x6d 0x2f 0x7f 0xde 0x85 0x89
 0x3f 0x24

As you can see the program pad_encrypt.py outputs the encrypted
bytes as hex numbers that look like 0x5a. This is because these
encrypted bytes would seldom be readable as part of a string: most of
them would not be ascii values for anything printable.

34.3.5. Decrypting this tougher encryption

The program to decrypt text encoded by pad_encrypt.py is
pad_decrypt.py in Listing 34.3.2.

Listing 34.3.2 pad_decrypt.py – Simple decrypting program which uses a
one-time pad (in our case a sequence of random numbers)
to encrypt a file.

#! /usr/bin/env python3
import sys
import random

def main():
 ## we need a known sequence, so we use a known random number seed
 seed = 1234
 random.seed(seed)
 fname = ''
 if len(sys.argv) > 2:
 print('error: usage is "%s [filepath]"' % sys.argv[0])
 sys.exit(1)
 elif len(sys.argv) == 2:
 fname = sys.argv[1]
 f = open(fname, 'r')
 else:
 fname = 'standard-input'
 f = sys.stdin
 encrypted_letter_count = [0]*256
 decrypted_letter_count = [0]*26
 decrypted_text = ''
 for line in f.readlines():
 words = line.split()
 ## extract the encrypted characters
 for word in words:
 crypt_char = int(word, 16)
 encrypted_letter_count[crypt_char] += 1 # track a histogram
 next_random = random.randint(0, 255) # get next random number
 ascii_value = crypt_char ^ next_random
 if ascii_value >= ord('a') and ascii_value <= ord('z'):
 decrypted_letter_count[ascii_value-ord('a')] += 1 # track a histogram
 decrypted_char = chr(ascii_value)
 ## add the decrypted character to the stream of decrypted text
 decrypted_text = decrypted_text + decrypted_char
 from letter_frequency import print_frequency_histogram
 print_frequency_histogram('king lear encrypted',
 encrypted_letter_count)
 print()
 print_frequency_histogram('king lear decrypted',
 decrypted_letter_count, offset=ord('a'))
 ## now write the output to a file ending in _decrypted
 fout = fname + '_decrypted'
 open(fout, 'w').write(decrypted_text)
 print('output written to %s' % fout)

def dump_bytes_as_hex(bytes, show_ascii=False):
 """print out a stream of bytes as 2-digit hex bytes; optionally
 also show if there are valid ASCII substrings"""
 hex_line = ''
 ascii_line = ''
 for i in range(len(bytes)):
 if i > 0 and i % 15 == 0:
 print_stuff(hex_line, ascii_line, show_ascii)
 hex_line = ''
 ascii_line = ''
 hex_line += ' 0x%02x' % ord(bytes[i])
 if bytes[i].isalnum():
 ascii_line += bytes[i]
 else:
 ascii_line += '.'
 ## print the final bytes
 print_stuff(hex_line, ascii_line, show_ascii)

def print_stuff(hex_line, ascii_line, show_ascii):
 print(hex_line, end="")
 if show_ascii:
 print(' '*(4 + 5*(15 - len(ascii_line))), end="")
 print(ascii_line, end="")
 print()

if __name__ == '__main__':
 main()

You will notice that pad_decrypt.py has an interesting feature: it
uses the function print_frequency_histogram() from
letter_frequency.py to show us the frequency histogram for both
the encrypted and decrypted text:

...

====== frequency histogram for king lear encrypted ======
 0 -- 590 -- XXX
 1 -- 581 -- XXX
 2 -- 615 -- XXX
 3 -- 586 -- XXX
 4 -- 654 -- XX
 5 -- 624 -- XX
 6 -- 620 -- XXX
 7 -- 607 -- XX
 8 -- 614 -- XXX
 9 -- 596 -- XX
 10 -- 614 -- XXX
...
249 -- 596 -- XX
250 -- 598 -- XX
251 -- 669 -- XXX
252 -- 630 -- XX
253 -- 569 -- XX
254 -- 620 -- XXX
255 -- 587 -- XXX

====== frequency histogram for king lear decrypted ======
 0 -- a 7882 -- XXXXXXXXXXXXXXXXXXXXXXXXX
 1 -- b 1345 -- XXXX
 2 -- c 2220 -- XXXXXXX
 3 -- d 4274 -- XXXXXXXXXXXXX
 4 -- e 15707 -- XX
 5 -- f 2050 -- XXXXXX
 6 -- g 2064 -- XXXXXX
 7 -- h 6733 -- XXXXXXXXXXXXXXXXXXXXX
 8 -- i 6345 -- XXXXXXXXXXXXXXXXXXXX
 9 -- j 85 --
 10 -- k 1039 -- XXX
 11 -- l 4586 -- XXXXXXXXXXXXXX
 12 -- m 2948 -- XXXXXXXXX
 13 -- n 7042 -- XXXXXXXXXXXXXXXXXXXXXX
 14 -- o 9503 -- XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 15 -- p 1602 -- XXXXX
 16 -- q 61 --
 17 -- r 7450 -- XXXXXXXXXXXXXXXXXXXXXXX
 18 -- s 6516 -- XXXXXXXXXXXXXXXXXXXX
 19 -- t 10001 -- XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 20 -- u 4442 -- XXXXXXXXXXXXXX
 21 -- v 414 -- X
 22 -- w 2320 -- XXXXXXX
 23 -- x 118 --
 24 -- y 2663 -- XXXXXXXX
 25 -- z 31 --
output written to king-lear-encrypted-pad.txt_decrypted

You should be delighted at how the encrypted text has no discernible
pattern in its frequency distribution, while the decrypted version has
the pattern we are familiar with.

This means that one cannot decrypt this code using frequency
analysis.

34.4. Further reading

34.4.1. Technical details

	https://en.wikipedia.org/wiki/XOR_cipher

34.4.2. Historical

	https://en.wikipedia.org/wiki/Venona_project which contains the
statement “[…] Due to a serious blunder on the part of the
Soviets, some of this traffic was vulnerable to cryptanalysis. The
Soviet company that manufactured the one-time pads produced around
35,000 pages of duplicate key numbers, as a result of pressures
brought about by the German advance on Moscow during World
War II. […]”

	“The Code Book”, by Simon Singh

34.4.3. Videos

	Crash Course https://www.youtube.com/watch?v=jhXCTbFnK8o

	Cris Moore’s talk on cryptography:
https://www.youtube.com/watch?v=3J2RHGVf0ho

 35. Other languages - Go

35. Other languages - Go

Section author: Sophia Mulholland <smulholland505gmail.com>

https://golang.org/dl/

35.1. Hello World in Go

Go is similar in syntax to C, yet simpler in many ways. C definitely has
more structure and syntax rules that Go does not have, which makes Go
simpler and easier to learn. Writing a short program in Go looks like a
combination of C and Python. Syntax like this allows you to get
comfortable with the language quickly and move on to working on harder
things.

First, we will get comfortable with running a Go program. In an editor
such as emacs, open up a new file called “hello.go”.

The first program to write in Go is a simple “Hello World” which is
shown below:

Listing 35.1.1 ‘hello.go’

package main

import "fmt"

func main() {
	fmt.Println("Hello, World!")
}

Notice:
Every Go program should have a ‘package main’ defined at the top
of the code, with the majority of programs using that package. The line
‘import “fmt”’ is basically like writing ‘#include <stdio.h>’ in C.
It imports the package ‘fmt’ that allows you to print things. The last
thing to notice is that Go does not have any semicolons.

Compile and run this code with

$ go build hello.go
$./hello
$ Hello, World!

OR optionally the Go compiler supports a ‘go run’ command which will
just compile and run it in the same step:

$ go run hello.go
$ Hello, World!

35.2. Writing a Go program with command line arguments

Please see the chapter on differential equations for the context to this
program. It is meant to graph the output of using the euler method to
solve equations and compare it with the exact answer.

Let’s write another simple program to get familiar with the syntax of
the language called ‘euler-method.go’.

Listing 35.2.1 ‘euler-method.go’ solves differential equation using Euler’s method

package main

import (
	"fmt"
	"math"
	"os"
	"strconv"
)

func differential (x float64, y float64) float64 {
	return (2*x)-2
}

func solution (sx float64, sy float64) float64 {
	return math.Pow(sx, 2) - (2*sx)
}

func main() {
	var n_steps int = 1
	if len(os.Args) == 1 {
		n_steps = 1000
	} else if len(os.Args) == 2 {
		n_steps, _ = strconv.Atoi(os.Args[1])
	} else {
		fmt.Println("error usage is %s [n_steps]\n", os.Args[0])
		os.Exit(1)
	}
	var set_y float64 = 0
	// define initial x, initial y, step size, and # of steps
	var interval float64 = 10
	var dt float64 = interval/float64(n_steps)
	var xi float64 = 0
	var yi float64 = set_y
	for j := 0; j < int(n_steps); j++ {
		//find exact solution to compare approximation with	
		var exact float64 = solution(xi, yi)
		//solve differential with (xi, yi)
		var m float64 = differential(xi, yi)
		//use tangent line to approximate next y value from previous y value
		var new_y float64 = yi + dt * m
		//increase x by step size
		var new_x float64 = xi + dt
		xi = new_x
		yi = new_y
		fmt.Println(xi, yi, exact)
	}
}

As we can see in the code, Go has a different way of declaring variables
and handling command line arguments. In Go, handling command line
arguments is simpler as you can import the package “os” and not have to
deal with the argc and *argv[] or understanding pointers yet. By just
importing “os” you can deal with command line inputs as an array and can
check the length of that array rather than dealing with the number argc.

To deal with converting this array of string inputs into integers, we
can import “strconv” which converts the strings into ints. However, this
strconv function converts it into a number plus a <nil> at the end so
avoid this compiler error when we try to declare n_steps, we can
declare the variable n_steps along with the blank identifier ‘_’ to
avoid having to declare all the return values (<nil>).

$ go build euler-method.go
$./euler-method 1000 > euler-method.dat

gnuplot> plot "euler-method.dat" using 1:2 with lines
gnuplot> replot "euler-method.dat" using 1:3 with lines

[image: ../_images/euler-method1.svg]

35.3. Goroutines and channels

A cool thing that Go does well is run goroutines. These are
functions that can run concurrently with other functions.
Concurrency means that the functions are running at the same time
rather than waiting for one to finish and then the next program starts.
Basically it is used when we need to handle multiple things at the same
time. Go makes these kinds of programs simple to write and easier to
understand because concurrency is generally difficult to understand in
computing. Also, these goroutines do not take up a lot of memory and so
they are very fast.

Threads are most commonly used to run things concurrently. All processes
have at least one main thread that executes a task. Threads take a fixed
amount of memory in the stack to create and when many threads are used,
switching between them gets messy.

However, using goroutines is like a step above threads. The programmer
deals with them while the computer does not even know goroutines exist.
They take little memory to create, 2kB, which means you can have
millions of them running on one CPU. They can also shift in size, to
accommodate the stack. Go also deals with the switching of goroutines
for the programmer, pausing and running. This is an advantage to
goroutines because the programmer does not need to say ahead of time
when to stop and start the threads.

Let’s see how to implement these goroutines.

Listing 35.3.1 ‘goroutines-hello.go’

package main

import (
	"fmt"
)

func hello() {
	fmt.Println("Hello world")
}

func main() {
	go hello()
	fmt.Println("main function")
}

We have a function called hello, which looks just like a normal
declaration of a function and what makes it a goroutine is putting ‘go’
in front of the function call. So let’s run it.

$ go build goroutines-hello.go
$./goroutines-hello

The output is

$ main function

That’s weird. We called the function hello(), and it did not print
“Hello world” like we wanted. That is because by making it a goroutine,
the compiler did NOT wait for it to finish its task of printing “Hello
world” and it went on with the rest of the main function. When the main
function finishes, the program is over no matter what, and hello() did
not have enough time to finish.

Let’s write a program that deals with more goroutines and introduce a
way to make sure the program waits for the goroutines to finish.

Listing 35.3.2 ‘goroutines.go’

package main

import (
	"fmt"
	"time"
)

func hello() {
	fmt.Println("Hello World")
}

func listnumbers() {
	for i := 0; i < 10; i++ {
		fmt.Println(i)
	}
}

func squareroot(x int) {
	if x == 2 {
		fmt.Println("Oh no, a 2")
	} else {
		fmt.Println("good choice")
	}
}

func main() {
	//run all three goroutines
	go hello()
	go listnumbers()
	go squareroot(3)
	//wait for the goroutines to finish
	time.Sleep(2 * time.Second)
	fmt.Println("All finished")
}

$ go build goroutines.go && ./goroutines

If we ran it in the exact same way, the goroutines would not have time
to finish so let’s help it do everything it’s supposed to. Notice how we
added a line for the computer to “sleep” as the goroutines finished and
it we run it, it prints out everything we wanted it to. If you run it
multiple times you’ll find the order of the outputs changes, as
depending on which goroutine is running on which core, it will finish
first.

So these goroutines are cleaner and easier to implement than in C where
you need pointers and lots of lines of code where it can get messy
quickly.

So, in these programs we have no way of knowing when the goroutines end.
Therefore, we have to make the program wait for two seconds to be sure
it does. This is where channels come in.

A way goroutines can communicate with each other is through channels.
Channels can send and receive data of one type. If a goroutine sends
something to a channel, it automatically waits until a goroutine can
receive that data. It will be blocked until the goroutine requests that
data and vice versa.

Listing 35.3.3 ‘channels-example.go’

//channels-example.go
package main

import (
	"fmt"
	"time"
)

func pinger (c chan string) {
	for i := 0; ; i++ {
		//send "ping" to the channel
		c <- "ping"
	}
}
//channel gets "ping" and waits until printer() is ready to receive "ping"

func printer (c chan string) {
	for {
		//receive "ping" from channel and assign it to msg
		msg := <- c
		fmt.Println(msg)
		time.Sleep(time.Second)
	}
}

func main() {
	//makes a channel called c
	//strings are passed on it
	var c chan string = make(chan string)

	go pinger(c)
	go printer(c)

	//input receives data from the channel c
	//input := <- c
	//will print ping
	//fmt.Println(input)

	var input string
	//scans the input from c channel and prints it out
	//does not stop until you exit the program running
	fmt.Scanln(&input)
}

$ go build channels-example.go && ./channels-example
$ ping

So this program created the channel c, and ran two goroutines (pinger()
and printer()). Pinger() sends “ping” to the channel and Printer()
prints out the message it received from the channel. In the main
function, we also show that the variable ‘input’ can receive data from
the channel too and print it out.

So goroutines allow functions to be run concurrently and channels are
how these goroutines communicate. Go offers an easy way to implement
them and it is

35.4. More complicated Go program

Lastly, let’s take a look at a more complicated program from the
differential equations chapter rewritten in Go.

Listing 35.4.1 ‘damped-spring-with-friction-plain.go’

package main

import (
	"fmt"
	"math"
)

// acceleration due to gravity
var g = 9.8
// physics values for spring equation
var k = 3.0
var m = 2.0
// physics for air friction
var air_friction = 3
// physics for frictional damping force
var damp = 0.5
var F0 = 10.0			// constant driving force

func Acceleration (t float64, v float64, x float64) float64 {
	return ((-k*x) - (damp*v) + (F0*math.Cos(8.0*t))) / m
}

func Harmonic_exact (t float64, st float64, sx float64, sv float64) float64 {
	//return math.Cos(t)
	return sx*math.Cos(math.Sqrt(k/m - damp*damp/(4*m*m))*t)*math.Exp((-damp/(2*m)) * t)
}

func Falling_body_exact (t float64, st float64, sx float64, sv float64) float64 {
	return sx + sv*t - 0.5*g*math.Pow(t,2)
}

func Damped_spring () {
	//set variables for falling_body_exact()
	var set_t float64 = 0
	var set_x float64 = 5 /* try 10 for falling body, 5 for harmonic */
	var set_v float64 = 0	/* try 10 for falling body, 0 for harmonic */
	//initial variables
	var interval float64 = 0.001 // how many seconds
	var n_steps float64 = 1000000
	var dt = interval/n_steps // size of steps
	var ti = set_t
	var xi = set_x
	var vi = set_v
	for j := 0; j < int(n_steps); j++ {
		var exact float64 = Harmonic_exact(ti, set_t, set_x, set_v)
		var acc float64 = Acceleration(ti, vi, xi)
		var new_v = vi + (dt * acc)
		var new_x = xi + (dt * vi)
		// increase t by dt
		var new_t = ti + dt
		
		vi = new_v
		xi = new_x
		ti = new_t
		fmt.Println(ti, vi, xi, exact);
	}
}

func main () {
	Damped_spring();
}

So this program outputs a solution to a differential equation solved by
Euler’s method. The length is pretty much the same as the C program
however you can see there are no double types in Go. Instead, it offers
the equivalent float64 type which indicates it requires 64 bits in
memory.

$ go build damped-spring-with-friction-plain.go
$./damped-spring-with-friction-tut > damped-spring.dat
gnuplot> plot “damped-spring.dat” using 1:3 with lines
gnuplot> replot “damped-spring.dat” using 1:4 with line

This output is the same as the chapter on differential equations, go
to that chapter for an explanation on what it means. That chapter has the same program as this damped spring one, except it is written in C.

SOURCES

https://golang.org/cmd/go/

https://github.com/vladimirvivien/go-cshared-examples

https://golangbot.com/hello-world/

https://medium.com/rungo/achieving-concurrency-in-go-3f84cbf870ca

https://www.sohamkamani.com/blog/2017/08/24/golang-channels-explained/

 36. Appendix: An itinerary for guest lectures

36. Appendix: An itinerary for guest lectures

This appendix shows some examples of possible guest lectures which
would show some of the material in this book. It is mostly meant to
provide links

36.1. Motivation for linking computing and scholarship

36.1.1. Personal story

	1980 and the first personal computres

	1983 and the Reed College physics department requiring that we learn
to program

	1983 and David Basin trading: he teaches me C and UNIX if I teach
him to play guitar

	1985 and Nerdix

	1985 and watching Keith Packard hack

	Realizaing that others did not get this level of computing
instruction

	1992 and an impossible physics thesis thanks to software
sophistication

36.1.2. Software freedom

The only reason I have enjoyed my career as a physicist is because of
the existence of software freedom.

36.1.3. What can be done in various disciplines

Although I have not seen it represented graphically, there is a
timeline

36.1.4. How a physicist-hacker looks at things

The glow worms in New Zeland.

Constellations in the random number calculation of pi.

36.2. A tour of topics

36.2.1. The history and calculation of pi

Section 9

36.2.2. Generating music

To give this presentation it is useful to first have the students
install the sox utilities on their own computers.

Section 30

	https://www.dataquest.io/blog/free-datasets-for-projects/

 37. Appendix: How to build the book

37. Appendix: How to build the book

37.1. Motivation, prerequisites, plan

Our goal here is to show you how to build the book from its raw text
into the HTML and other formats in which the book is published.

We use the Sphinx typesetting system bla bla python docs use Sphinx
bla bla FIXME

Prerequisites:

	Installing the tools needed to clone and build the book.

	Learning how to use the Sphinx documentation system.

37.2. The tools needed

We need tools to get the book from the network repository (a git
repository, hosted on codeberg.org), and to build the book (using the
sphinx documentation system).

$ sudo apt install -y git make wget
$ sudo apt install -y gnuplot-qt
$ sudo apt install -y ffmpeg
$ sudo apt install -y python3-pip
we also need to run the examples that make plots for the books;
for that we need scipy and matplotlib
$ python3 -m pip install --user --upgrade matplotlib numpy scipy
install the LaTeX packages needed to build the printable book
with "make latexpdf"
$ sudo apt install -y texlive-latex-base texlive-latex-recommended
$ sudo apt install -y texlive-fonts-recommended
$ sudo apt install -y biber latexmk graphviz dot2tex
$ sudo apt install -y librsvg2-bin pdf2svg
$ python3 -m pip install --user --upgrade sphinx sphinxcontrib-bibtex sphinxcontrib-jsmath
$ python3 -m pip install --user --upgrade sphinxcontrib-programoutput
$ python3 -m pip install --user --upgrade sphinx-rtd-theme

$ python3 -m pip install --user --upgrade sphinxcontrib.programoutput
$ python3 -m pip install --user --upgrade sphinxcontrib.bibtex
$ python3 -m pip install --user --upgrade recommonmark
$ python3 -m pip install --user --upgrade sphinxcontrib.bibtex

37.3. Version control: cloning the repository (you only do this once)

We use git to access the book repository on the
https://codeberg.org/ version control site.

If you go to
https://codeberg.org/markgalassi/serious-programming-courses you will
find instructions to clone the repository with git. They will look
something like:

cloning instruction if you have an account on codeberg:
$ git clone git@codeberg.org:markgalassi/serious-programming-courses.git
cloning instruction if you are coming in anonymously
$ git clone https://codeberg.org/markgalassi/serious-programming-courses.git

The first link will work for anyone, but then you cannot push changes
back. The second is for collaborators who are modifying the book.

You can then change in to the directory into which you have cloned the
repository, and examine what you have, with:

$ cd serious-programming-courses
$ ls
$ cd small-courses
$ ls
$ find . -name '*.rst'

That last find command will show you all the files that end in
.rst. These files contain the text of the book written as simple
text with the light-weight markdown annotations. Examine the files.

37.4. Building the book

The sphinx documentation system will build the book in either HTML or
EPUB format. The details are all taken care of and you can do so by
typing:

$ cd serious-programming-courses/small-courses
$ make html ## (or "make epub")

You can then point your browser to the file _build/html/index.html
to see what it all looks like.

37.5. Making and committing changes (your day-to-day)

You can make changes to the .rst files. When you do so you need
to re-run make html and then view the changes by reloading the
HTML files in your browser.

First you should incorporate changes made by other people. You type:

$ git pull

Then you can make some changes to files, after which you can commit
them to the git repository with

$ git commit -a

This commit will open an editor so that you can put in a log message.
This message should be thoughtful and describe briefly what changes
you made to each file you modified.

If you are a collaborator on the book and have write permission on
sourceforge you can now push your changes for other collaborators to
see with:

$ git push

(If you do not have write permission you can contact the authors to
get your changes to them.)

So the workflow is:

	Pull and update from sourceforge.

	Make changes to the book by modifying the .rst files.

	Commit the changes with git commit -a

	If you have write permission on codeberg, push in the code with
git push

 38. Appendix: How to add a chapter

38. Appendix: How to add a chapter

Motivation

The purpose of this appendix is to show you how you might contribute a
chapter to this book. You should pay attention to the structure of
how the topic is presented: what sections do we have at the beginning
and end of the chapter, how we introduce exercises, and then be able
to start writing about your topic.

Prerequisites

	An idea you want to write about.

	Learning how to use the Sphinx documentation system to add to the
book. This is described in Section 37.

Plan

In keeping with our hands-on approach I will demonstrate the idea with
a sample chapter that is actually an interesting mini-course.

The topic I will use for this demonstration is the quadratic
formula. This is an important topic: one of the few formulas that
you learn in middle school and then might go on using for the rest of
your life.

38.1. Anatomy of the chapter

	Motivation, prerequisites, plan

	Simplest example of a calculation.

	Simplest example of a plot.

	A short Python program which generates or analyzes data related to
the topic.

	Applications to real-world situations, such as science or “life”.

	Exercises. Exercises can be inserted at any point in the text.
The exercises can also lead in to more advanced work.

	Further study. References and ideas to learn more about the topic
than can be done in the 1.5 hour mini-course.

I will now show what the sample chapter looks like, prefixing every
section title with “The chapter:” and putting notes in square brackets
explaining the “pedagogical” motivation for some of what I put into
the chapter.

NOTE: from here on we show the mock chapter.

38.2. The chapter: Title

Title: The quadratic formula

38.3. The chapter: frontmatter

Motivation

Our goal here is to learn to find roots of second degree
polynomials. What does this mean? If we have a second degree
polynomial, which looks like \(ax^2 + b x + c\), we look for
values of x that give the result \(ax^2 + bx + c = 0\).

We will work toward the quadratic formula. This, like the
Pythagoras theorem, is one of the few formulas which many people
continue to use in life after they leave school. This is because
second degree polynomials come up in many areas of science, even areas
so simple that we might deal with them in life.

Our examples will involve:

	physics
	figuring out how long it takes a ball that you drop to hit the
ground

	geometry
	or what is the biggest area rectangle you can draw with a fixed
perimeter.

Prerequisites

	The 10-hour “serious programming” course.

	The “Data files and first plots” mini-course in
Section 2

Plan

We will start by introducing the equation to be solved, then we will
show the solution, after which we will look at some simple examples
and then some examples of scientific calculations we can make with the
quadratic formula.

For some very simple polynomials we will see that we can guess the
solution, but most of the time it will not be that easy, so we will
show:

	The quadratic formula, which finds the roots to second degree
polynomials (Section 38.6).

	A numerical approximation. We will write a computer program which
scans through the real number line looking for zeros
(Section 38.7). This technique also
applies to more complicated functions than the quadratic equation.

38.4. The chapter: The problem

38.4.1. A basic equation

The problem is that, given numbers a, b and c, we want to find a value
of x for which:

(38.4.1)\[a x^2 + b x + c = 0\]

For example, if \(a=1\) and \(b=2\) and \(c=0\) then we
have a simple case of Equation (38.4.1):

(38.4.2)\[x^2 - 5x + 6 = 0\]

and a bit of guesswork tells us that both \(x=2\) and \(x=3\)
will make Equation (38.4.2) out:

Plugging \(x=3\) into Equation (38.4.2) we
get:

\[3^2 - 5 \times 3 + 6 = 9 - 15 + 6 = 4 - 4 = 0\]

And plugging \(x=0\) into Equation (38.4.2)
we get:

\[2^2 - 5 \times 2 + 6 = 4 - 10 + 6 = 0\]

so Equation (38.4.2) is satisfied when you plug 2
into x, and also when you plug 3 into x.

For this polynomial we were able to find the roots by guesswork. As I
mentioned, most of the time we will not be able to guess the solutions.

38.4.2. Some terminology

	Polynomial
	A function \(f(x)\) which is a sum of terms with x
at various powers. For example \(f(x) = 7x^3 + 2x^2 - 4x + 2\)

	Second degree polynomial
	A polynomial where the highest power is \(x^2\).

	Parabola
	The shape of the plot of a second degree polynomial.

	Roots of a polynomial
	The values for x for which \(y = 0\). These are the
solutions to the equations we have been looking at.

	Numerical approximation
	An approximate solution to a problem found by carrying out
calculations that get you closer and closer to a solution.

	Numerical analysis
	The academic discipline which resolves around finding numerical
approximations to the solutions of mathematical problems.

38.4.3. But wait! Two solutions??

[Pedagogical goal: I want to toss in a mnemonic which has always
helped me in understanding solutions to equations. A first order
equation has up to one solution; a second order equation has up to two
solutions, and so forth.]

You should find it notable that there are two solutions to this
equation. You might have previously studied equations like \(7
x + 4 = 0\) which have a single solution \(x = -4/7\). So why do
we have two solutions for this one?

Here are at least three ways of looking at this:

38.4.3.1. Squaring numbers removes the minus sign

If you take a simple second degree equation like \(x^2 = 16\), you
can easily see that \(x=4\) and \(x=-4\) will both give you 16
when you square x. So the existence of the term \(x^2\) means
that you can have up to two different values of x that satisfy the
same equation.

38.4.3.2. Multiplying two first degree polynomials

Returning to Equation (38.4.2), let’s take a look
at the two solutions 2 and 3. Now form two first degree equations
that are easily solved by 2 and 3: \(x-2\) and \(x-3\). If
one of those expressions is always zero when x is a solution, then the
product of them \((x-2) \times (x-3)\) will always be zero. So we
can write:

\[(x-2) \times (x-3) = 0\]

But we can also work out that product of \((x-2)\times(x-3)\):

\[(x-2) \times (x-3) = x^2 - 2x - 3x + 2 \times 3 = x^2 - 5x + 6\]

which is our euqation again! This is another way to see clearly that
both settings for x, 2 and 3, will make that equation be zero.

38.4.3.3. Plotting the polynomial and looking at zero crossings

If you plot the polynomial, as we will see below in
Figure 38.5.1 and other figures in that section, you see that
the shape of the plot is what we call a parabola, and that the
values of x for which it crosses the x axis also depend on the values
of a, b and c.

38.5. The chapter: Plots

A very energetic math professor in college used to always say “Let’s
get a picture going!” when embarking on understanding something new.

So here are some plots to get a visual feel for what these solutions
are. We start with the simplest polynomial \(y=x^2\) which has a
single solution at \(x=0\).

Listing 38.5.1 Simplest second degree polynomial \(y = x^2\)

set grid
plot x**2

[image: ../_images/poly-x2.svg]
Figure 38.5.1 Plot of the simplest second degree polynomial \(y = x^2\).
Note the only root is at \(x=0\).

Then we look at a more complicated second degree polynomial. The
shape is the mostly similar, but the position is different. You can
see from Figure 38.5.2 that it cuts through the x axis
in two points: \(x=2\) and \(x=3\).

Listing 38.5.2 Second degree polynomial \(y = x^2 - 5x + 6\)

set grid
plot [1:4] x**2 - 5*x + 6

[image: ../_images/poly-x2-2roots.svg]
Figure 38.5.2 Plot of the second degree polynomial \(y = x^2 - 5x\). Note
the roots at \(x=2\) and \(x=3\). Also note that we had to
narrow the values of x to go between 1 and 4 (instead of the
default -10 to 10 that gnuplot does). This is so that we can see
more closely where \(y = 0\) occurs.

And now for an example where you have no solutions: y will never be
zero.

Listing 38.5.3 Second degree polynomial \(y = x^2 - x + 24\)

set grid
plot x**2 - x + 24

[image: ../_images/poly-x2-no-roots.svg]
Figure 38.5.3 Plot of the simplest second degree polynomial \(y = x^2 - x +
24\). Note that there are no roots: the plot is entirely above the
x axis.

Our final plot will show the example of a plot which points downward.
This happens when the \(x^2\) term has a minus sign on it.

Listing 38.5.4 Second degree polynomial \(y = -x^2 + x + 2\)

set grid
plot [-3:4] -x**2 + x + 2

[image: ../_images/poly-x2-upside-down.svg]
Figure 38.5.4 Plot of the second degree polynomial \(y = -x^2 + x + 2\) which
points the opposite way: the minus sign in \(-x^2\) makes the
branches of the parabola point down instead of up. It has roots at
\(x=1\) and \(x=-2\).

What do we get out of all these plots? We have explored the landscape
of second degree polynomials and seen that changing the parameters a,
b and c affects the direction and placement of the figure, including
the places in which the plot crosses the x axis. These are called the
roots of the polynomial.

We have also seen how the values of a, b and c determine if there will
be 2 solutions (the two arms of the parabola intersect the x axis), or
one solution (the bottom of the parabola grazes the x axis), or no
solutions (the parabola is entirely above or entirely below the x
axis).

38.6. The chapter: The quadratic formula

Here is our centerpiece: the quadratic formula. The two solutions to
the equation

\[ax^2 + bx +c = 0\]

are:

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\]

As we mentioned above, there can be up to two solutions. Sometimes
there will be one solution (when \(b^2-4ac = 0\)), and sometimes
there will be no real solutions (when \(b^2-4ac < 0\), since as
you know the square root of a negative number is not a real number).

So how do we apply this? Here are some examples from the plots we
showed in Section 38.5.

In the equation \(x^2=0\) we have \(a=1, b=0, c=0\) so there
is a single root:

\[x = \frac{-0 \pm \sqrt{0^2 - 4 \times 1 \times 0}}{2 \times 1} = 0\]

Looking at \(y = x^2 - 5x + 6\) we have \(a=1, b=-5, c=6\), so
the two roots are:

\[x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \times 1 \times 6}}{2
\times 1} = \frac{5 \pm \sqrt{25 - 24}}{2} = \frac{5 \pm
1}{2} = (3, 2)\]

Now for the polynomial \(y = x^2 - x + 24\). This has \(a=1,
b=-1, c=24\) and the quadratic formula gives:

\[x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \times 1 \times 24}}{2
\times 1} = \frac{1 \pm \sqrt{-95}}{2} = \frac{1 \pm
\sqrt{-95}}{2}\]

which has no solutions because \(b^2-4ac = -95\) which is negative
and thus has no real square roots.

Finally the upside-down parabola \(y = -x^2 + x + 2\) has
\(a=-1, b=1, c=2\) and the solutions are:

\[x = \frac{-1 \pm \sqrt{1^2 - 4 \times (-1) \times 2}}{2 \times (-1)} =
\frac{-1 \pm \sqrt{5}}{-2} = ((1-\sqrt{5})/2, (1+\sqrt{5})/2)\]

All of these solutions should match the places in the plots where the
graph crosses the axes.

38.7. The chapter: Numerical approximation

[Pedagogical goal: it’s important to have a bit of programming for
each math/science topic we demonstrate.]

We have two goals in this section: one is to demonstrate how you can
write programs to give a numerical approximation to the correct
answer.

The other goal is to show a method which will also help with more
complicated root-finding problems. You see, quadratic equations are
one of the simplest kinds of equations. Once you go to cubic (third
degree) polynomials the formula is much more complicated, for quartic
(fourth degree) polynomials it’s crazy, and for fifth degree and
higher there are no formulae. [1]

“Root finding” is one of the most studied topics in numerical analysis
and we will just scratch the surface here, but we will get some good
results. Type in the program in Listing 38.7.1
and try running it.

Listing 38.7.1 numerical-zeros.py Look at where a second degree
polynomial crosses zero.

#! /usr/bin/env python

"""This program shows an example of looking for roots of a polynomial.
We start with a guess that the roots will be between x = -10 and x= 10
and sample points until we find that y has changed sign.
"""

import math

FIXME: must write it; look for zero crossings by looking for a
change in sign

lowest = -10
highest = 10
step = 0.01

def main():
 x = lowest
 y = poly(x)
 previous_sign = -1 if y < 0 else 0
 while x <= highest:
 y = poly(x)
 sign = -1 if y < 0 else 1
 x += step # move along the x axis
 if previous_sign != sign:
 print('we found a root at approximately x = %g' % x)
 previous_sign = sign

def poly(x):
 y = -x**2 + x + 2
 # y = x**2 - 5*x + 6
 # y = 7*x**2 + 2*x - 40
 ## now try a higher order polynomial
 # y = 2*x**5 - 3*x**4 - x**3 + 2*x**2 + x - 1
 return y

main()

It will tell you an approximate

38.8. The chapter: Applications

38.8.1. Physics: falling bodies

One of the earliest successes of physics, hundreds of years ago, was
being able to calculate what happens with falling bodies, both those
that fall straight to the ground and those that are constrained (like
a pendulum).

The force pulling a body to the ground on the surface of the earth is
given by:

\[F = -mg\]

where m is the object’s mass (typically measured in kilograms, kg), and
\(g\) is the acceleration of gravity on the earth’s surface
(typically measured in meters per seconds squared, \(m/s^2\)).

You can then couple this with Newton’s second law for how any body
feels a force:

\[F = m a\]

where a is the acceleration produced by that force. With some
elementary calculus you can find what the height of the body is at any
moment in time \(h(t)\). If you have not yet studied calculus
then bear with me and you will soon see the result which you can just
trust.

The acceleration is the second derivative of the position: \(a =
\frac{d^2h(t)}{dt^2}\). The solution to the physics equation is:

\[h(t) = h_0 + v_0 t - \frac{1}{2} g t^2\]

where:

	\(h_0\) is the height from which we drop it. Let’s say we hold
it up to 2 meters.

	\(v_0\) is the initial velocity you give it. In our case
\(v_0 = 0\) because we are just letting it drop.

So now our physics question is: after how much time does the body hit
the ground?

To answer this we note that we hit the ground when the height is 0:
\(h(t) = 0\). If we substitute the physics equation for
\(h(t)\) we get:

\[0 = h_0 + v_0 t - \frac{1}{2} g t^2\]

Since \(v_0\) is 0, we have:

(38.8.1)\[h_0 - \frac{1}{2} g t^2 = 0\]

If we put in the values we discussed for initial height and
acceleration of gravity (\(h_0 = 2\) and \(g = 9.81\)) we get:

\[-4.905 \times t^2 + 2 = 0\]

Now we can use our quadratic formula with \(a=-4.905, b=0, c=2\)
and we get:

(38.8.2)\[t = \frac{-0 \pm \sqrt{0^2 - 4 \times (-4.905) \times 2}}{2
\times -4.905} = \frac{\pm \sqrt{39.24}}{-9.81} = \pm 0.64\]

The two solutions are then \(\pm 0.64\) which is measured in
seconds.

In a physics problem, when you have two possible solutions due to a
“plus or minus” in the square root you look at which of those times
makes sense physically. Clearly the negative solution (it hits the
ground in the past) does not make sense, so we conclude that the time
we hit the ground is:

\[t = 0.64 \; {\rm seconds}\]

This value of t solves the equation for when the object hits the
ground.

38.8.1.1. Exercises for this section

	Try dropping a somewhat dense object from a height of 2 meters and
see if you can get a good measurement of how long it takes to hit
the ground.

	Solve the same equation for t using a height of 3 meters and 4
meters, and see if you can safely time how long it takes a body
to fall from those heights.

	Write out the general solution to Equation (38.8.1).
You can use the quadratic formula with \(a=-g, b=v_0, c=h_0\).

	Discuss how to pose a more interesting problem in which you give
the ball a slight upwards toss. This basically boils down to using
a small initial velocity \(v_0\). Then take the more general
form of the equation that you just wrote out in the previous
exercise and plug in your value for \(v_0\) as well as those
for \(h_0, g\), and calculate the time at which the object will
hit the ground.

	I mentioned that the solution for t has two values, due to the
\(\pm\) that comes from solving a second degree polynomial. I
told you to ignore the negative time solution, but try discussing
with your classmates what the meaning of that negative time
solution might be if you started tracking the trajectory of your
body before the moment at which you drop it.

38.8.2. Geometry: areas and the Dido problem

[Pedagogical note: I like to introduce associated historical facts to
make the subject more fun, to connect it to other subjects, and to
remind students that all areas of knowledge shine light on each
other.]

Now we solve a geometrical problem, inspired by the legend of Dido,
queen of Carthage.

The backstory is that some 8 or more centuries BCE, Dido led a party
of Phoenicians to settle an area in what is today Tunisia. She
negotiated permission with a local Berber king to found her colony in
an area big enough to be encircled by an ox hide.

She cut the hide into very narrow strips, and thus had a fixed length
of hide and needed to draw the shape with the biggest area that could
be surrounded by that hide.

So “Dido’s problem” is: what shape gives you the most area with a
fixed perimeter?

The general mathematical solution of this problem is hard to prove,
but we will compare two candidate shapes with a fixed perimeter: a
square and a circle. We will then calculate the areas of each and see
which would be a better choice.

If we call the perimeter p, then we have:

\[\begin{split}A_c = \pi r^2 \\
p = 2 \pi r\end{split}\]

which gives

\[A_c = \frac{\pi p^2} {(2\pi)^2} = \frac{p^2} {4\pi}\]

For the square:

\[\begin{split}A_{sq} = r^2 \\
p = 2 \pi r\end{split}\]

which gives:

\[A_{sq} = \frac{p^2} {(2\pi)^2} = \frac{p^2} {4 \pi^2}\]

FIXME: must still find the killer app for a quadratic formula on this.

38.9. Exercises for the chapter

[Pedagogical goal: apart from the usefulness of doing exercises, these
are formulated to draw students beyond the material they should be
prepared for – sometimes even beyond what is reached in high school,
like 3rd degree polynomials.]

Third degree polynomial equations like \(a x^3 + b x^2 + c x + d
= 0\) have messy-looking solutions (and higher degree polynomals even
more so), so we will not look in to them here, but some of these
exercises will show some of the cleaner cases that can come up.

Exercise 38.1On paper expand the expression \((x-3) (x-2) (x-1) (2x-1)
(x+1)\) into a polynomial. It should be a fifth degree polynomial.
With your classmates find a way to plot it so that you see the
ranges well (hint: I came up with setting an x range of [-2:4]
and a y range of [-6:14]). Can you guess what the roots are?
Does the plot sem to confirm your guess? Discuss with your
classmates why the plot diverges so much at the left and right
ends.

Exercise 38.2Repeat the steps in the previous exercise, but this time craft your
own sixth degree polynomial. Discuss how the plot is different
from the previous one.

Exercise 38.3Make up a seventh degree polynomial, plot it, then put that
polynomial in the program in Listing 38.7.1
to find its roots. Do the roots found in your program seem to
match what you see in your plot?

Exercise 38.4Look for the roots of non-polynomial equations. For example: the
\(\sin(x)\) function has roots at \((0, \pi, 2\pi, 3\pi,
...)\) and in fact at any integer multiple of \(\pi\). Can you
find approximations to that?

Exercise 38.5The program in Listing 38.7.1 has a rather
coarse step size of 0.01. Discuss how this limits the accuracy of
your solution (i.e. by how much have your solutions been “off” of
the correct solution?), and try making it smaller to see if the
accuracy gets better. Try making it really small (how about
1.0e-6, which is scientific notation for one millionth) and see if
the program starts taking too long to execute.

38.10. Further study

https://en.wikipedia.org/wiki/Quadratic_formula

Footnotes

[1]
The proof that there is no general formula for fifth
degree and higher polynomials is one of the deepest and most
beautiful theorems in mathematics; it is the subject of Galois
Theory. Sadly it is too complex to describe in this footnote.

 39. Appendix: Project proposals

39. Appendix: Project proposals

Contents of this chapter

	Social sciences

	Optimal stopping and life/business

	Multi-armed bandits and exploration vs. exploitation

	Deadly conflicts

	Quantifying overfitting in personal decisions

	Just about anything from Gwern Branwen

	Sports

	Time series for improvement on records

	Optimal tournament structure

	Soccer analytics

	Physical sciences

	Brownian motion

	Life sciences

	Datasets for phylogenetic analysis

	Predator-prey ecology: equations and agents

	Infectious disease modeling

	Mathematics

	puzzles

	On the role of intuition in mathematics

	Monty Hall’s door problem

	Random walks

	Runge-kutta method

	Sync and the Kuramoto model

	Analysis of chess

	Computer science and information technology

	Situational awareness of your network

	Humanities and the arts

	Music generation: tone beyond sin waves

	Music generation: add stereo

	Further explorations into Zipf’s law

	Analyzing wordle

	Can generative AI make art or music with a simple project?

Motivation

This appendix has some ideas for student projects. They are crafted
with the idea of getting students to:

	craft or using interesting algorithms

	write some code

	explore a topic from a wide selection of areas of endeavor

	optionally then contribute a chapter to this book

Each section of this appendix should ideally have a link to a concise
and clear definition of the topic, and ideas on how to start the
exploration.

39.1. Social sciences

Note that some of the biology topics, like phylogenetic analysis, are
also social science areas.

39.1.1. Optimal stopping and life/business

Subject areas: psychology, economics

One variant of optimal stopping is the Marriage Problem, or Secretary
Problem. It is described at
https://www.geeksforgeeks.org/secretary-problem-optimal-stopping-problem/

Possible project: craft a simulation modeling the applicant pool as a
list of N applicant scores. Then generate a very large number of
applicant pools.

For each applicant pool go through them and stop after k applicants,
taking note of the best score so far. Then continue, picking the
first applicant with a score greater than that “best so far”. Record
this for all possible k (between 1 and N), and show which stopping
point k would be the best.

Compare this with the theoretical value of 1/e.

Possible references:

	Brian Christian and Tom Griffiths - “Algorithms to live by: the
computer science of human decisions”. The chapter on
“Optimal stopping: when to stop looking”.

	Blog post inspired by the book:
https://medium.com/geekculture/computer-science-algorithms-in-daily-life-optimal-stopping-608d6868b1b

39.1.2. Multi-armed bandits and exploration vs. exploitation

Subject areas: psychology, economics

Look at the problem of exploration vs. exploitation in general, and
then consider human and societal situations in which it can be
applied.

Psychology: risk aversion in different phases of life.

Management: employee tasking in different phases of a project.

Project: using literature from psychology, find data sets that show
how real people do exploration vs. exploitation, and compare them to
the theoretical result.

Possible references:

	Brian Christian and Tom Griffiths - “Algorithms to live by: the
computer science of human decisions”. The chapter on
“Explore/exploit : the latest vs. the greatest”

	https://medium.com/geekculture/computer-science-algorithms-in-daily-life-explore-vs-exploit-a613232cf9e1

39.1.3. Deadly conflicts

Subject areas: history.

Explore data sets (which can be found in the references below) on the
statistics of casualties in war. Look for a pedagogically useful
visualization of one or more data sets.

The two plots that could be made involved (a) the power law showing
the general behavior, and (b) trend plots throughout history.

A discussion of power laws can then be interesting.

Possible references:

	“The Better Angels of Our Nature: Why Violence Has Declined” - by
Steven Pinker. Chapters: The statistics of deadly quarrels, Part
1 : the timing of wars ; The statistics of deadly quarrels, Part 2 :
the magnitude of wars.

	Aaron Clauset: “Trends and fluctuations in the severity of
interstate wars” -
https://www.science.org/doi/10.1126/sciadv.aao3580

	Cunen, Hjort, Nygard: “Statistical sightings of better angels:
Analysing the distribution of battle-deaths in interstate conflict
over time”. Article at:
https://journals.sagepub.com/doi/10.1177/0022343319896843 and
replication data at:
https://www.prio.org/journals/jpr/replicationdata

39.1.4. Quantifying overfitting in personal decisions

[…]

39.1.5. Just about anything from Gwern Branwen

Gwern Branwent’s web site has a vast collection of research interests,
mostly related to social science. It would be good to distill
projects from them.

https://www.gwern.net/

https://www.gwern.net/Archiving-URLs

39.2. Sports

39.2.1. Time series for improvement on records

Start out by having a pure poisson process to generate improvement in
“world records”. For example, try something like:

import numpy as np
s = np.random.poisson(5, 10000)

as shown at
https://numpy.org/doc/stable/reference/random/generated/numpy.random.poisson.html

Keep track of when a new sample beats all previous records, and study
the time between improvements on world records.

Then:

Examine the history of improvement in individual world records, for
example in the 100m swimming (both female and male), 100m running,
high jump, … Compare to the pure Poisson distribution.

In chess examine the history of surpassing “highest ever” Elo ratings
for (a) top player, (b) top 10 average, (c) top 100 average, and look
at when previous records get broken. Try the same with alternative
chess metrics.

Try to see if this hypothesis is valid: improvements in world records
are randomly distributed (maybe Poisson? how about other
distributions?) But sometimes you have a jump sooner than expected by
the statistics. This could correspond to a “freak of nature” player
(but the statistics could also generate such players. More
interesting are advances in training technique and in equipment. Also
of note might be an increase in the population that plays that sport.

39.2.2. Optimal tournament structure

Create a group of (say) 32 virtual tournament players, and assign them a
rating, similar to chess Elo ratings.

Then set them up in double-round-robin, round-robin, swiss system, and
direct knockout.

Examine the consistency of the results.

Ask couple of questions (and maybe more):

	What is the best tournament format for various situations?

	How many places can be determined (just 1st? 1st, 2nd, 3rd? …)
using the double-round-robin as the gold standard.

39.2.3. Soccer analytics

See what you can do starting from this article about Messi in the 538
blog:

https://fivethirtyeight.com/features/lionel-messi-is-impossible/

39.3. Physical sciences

39.3.1. Brownian motion

See if it is straightforward to write an agent-based model (or other
simulation) for brownian motion.

Then see if Einstein’s 1905 results on Brownian motion can be derived
from this simulation.

Discuss, with these results in hand, how all of this relates to the
existence of atoms.

https://en.wikipedia.org/wiki/Brownian_motion

39.4. Life sciences

39.4.1. Datasets for phylogenetic analysis

Subject areas: biology, ecology, linguistics

Find specific datasets and create examples of phylogenetic trees.

These are more likely to come from biology, but they could also come
from linguistics or other areas of social science.

Start with canned examples, like in the 2021 Medium article by Rishika
Gupta, and learn to make phylogenetic trees (including going beyond
her examples).

Then look for coded datasets from language or mythology or other
social science sources.

Possible references:

	https://biopython.org/wiki/Phylo

	http://etetoolkit.org/

	https://medium.com/geekculture/phylogenetic-trees-implement-in-python-3f9df96c0c32

	https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04274-6

39.4.2. Predator-prey ecology: equations and agents

Subject areas: biology, ecology

Craft a predator-prey scenario in two different ways: (a) by solving
the Lotka-Volterra equations as shown in Almond Heil’s model
Section 18, and (b) using the agent-based modeling system
shown in Section 26

Start by adapting Almond Heil’s model to predator-prey interaction (you
might also get this from the basic Mesa examples).

Then try to set up the same model in a Lotka-Volterra setting: solve
the Lotka-Volterra model with a differential equation solver, and see
if its cyclic population behavior matches what you get from the
agent-based model.

After looking at data and plots, do some thinking about the
assumptions that go in to both kinds of models, and try to make them
match more closely.

If you cannot get a close match, do some thinking on the mechanisms
behind both approaches and try to explain the differences.

Possible references:

	Section 26

	https://mesa.readthedocs.io/en/latest/

	https://towardsdatascience.com/introduction-to-mesa-agent-based-modeling-in-python-bcb0596e1c9a

	https://github.com/projectmesa/mesa

39.4.3. Infectious disease modeling

Subject areas: biology, epidemiology

The basic model used for infectious diseases is the SIR model, where
you track “susceptible”, “infected”, and “removed” population members.

You can also model it with agent-based models.

So the idea here is to look at the SIR model in two different
ways: (a) using the agent-based modeling system shown in
Section 26, and (b) by solving the SIR
differential equations.

Start by adapting Almond Heil’s model to have variables that track the
full S, I, and R populations, and color them appropriately.

Then set up the SIR differential equations to have the same starting
values, and run them with a simple differential equation solver - you
can write your own Euler’s method solver, or use the scipy runge-kutta
solver.

Possible references:

	Section 26

	https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

	https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology

	https://www.frontiersin.org/articles/10.3389/fams.2020.571544/full

	https://www.niss.org/sites/default/files/SIR_Modeling_tutorial_ob.pdf

	https://mesa.readthedocs.io/en/latest/

	https://towardsdatascience.com/introduction-to-mesa-agent-based-modeling-in-python-bcb0596e1c9a

	https://github.com/projectmesa/mesa

39.5. Mathematics

39.5.1. puzzles

[must flesh this out]

Jason Breshears at https://archaics.com/ has a youtube video where he
presents what’s special for the number 2178 in his observation.

39.5.2. On the role of intuition in mathematics

Read in depth this article on mathematical intuition by famous
mathematician Terence Tao:

https://terrytao.wordpress.com/career-advice/theres-more-to-mathematics-than-rigour-and-proofs/

and try to devise a simple problem in mathematics (maybe one of the
ones below) that could illustrate the path from pre-rigorous to
rigorous to post-rigorous stages in one’s mathematical journey.

39.5.3. Monty Hall’s door problem

Write a simulation of the famous Monty Hall door problem. The
simulation should be a very simple programming task.

This could be done with a language you already know, or as an exercise
to learn a new programming language, since the simulation will be very
simple.

	Leonard Mlodinow “The Drunkard’s Walk”, chapter 3 “Finding Your Way
Through a Space of Possibilities”

	https://www.youtube.com/watch?v=AD6eJlbFa2I

	https://www.youtube.com/watch?v=4Lb-6rxZxx0

39.5.4. Random walks

Subject areas: mathematics

Look at the theory of random walks and compare it to simulations.

Possible references: the chapter on randomness and disorder,
Section 12

39.5.5. Runge-kutta method

Subject areas: mathematics

Compare the runge-kutta library (gsl or scipy) result to a hand-coded
Euler method. Compare first-point, mid-point, and last-point of
Euler’s method to runge-kutta.

The compare them all to the exact solution for the nonlinear
pendulum, and show the difference.

39.5.6. Sync and the Kuramoto model

Subject areas: mathematics

Look at the simple mathematical models for sync described in Steven
Strogatz’s lecture:

https://youtu.be/RpU7JrE1uCk

and implement the simple mathematical models that he shows.

He discusses the Kuramoto model at about 40 minutes into the video,
and he shows an example of a program that visualizes that model.

Learn the model, and then figure out how to implement it in python,
starting with text output and then using a simple widget set for the
visualization.

Possible references:

	https://youtu.be/RpU7JrE1uCk

	https://en.wikipedia.org/wiki/Kuramoto_model

	https://www.complexity-explorables.org/explorables/ride-my-kuramotocycle/

	http://www.complexity-explorables.org/slides/ride-my-kuramotocycle/

	https://www.ted.com/talks/steven_strogatz_the_science_of_sync

39.5.7. Analysis of chess

No articulation of a project yet, but the ideas are approximately:

	How does the advantage of the white pieces change with player
ratings, beginner to grandmaster? And to time controls?

	What are the standard deviations of victory predictions based on
ratings?

Possible sources:

	lichess.org API

	https://content.iospress.com/articles/icga-journal/icg0012

	https://en.wikipedia.org/wiki/Comparison_of_top_chess_players_throughout_history

	https://www.quora.com/Has-Stockfish-or-any-other-top-chess-program-performed-an-analysis-of-the-Karpov-Kasparov-matches-For-me-that-was-the-pinnacle-of-chess-though-probably-Carlsen-would-beat-either-i-e-was-Muhammed-Ali-better-than-Joe

	https://lichess.org/blog/YafSBxEAACIAr0ZA/exact-exacting-who-is-the-most-accurate-world-champion

	Understanding distributions of chess performances. Study and
reproduce this paper by Regan:

https://cse.buffalo.edu/~regan/papers/pdf/

https://cse.buffalo.edu/~regan/papers/pdf/RMH11.pdf

(There is also an RMH11b.pdf – which is the more recent version?)

Also look at this quora answer that mentions it:
https://www.quora.com/What-is-the-most-important-move-in-chess/answer/H%C3%A5kon-Hapnes-Strand?ch=10&oid=340561749&share=7fabf913&srid=3MvD&target_type=answer

39.6. Computer science and information technology

39.6.1. Situational awareness of your network

Subject areas: IT, computer programming

The idea here is to understand what devices are on your network, and
what services they offer.

Start by familiarizing yourself with the commands in the “How to get
insight into a network” chapter of the Sysadmin Hacks book at at
https://markgalassi.codeberg.page/sysadmin-hacks-html/ (you might want
to look at the previous chapter “The basics of networking” for
background).

In particular the sections on the nmap and pnscan commands are the
starting point for what we want to do. Observe the command line
output for each of them with the examples shown in the book.

Then separately install the program etherape and look at what it
does.

Finally, look at the graphical output from the program
map_network_utils.py in that chapter.

At this point you can take two different directions: one is to keep
using separate utilities to visualize the network, in this case the
powerful graphviz tool. Graphviz allows a lot of very fancy layout
options, and quite a bit more information about the network can be
added to the display in the form of logos for the operating system
(Linux, android, …), or for the protocol (ssh, imap, …), or one
could try to probe traffic information and visualize that.

	https://graphviz.org/gallery/

39.7. Humanities and the arts

39.7.1. Music generation: tone beyond sin waves

Topics: music

Take the simple sine wave generators shown in
Section 30 and investigate how to make the tone more
like that of a guitar string.

This will involve moving from a sin() wave to a more complex
funciton. One start could be to add the harmonics to make a sawtooth
wave or a triangle wave, but you should do some research to find out
what simple tone generators sound interesting.

39.7.2. Music generation: add stereo

Topics: music

Take the simple sine wave generators shown in
Section 30 and investigate how to add an artificial
sterephonic feeling.

Right now the examples generate identical left and right channel
signals. The idea here is to look at how to modify them slightly in
various ways, and to see if that creates a stereo effect.

After a bit of tinkering and experimentation you could then do
research to see if there is any known mathematics for doing this, and
implement those techniques.

39.7.3. Further explorations into Zipf’s law

Subject areas: literature, digital humanities

Start from the simple programs that demonstrate Zipf’s law in
Section 14. Then read Isabella Trejo’s
presentation from the Institute for Computing in Research at
https://github.com/izzytrejo/Zipf to understand some of the proposed
underpinnings for Zipf’s law in literary text.

Then investigate some mathematical properties of the various
translations, such as the power law slopes and the power law breaks.

Does this happen consistently as you look at the translation of
different books into the same other languages?

How does this depend on the translator? For example, can you find
examples of the same translator going between the same languages on
different books? How about different translators on the same books to
the same other languages?

This might reveal Zipf’s law to be an interesting tool for analyzing
style and/or language, or it might show that it is not sufficient to
get much insight. If the latter, then the next step might be to
research what other techniques are used in digital humanities for this
kind of analysis.

Possible references:

	Courtney Lawton’s dissertation:
https://digitalcommons.unl.edu/dissertations/AAI10831194/
(we need to find the full book)

	Isabella Trejo’s project: https://github.com/izzytrejo/Zipf

39.7.4. Analyzing wordle

The popular game wordle has spawned many variants, as well as
applications to other languages.

In analogy to “opening theory” in chess, it would be interesting to
develop a repertoire of best “starting words”.

We can try to use shell commands (like grep with regular expressions)
and the /usr/share/dict/words text file to learn as much as
possible about optimal first word choices. We can switch to a full
python program once we hit the limits of this approach.

The candidate best words should then be tested on a large monte-carlo
sampling of possible challenge words to see which works better.

This can then be expanded in interesting ways to (a) apply to quordle
(4 words simultaneously) and larger variants, or (b) to use
psychological factors on guessing words to fine-tune the opening
words.

To give a bit of a start to see how easy it is to do a command-line
study of wordle:

what are all the 5-letter entries in the dictionary?
grep '^.....$' /usr/share/dict/words
how about if you exclude names and punctuation?
egrep '^.....$' /usr/share/dict/words | egrep -v '[^a-z]'
many entries are there?
egrep '^.....$' /usr/share/dict/words | egrep -v '[^a-z]' | wc
what words have 'y' in the 3rd entry?
egrep '^.....$' /usr/share/dict/words | egrep -v '[^a-z]' | grep '..y..'
how many words have 'y' in the 3rd entry?
egrep '^.....$' /usr/share/dict/words | egrep -v '[^a-z]' | grep '..y..' | wc
how many words start with 'f' and have 'y' in the 3rd entry?
egrep '^.....$' /usr/share/dict/words | egrep -v '[^a-z]' | grep
'f.y..' | wc

Possible references for word lists:

	look at the file /usr/share/dict/words

	https://runestone.academy/ns/books/published/fopp/Projects/common_words.html#common-words

Possible references on other such games:

	https://www.nytimes.com/games/wordle/index.html

	https://worldle.teuteuf.fr/

	https://worldledaily.com/

	https://www.quordle.com/#/

	https://world3dmap.com/duotrigordle-game/

	https://citydle.com/

	https://globle-game.com/

	https://globle-game.com/

	https://greggblanchard.com/statle/

	https://plurality.fun/

	https://googlemapsmania.blogspot.com/2022/06/the-top-10-wordle-like-map-games.html

	https://www.online-tech-tips.com/cool-websites/11-best-sites-to-play-geography-games-online/

	https://locatle.strct.net/

	https://statle.us/

	https://outflux.net/statele/

	https://www.reddit.com/r/geoguessr/comments/v5ihla/locatle_is_a_mix_between_geoguessr_and_wordle/

	explordle

	https://oec.world/en/tradle/

39.7.5. Can generative AI make art or music with a simple project?

Topics: music, visual art

Investigate the various AI engines for which people have written
generative AI modules (I think there are some for both tensorflow and
pytorch). Only look at free/open-source modules.

Explore the results of generative art and music for those modules, and
then see if it is possible to give a simple procedure for someone to
start from scratch and end up with running programs that do the work.

 40. Appendix: Proposed chapters

40. Appendix: Proposed chapters

Motivation

This appendix is a grabbag of possible chapters – ideas for topics
that are interesting, especially to middle and high school students,
and which are waiting for someone to write a chapter about them.

It is structured as a simple list of sections with a chapter topic in
each. Each section has some references on materials.

Once a co-author wants to write a chapter on that subject, she should
transfer that material into a chapter, flesh out the chapter (see
Section 38), and remove it from this appendix.

40.1. A tour of datasets

[status: unwritten]

	https://www.dataquest.io/blog/free-datasets-for-projects/

40.1.1. Climate change

	NOAA weather stations

40.1.2. 538 blog data

the 538 github area

40.2. Molecules in three dimensions

First install paraview, that very ambitious volume rendering tool.
For molecules we can also install avogadro, jmol, and gdis. And
others:

sudo apt install paraview avogadro jmol gdis
sudo apt install garlic dssp garlic qutemol viewmol pymol openbabel-gui rasmol

The ones that seem to work are paraview, avogadro, jmol, rasmol: you
can just run them on a .pdb molecular description file.

You can follow this tutorial for paraview:

https://www.paraview.org/Wiki/The_ParaView_Tutorial

The others probably also have tutorials, but they are less immediately
daunting than paraview.

40.2.1. Small Molecules

Start with small molecules, for example from here:

https://ww2.chemistry.gatech.edu/~lw26/structure/small_molecules/index.html

But also at http://www.rcsb.org/pdb/ligand/chemAdvSearch.do you can do
a search for smaller molecules. For example I found water with a
“search for ligands” in the rcsb.org web site. That gives me:

http://www.rcsb.org/pdb/results/results.do?tabtoshow=Ligand&qrid=9C66910A

which gives, down below, the H2O which is “water” rather than
“deuterated water”. This lets you download it as:

wget http://files.rcsb.org/ligands/view/HOH.cif

From that I guessed that I could also get things like Methane and
Sulphur atom:

wget http://files.rcsb.org/ligands/view/CH4.cif
wget http://files.rcsb.org/ligands/view/S.cif

You can also browse like this: go to
http://files.rcsb.org/ligands/ and start navigating, for example into
C and then C2H. From there you can find:

wget http://files.rcsb.org/ligands/view/C2H_ideal.pdb

Here are a few more:

wget http://files.rcsb.org/ligands/C/C6H/C6H_ideal.pdb
wget http://files.rcsb.org/ligands/C/CH4/CH4_ideal.pdb

Then in the search menu you find “Chemical components” and in there
“Chemical name”

Now it looks like the way to find molecules by colloquial names is to
go to http://ligand-expo.rcsb.org/ld-search.html and do a “molecular
name” search, with “molecular name (exact)”.

Try putting “Water” and you get this result:

http://ligand-expo.rcsb.org/pyapps/ldHandler.py?formid=cc-index-search&target=Water&operation=name-exact

pick the HOH from there, go to its “Chemical details” and download the
“PDB format (ideal coordinates)”:

wget http://ligand-expo.rcsb.org/reports/H/HOH/HOH_ideal.pdb
jmol HOH_ideal.pdb &

and searching for Sucrose (table sugar) you end up at
http://ligand-expo.rcsb.org/pyapps/ldHandler.py?formid=cc-index-search&target=Sucrose&operation=name-exact
and can download with:

wget http://ligand-expo.rcsb.org/reports/S/SUC/SUC_ideal.pdb
jmol SUC_ideal.pdb &

40.2.2. Big molecules

Then let’s look at big molecules. For example download pdb of this
molecule and others at the remarkable rcsb.org site
https://www.rcsb.org/structure/6DPA :

wget https://files.rcsb.org/download/6DPA.pdb
wget https://files.rcsb.org/download/6YI3.pdb # seems related to covid-19

and load one or all of them in to paraview and the other 3D
visualizers, for example with:

paraview 6YI3.pdb &
avogadro 6YI3.pdb &
jmol 6YI3.pdb &
rasmol 6YI3.pdb &

My first impression: gdis is weird and sometimes goes out to lunch, so
I don’t understand it enough yet. avogadro and jmol and rasmol are
fast and immediate. with paraview you have to do 2 things after
loading: (a) enable views by clicking on those two eyes in the left
side tree structure, and (b) hit the “apply” button top part of the
“properties” tab of the lower left area.

Looking a bit more: avogadro does not work on .cif files, so I’m
leaning toward jmol as being the most solid.

40.3. Zeros of polynomials and other functions

Start from our comfortable solution to \(a x^2 + b x + c = 0\).

Talk a bit about cubics (how many real/complex roots, …).

Talk a bit about quartics (biquadratic, how many roots, …).

Discuss higher order polynomials and Galois theory.

Introduce numerical methods: Newton’s method in particular (connection
to calculus).

Extend numerical methods to discuss finding several roots instead of
just the closest.

Connect this to optimization, TSP.

40.4. Artificial life

Areas: biology, ecology, complex systems

	https://avida-ed.msu.edu/

	https://en.wikipedia.org/wiki/Avida

40.5. Genetic algorithms

beautiful quote:

Every boat is copied from another boat… Let’s reason as follows
in the manner of Darwin. It is clear that a very badly made boat
will end up at the bottom after one or two voyages, and thus never
be copied… One could then say, with complete rigor, that it is
the sea herself who fashions the boats, choosing those which
function and destroying the others.

Propos d’un Normand (1908); as quoted in “Natural selection and
cultural rates of change” by D. S. Rogers
and P. R. Ehrlich (2008) Proceedings of the National Academy of
Sciences 105:3416–3420

https://en.wikiquote.org/wiki/%C3%89mile_Chartier

compare that to “coin tossing championship” (from Malcolm
Gladwell’s “Outliers”. discuss polynesian canoes.

Ottawa house of commons: John Sullivan uses evolutionary architecture.

Othello

Robbie the Robot (from Melanie Mitchell’s book “Complexity: a Guided Tour”)

you’ll get to Melanie Mitchell’s mooc when you get to chapter 4 on
emergent behavior it will point you here:
https://www.youtube.com/playlist?list=PLF0b3ThojznRyDQlitfUTzXEXwLNNE-mI
and for that section of my book the prerequisite is to watch section
6.3 of the mooc:
https://www.youtube.com/watch?v=ZVSseAnEzxs&index=85&list=PLF0b3ThojznRyDQlitfUTzXEXwLNNE-mI
watching the full MOOC and the section on Robbie the Robot should be
done at home since it goes somewhat afield of what we are doing at
work

Other resources:

	GAs on the TSP:
https://cs.stanford.edu/people/eroberts/courses/soco/projects/1997-98/genetic-algorithms/apps.html

	Book:

	Genetic Algorithms in Python

	Examples:

https://www.codeproject.com/Articles/1104747/Introduction-to-Genetic-Algorithms-with-Python-Hel

	For how to encode a game strategy:

	To practice Othello: learn here: https://www.eothello.com/ and
play here: https://hewgill.com/othello/

	https://pdfs.semanticscholar.org/9fbb/a0583259b70e318003f5b6861faf9447060f.pdf

	https://www.codingame.com/blog/genetic-algorithms-coders-strike-back-game/

	This does a full 9-square-puzzle game encoding:
https://www.researchgate.net/publication/220176829_Applying_genetic_algorithms_to_game_search_trees

	tic-tac-toe:
http://www.genetic-programming.org/sp2003/Hochmuth.pdf

	https://www.cs.auckland.ac.nz/research/gameai/projects/GA%20in%20FreeCiv.pdf

	othello:
https://www.researchgate.net/publication/2599927_EVOLVING_COMPLEX_OTHELLO_STRATEGIES_USING_MARKER-BASED_GENETIC_ENCODING_OF_NEURAL_NETWORKS_David_Moriarty_and_Risto_Miikkulainen

	programming it in Python and knapsack problem:
https://blog.sicara.com/getting-started-genetic-algorithms-python-tutorial-81ffa1dd72f9

	this goes in to chess; mentions othello in passing, and has an
appendix on Elo ratings formulae
https://arxiv.org/pdf/1711.08337.pdf

	this has interesting discussions, but is ultimately about neural
networks and thus harder than what I’m thinking of for this
chapter. http://nn.cs.utexas.edu/?moriarty:discovering,
http://nn.cs.utexas.edu/downloads/papers/moriarty.discovering.pdf
– still, Moriarty and Miikkulainen do an interesting job of
explaining why humans don’t see some of the machine moves.

	the previous article is one in this site:
http://satirist.org/learn-game/methods/ga/marker.html – this
includes
http://nn.cs.utexas.edu/downloads/papers/fullmer.genetic-encoding.pdf
which seems to be about encodings.

	this looks like a very nice intro to encoding an othello GA:
https://pdfs.semanticscholar.org/ca88/76e8d8232403dfa4dcb75c67dd1031dd6bf3.pdf

	other othello resource: https://github.com/blanyal/alpha-zero

	much more academic stuff at
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C32&as_vis=1&q=othello+genetic+algorithm&btnG=

	Animated games:
https://luckytoilet.wordpress.com/2011/05/27/coding-a-tetris-ai-using-a-genetic-algorithm/

	Evolving cellular automata:

	https://arxiv.org/pdf/adap-org/9303003.pdf

Projects to work on: [… unfinished …]

40.6. Fourier Analysis

This is largely already written in my old latex book. I just need to
bring it in here, and revise what I think of the prerequisites.

Latest: this has mostly been moved to the “mark working group” book.

40.7. Simpson’s paradox

https://qr.ae/TWNhZd?share=1
https://www.quora.com/What-is-Simpsons-paradox?share=1

 41. Copying and legal matters

41. Copying and legal matters

41.1. Copyright

Copyright (C) 2017-2022 Mark Galassi, Leina Gries, Sophia
Mulholland, Almond Heil.

41.2. License for the book

This work is licensed under the Creative Commons
Attribution-ShareAlike 4.0 International License. To view a copy
of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

We reproduce the full text of the CC BY-SA license below.

41.3. License for code samples

All the software code samples are free software, and can be freely
redistributed under the GNU General Public License (GPL), version 3.

We reproduce the full text of the GPL below.

41.4. CC BY-SA 4.0 license

Attribution-ShareAlike 4.0 International

===

Creative Commons Corporation ("Creative Commons") is not a law firm and
does not provide legal services or legal advice. Distribution of
Creative Commons public licenses does not create a lawyer-client or
other relationship. Creative Commons makes its licenses and related
information available on an "as-is" basis. Creative Commons gives no
warranties regarding its licenses, any material licensed under their
terms and conditions, or any related information. Creative Commons
disclaims all liability for damages resulting from their use to the
fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and
conditions that creators and other rights holders may use to share
original works of authorship and other material subject to copyright
and certain other rights specified in the public license below. The
following considerations are for informational purposes only, are not
exhaustive, and do not form part of our licenses.

 Considerations for licensors: Our public licenses are
 intended for use by those authorized to give the public
 permission to use material in ways otherwise restricted by
 copyright and certain other rights. Our licenses are
 irrevocable. Licensors should read and understand the terms
 and conditions of the license they choose before applying it.
 Licensors should also secure all rights necessary before
 applying our licenses so that the public can reuse the
 material as expected. Licensors should clearly mark any
 material not subject to the license. This includes other CC-
 licensed material, or material used under an exception or
 limitation to copyright. More considerations for licensors:
 wiki.creativecommons.org/Considerations_for_licensors

 Considerations for the public: By using one of our public
 licenses, a licensor grants the public permission to use the
 licensed material under specified terms and conditions. If
 the licensor's permission is not necessary for any reason--for
 example, because of any applicable exception or limitation to
 copyright--then that use is not regulated by the license. Our
 licenses grant only permissions under copyright and certain
 other rights that a licensor has authority to grant. Use of
 the licensed material may still be restricted for other
 reasons, including because others have copyright or other
 rights in the material. A licensor may make special requests,
 such as asking that all changes be marked or described.
 Although not required by our licenses, you are encouraged to
 respect those requests where reasonable. More considerations
 for the public:
 wiki.creativecommons.org/Considerations_for_licensees

===

Creative Commons Attribution-ShareAlike 4.0 International Public
License

By exercising the Licensed Rights (defined below), You accept and agree
to be bound by the terms and conditions of this Creative Commons
Attribution-ShareAlike 4.0 International Public License ("Public
License"). To the extent this Public License may be interpreted as a
contract, You are granted the Licensed Rights in consideration of Your
acceptance of these terms and conditions, and the Licensor grants You
such rights in consideration of benefits the Licensor receives from
making the Licensed Material available under these terms and
conditions.

Section 1 -- Definitions.

 a. Adapted Material means material subject to Copyright and Similar
 Rights that is derived from or based upon the Licensed Material
 and in which the Licensed Material is translated, altered,
 arranged, transformed, or otherwise modified in a manner requiring
 permission under the Copyright and Similar Rights held by the
 Licensor. For purposes of this Public License, where the Licensed
 Material is a musical work, performance, or sound recording,
 Adapted Material is always produced where the Licensed Material is
 synched in timed relation with a moving image.

 b. Adapter's License means the license You apply to Your Copyright
 and Similar Rights in Your contributions to Adapted Material in
 accordance with the terms and conditions of this Public License.

 c. BY-SA Compatible License means a license listed at
 creativecommons.org/compatiblelicenses, approved by Creative
 Commons as essentially the equivalent of this Public License.

 d. Copyright and Similar Rights means copyright and/or similar rights
 closely related to copyright including, without limitation,
 performance, broadcast, sound recording, and Sui Generis Database
 Rights, without regard to how the rights are labeled or
 categorized. For purposes of this Public License, the rights
 specified in Section 2(b)(1)-(2) are not Copyright and Similar
 Rights.

 e. Effective Technological Measures means those measures that, in the
 absence of proper authority, may not be circumvented under laws
 fulfilling obligations under Article 11 of the WIPO Copyright
 Treaty adopted on December 20, 1996, and/or similar international
 agreements.

 f. Exceptions and Limitations means fair use, fair dealing, and/or
 any other exception or limitation to Copyright and Similar Rights
 that applies to Your use of the Licensed Material.

 g. License Elements means the license attributes listed in the name
 of a Creative Commons Public License. The License Elements of this
 Public License are Attribution and ShareAlike.

 h. Licensed Material means the artistic or literary work, database,
 or other material to which the Licensor applied this Public
 License.

 i. Licensed Rights means the rights granted to You subject to the
 terms and conditions of this Public License, which are limited to
 all Copyright and Similar Rights that apply to Your use of the
 Licensed Material and that the Licensor has authority to license.

 j. Licensor means the individual(s) or entity(ies) granting rights
 under this Public License.

 k. Share means to provide material to the public by any means or
 process that requires permission under the Licensed Rights, such
 as reproduction, public display, public performance, distribution,
 dissemination, communication, or importation, and to make material
 available to the public including in ways that members of the
 public may access the material from a place and at a time
 individually chosen by them.

 l. Sui Generis Database Rights means rights other than copyright
 resulting from Directive 96/9/EC of the European Parliament and of
 the Council of 11 March 1996 on the legal protection of databases,
 as amended and/or succeeded, as well as other essentially
 equivalent rights anywhere in the world.

 m. You means the individual or entity exercising the Licensed Rights
 under this Public License. Your has a corresponding meaning.

Section 2 -- Scope.

 a. License grant.

 1. Subject to the terms and conditions of this Public License,
 the Licensor hereby grants You a worldwide, royalty-free,
 non-sublicensable, non-exclusive, irrevocable license to
 exercise the Licensed Rights in the Licensed Material to:

 a. reproduce and Share the Licensed Material, in whole or
 in part; and

 b. produce, reproduce, and Share Adapted Material.

 2. Exceptions and Limitations. For the avoidance of doubt, where
 Exceptions and Limitations apply to Your use, this Public
 License does not apply, and You do not need to comply with
 its terms and conditions.

 3. Term. The term of this Public License is specified in Section
 6(a).

 4. Media and formats; technical modifications allowed. The
 Licensor authorizes You to exercise the Licensed Rights in
 all media and formats whether now known or hereafter created,
 and to make technical modifications necessary to do so. The
 Licensor waives and/or agrees not to assert any right or
 authority to forbid You from making technical modifications
 necessary to exercise the Licensed Rights, including
 technical modifications necessary to circumvent Effective
 Technological Measures. For purposes of this Public License,
 simply making modifications authorized by this Section 2(a)
 (4) never produces Adapted Material.

 5. Downstream recipients.

 a. Offer from the Licensor -- Licensed Material. Every
 recipient of the Licensed Material automatically
 receives an offer from the Licensor to exercise the
 Licensed Rights under the terms and conditions of this
 Public License.

 b. Additional offer from the Licensor -- Adapted Material.
 Every recipient of Adapted Material from You
 automatically receives an offer from the Licensor to
 exercise the Licensed Rights in the Adapted Material
 under the conditions of the Adapter's License You apply.

 c. No downstream restrictions. You may not offer or impose
 any additional or different terms or conditions on, or
 apply any Effective Technological Measures to, the
 Licensed Material if doing so restricts exercise of the
 Licensed Rights by any recipient of the Licensed
 Material.

 6. No endorsement. Nothing in this Public License constitutes or
 may be construed as permission to assert or imply that You
 are, or that Your use of the Licensed Material is, connected
 with, or sponsored, endorsed, or granted official status by,
 the Licensor or others designated to receive attribution as
 provided in Section 3(a)(1)(A)(i).

 b. Other rights.

 1. Moral rights, such as the right of integrity, are not
 licensed under this Public License, nor are publicity,
 privacy, and/or other similar personality rights; however, to
 the extent possible, the Licensor waives and/or agrees not to
 assert any such rights held by the Licensor to the limited
 extent necessary to allow You to exercise the Licensed
 Rights, but not otherwise.

 2. Patent and trademark rights are not licensed under this
 Public License.

 3. To the extent possible, the Licensor waives any right to
 collect royalties from You for the exercise of the Licensed
 Rights, whether directly or through a collecting society
 under any voluntary or waivable statutory or compulsory
 licensing scheme. In all other cases the Licensor expressly
 reserves any right to collect such royalties.

Section 3 -- License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the
following conditions.

 a. Attribution.

 1. If You Share the Licensed Material (including in modified
 form), You must:

 a. retain the following if it is supplied by the Licensor
 with the Licensed Material:

 i. identification of the creator(s) of the Licensed
 Material and any others designated to receive
 attribution, in any reasonable manner requested by
 the Licensor (including by pseudonym if
 designated);

 ii. a copyright notice;

 iii. a notice that refers to this Public License;

 iv. a notice that refers to the disclaimer of
 warranties;

 v. a URI or hyperlink to the Licensed Material to the
 extent reasonably practicable;

 b. indicate if You modified the Licensed Material and
 retain an indication of any previous modifications; and

 c. indicate the Licensed Material is licensed under this
 Public License, and include the text of, or the URI or
 hyperlink to, this Public License.

 2. You may satisfy the conditions in Section 3(a)(1) in any
 reasonable manner based on the medium, means, and context in
 which You Share the Licensed Material. For example, it may be
 reasonable to satisfy the conditions by providing a URI or
 hyperlink to a resource that includes the required
 information.

 3. If requested by the Licensor, You must remove any of the
 information required by Section 3(a)(1)(A) to the extent
 reasonably practicable.

 b. ShareAlike.

 In addition to the conditions in Section 3(a), if You Share
 Adapted Material You produce, the following conditions also apply.

 1. The Adapter's License You apply must be a Creative Commons
 license with the same License Elements, this version or
 later, or a BY-SA Compatible License.

 2. You must include the text of, or the URI or hyperlink to, the
 Adapter's License You apply. You may satisfy this condition
 in any reasonable manner based on the medium, means, and
 context in which You Share Adapted Material.

 3. You may not offer or impose any additional or different terms
 or conditions on, or apply any Effective Technological
 Measures to, Adapted Material that restrict exercise of the
 rights granted under the Adapter's License You apply.

Section 4 -- Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that
apply to Your use of the Licensed Material:

 a. for the avoidance of doubt, Section 2(a)(1) grants You the right
 to extract, reuse, reproduce, and Share all or a substantial
 portion of the contents of the database;

 b. if You include all or a substantial portion of the database
 contents in a database in which You have Sui Generis Database
 Rights, then the database in which You have Sui Generis Database
 Rights (but not its individual contents) is Adapted Material,

 including for purposes of Section 3(b); and
 c. You must comply with the conditions in Section 3(a) if You Share
 all or a substantial portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not
replace Your obligations under this Public License where the Licensed
Rights include other Copyright and Similar Rights.

Section 5 -- Disclaimer of Warranties and Limitation of Liability.

 a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
 EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
 AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
 ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
 IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
 WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
 PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
 ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
 KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
 ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.

 b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
 TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
 NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
 INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
 COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
 USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
 ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
 DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
 IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.

 c. The disclaimer of warranties and limitation of liability provided
 above shall be interpreted in a manner that, to the extent
 possible, most closely approximates an absolute disclaimer and
 waiver of all liability.

Section 6 -- Term and Termination.

 a. This Public License applies for the term of the Copyright and
 Similar Rights licensed here. However, if You fail to comply with
 this Public License, then Your rights under this Public License
 terminate automatically.

 b. Where Your right to use the Licensed Material has terminated under
 Section 6(a), it reinstates:

 1. automatically as of the date the violation is cured, provided
 it is cured within 30 days of Your discovery of the
 violation; or

 2. upon express reinstatement by the Licensor.

 For the avoidance of doubt, this Section 6(b) does not affect any
 right the Licensor may have to seek remedies for Your violations
 of this Public License.

 c. For the avoidance of doubt, the Licensor may also offer the
 Licensed Material under separate terms or conditions or stop
 distributing the Licensed Material at any time; however, doing so
 will not terminate this Public License.

 d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
 License.

Section 7 -- Other Terms and Conditions.

 a. The Licensor shall not be bound by any additional or different
 terms or conditions communicated by You unless expressly agreed.

 b. Any arrangements, understandings, or agreements regarding the
 Licensed Material not stated herein are separate from and
 independent of the terms and conditions of this Public License.

Section 8 -- Interpretation.

 a. For the avoidance of doubt, this Public License does not, and
 shall not be interpreted to, reduce, limit, restrict, or impose
 conditions on any use of the Licensed Material that could lawfully
 be made without permission under this Public License.

 b. To the extent possible, if any provision of this Public License is
 deemed unenforceable, it shall be automatically reformed to the
 minimum extent necessary to make it enforceable. If the provision
 cannot be reformed, it shall be severed from this Public License
 without affecting the enforceability of the remaining terms and
 conditions.

 c. No term or condition of this Public License will be waived and no
 failure to comply consented to unless expressly agreed to by the
 Licensor.

 d. Nothing in this Public License constitutes or may be interpreted
 as a limitation upon, or waiver of, any privileges and immunities
 that apply to the Licensor or You, including from the legal
 processes of any jurisdiction or authority.

===

Creative Commons is not a party to its public
licenses. Notwithstanding, Creative Commons may elect to apply one of
its public licenses to material it publishes and in those instances
will be considered the “Licensor.” The text of the Creative Commons
public licenses is dedicated to the public domain under the CC0 Public
Domain Dedication. Except for the limited purpose of indicating that
material is shared under a Creative Commons public license or as
otherwise permitted by the Creative Commons policies published at
creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark "Creative Commons" or any other trademark or logo
of Creative Commons without its prior written consent including,
without limitation, in connection with any unauthorized modifications
to any of its public licenses or any other arrangements,
understandings, or agreements concerning use of licensed material. For
the avoidance of doubt, this paragraph does not form part of the
public licenses.

Creative Commons may be contacted at creativecommons.org.

41.5. GNU General Public License

 GNU GENERAL PUBLIC LICENSE
 Version 3, 29 June 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The GNU General Public License is a free, copyleft license for
software and other kinds of works.

 The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

 To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

 Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

 For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

 Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

 Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

 The precise terms and conditions for copying, distribution and
modification follow.

 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based
on the Program.

 To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

 A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

 The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

 The Corresponding Source for a work in source code form is that
same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified
 it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under section
 7. This requirement modifies the requirement in section 4 to
 "keep intact all notices".

 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your
 work need not make them do so.

 A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that product
 model, to give anyone who possesses the object code either (1) a
 copy of the Corresponding Source for all the software in the
 product that is covered by this License, on a durable physical
 medium customarily used for software interchange, for a price no
 more than your reasonable cost of physically performing this
 conveying of source, or (2) access to copy the
 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in accord
 with subsection 6b.

 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place at no
 further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place to
 copy the object code is a network server, the Corresponding Source
 may be on a different server (operated by you or a third party)
 that supports equivalent copying facilities, provided you maintain
 clear directions next to the object code saying where to find the
 Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided
 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

 If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

 The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the
 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or
 author attributions in that material or in the Appropriate Legal
 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in
 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or
 authors of the material; or

 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions of
 it) with contractual assumptions of liability to the recipient, for
 any liability that these contractual assumptions directly impose on
 those licensors and authors.

 All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

 However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

 Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

 If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

 A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

 13. Use with the GNU Affero General Public License.

 Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

 Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <https://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

 You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.

 The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

 Index

Index

 Symbols
 | C
 | W

Symbols

 	
 	callback

 	callbacks function

 	
 	event loop

 	geometry management

 	widget sets

C

 	
 	chemistry

W

 	
 	widgets

 Genetic Algorithms

Genetic Algorithms

Section author: Joaquin Bas <jfbas22@gmail.com>

Motivation, Prerequisites, Plan

Motivation

Armed with powerful data processing and storage capabilities,
computers are ideal for performing repetitive tasks and sometimes can
“see” farther than humans in strategic situations.

It is therefore unsurprising that during the execution of a complex
task it may suboptimal to allow a human to formulate the “strategy”
necessary to complete the task and far more efficient to allow a
computer to “evolve” its own strategy, and this can be done using
genetic algorithms.

A subclass of evolutionary algorithms under the domain of artificial
intelligence, genetic algorithms have exciting and diverse
applications. From optimizing a janitorial robot’s cleaning route
within a confined space(Mitchell, 2009) to minimizing risk while
maximizing profit for a given stock portfolio, genetic algorithms are
powerful tools with a growing impact on society.

In this chapter we will construct our own simple genetic algorithm in
order to explore, analyze, and understand these fascinating
algorithms.

Prerequisites

	The ten hour “serious programming” course

	The “Data Files and First Plots” mini course in section 2

	The “Intermediate Plotting” mini course in section 3

	The “Random Number Basics” mini course in section 11

Plan

The construction of our genetic algorithm will be split into four parts:

	Population Generation

	Fitness Calculation

	Selection

	Crossover and Mutation

Following the completion of our program we will create plots in
gnuplot to analyze and explore the functionality of genetic algorithms
more closely.

Constructing the Genetic Algorithm

Some Terminology Before we Begin

Disclaimer: The following definitions are only analogously related to
biological terms, so none of the terms below are precisely parallel in
nature.

Important: The only way around jargon is through it!

Genetic Algorithm: A subclass of evolutionary computation(EA)
algorithm that “evolves” a solution space to optimize the solution to
a problem.

Algorithm: A procedure with a series of logical, sequential steps constructed to
outline the process for completing a certain task.

Binary bit: A digit in the binary number system that can either have a
value of 1 or 0.

Binary Bitlist: A sequence of binary digits separated by commas.

Binary Bitstring: A sequence of unseparated binary digits.

Chromosome: A unique binary bitlist or bitsring of N digits, e.g 10001.

Population: A unique collection of M chromosomes e.g 10001, 00001,10101.

Fitness: The number of 1s in a chromosome and/or population.

Fitness Function: A function that evaluates the fitness of each
chromosome and of the population in a GA.

Crossover: Combination of ‘parent’ chromosomes to form ‘children’
chromosomes, e.g. a crossover of 1000 and 0001 could be 10001.

Mutation: The random flipping at a certain probability of a bit in a
bitstring in a chromosome in a population of a GA.

Mutation Rate: Probabilty random bit in bitstring or bitlist will we flipped.

Elitist Selection: Selection of certain chromosomes to be ‘parents’
based on passing a certain fitness threshold.

Generation: In genetic algorithms, a “generation” simply signifies
another population which the algorithms generates and operates on.

Our GA

This genetic algorithm was created for pedagogical
purposes, so it will not be optimizing a real world problem, rather it
will simply be optimizing a binary bitlist to demonstrate its own
functionality.

Designing the Algorithm

Simulating evolution is a delicate process, and thus we must plan our
algorithm carfully.

Our genetic algorithm will be subdivided into the following steps:

	generate an initial population of M individuals(let’s start with
10 for simplicity) with each chromosome being of length N (10 for
now as well)

	for each chromosome in the population, calculate the fitness by
counting the number of 1s in the list, where the minimum value is 0
and the maximum value is 10

	after generating the initial population, select the top twenty
percent of individuals to be “parents” for the next generation(2
bitlists with the highest fitnesses in that population are
selected)

	create the next generation by “breeding” the parents selected,
whose children will become the new population

	at a random probability(0.05 to start with) mutate the children to
create a new population

	go back to step 2 and repeat for G generations(100 for now)

As we can already see, the genetic algorithm will be evolving the best
bitlists by only selecting those with higher fitnesses to be parents
and so on.

Programming the GA

We must first import relevant python modules:

import random
import math
import sys

Then, we must set some initial parameters that will follow us
throughout our program:

prob_mutation=0.05
n_bits=10
n_members=10
n_generations=10

Now we set the skeleton for the main program(without the real function
names of course):

def main():
 function1()
 function2()
 function3()
 #

main()

Our main program with function names:

def main():
 global prob_mutation, n_bits, n_members, n_generations
 if len(sys.argv) != 1 and len(sys.argv) != 5:
 print('error: either run with no arguments or with 4 arguments')
 print('%s [n_bits prob_mutation n_members n_generations]')
 sys.exit(1)
 if len(sys.argv) > 1:
 prob_mutation = float(sys.argv[1])
 n_bits = int(sys.argv[2])
 n_members = int(sys.argv[3])
 n_generations = int(sys.argv[4])

 pop = make_pop(n_members)
 display_pop(pop, 0)
 evolve(pop, n_generations)

Important: We will construct this program by first adding skeletons
and later adding functionality, which allows us to see what we want
from our program first before implementing it.

Moving on, to create outr popuation, we create the function make_pop:

def make_pop(n):
 """create the initial population"""
 pop=[]
 for i in range(n):
 pop.append(make_individual())
 return pop

Next, we need to create individual chromosomes or individuals as well,
so let’s create a funciton called make_individual:

def make_individual():
 """Make a random individual"""
 bitlist=[]
 for i in range(n_bits):
 bit=random.randint(0,1)
 bitlist.append(bit)
 return bitlist

Important: If at any time you find any of the above code confusing, do
not procedd until it is clear, as the complexity within the program
will only compound.

Then, to display our population, we create the funciton display_pop:

def display_pop(pop, gen_no):
 print('==== entire population (%d individuals) ====' % len(pop))
 for i, bitlist in enumerate(pop):
 fitness = calc_fitness(bitlist)
 print(' index: %d bitlist: %s fitness: %g'
 % (i, bitlist, fitness))
 avg_fit, top_fit = avg_and_top_fitness(pop)
 print("GEN_REPORT:", gen_no, avg_fit, top_fit)

Now, to calculate the fitness for an individual, we create the
funciton calc_fitness:

def calc_fitness(member):
 """calculate the fitness of an individual, a list of bits where the
 fitness is the sum of the bits"""
 fitness=0
 for i in range(len(member)):
 fitness += member[i]
 return fitness

Next, let’s add in our average and top fitnesses for each population:

 def avg_and_top_fitness(pop):
 top_fitness=-1
 avg_fitness=0
 sum_fitness=0
 for member in pop:
 fit=calc_fitness(member)
 sum_fitness+=fit
 if fit>top_fitness:
 top_fitness=fit
 return sum_fitness/len(pop),top_fitness

We now must proceed to generate an evolutionary framework for our GA
as we have just completed displaying and calculating fitnesses:

def evolve(pop, n_gen):
 """Evolve a population for n_gen generations"""
 for i in range(n_gen):
 parents=select_parents(pop)
 children=breed(parents,len(pop))
 pop=parents+children
 print('==== at generation %d ====' %i)
 display_pop(pop, i+1)

Now that we have an evolution skeleton, we will add some functionality, starting with the breeding mechanism by creating a function called breed.

def breed(parents, n_offspring):
 """Breed the parents to get a collection of offspring; apply mutation
 as part of the breeding process"""
 children=parents+parents+parents+parents
 assert(len(parents) + len(children) == n_offspring) # sanity check
 children=mutate_pop(children)
 return children

We now need selection criteria, so we will create the select_parents and the supporting select_20_pct below:

def select_parents(pop):
 """Select a part of the population to be the parents. At this time we
 only use a top-20% approach; in the future it should be
 selectable
 """
 assert(len(pop)%5==0)
 parents=select_20_pct(pop)
 return parents

def select_20_pct(pop):
 """Select the top 20% of the population"""
 assert(len(pop)%5==0)
 fitnesses=[]
 for member in pop:
 fitness=calc_fitness(member)
 fitnesses.append((member, fitness))
 fitnesses.sort(key=lambda item: item[1])
 fitnesses[-len(pop)//5:]
 # print(fitnesses[-len(pop)//5:])
 result_top = []
 for (member, fitness) in fitnesses[-len(pop)//5:]:
 result_top.append(member)
 return result_top

Moving on, some mutation functionality is needed for the evolution
framework, so we will create the mutate_pop and the supporting
mutate_individual below:

def mutate_pop(children):
 """Mutate an entire population, returning the result"""
 for child_no, child in enumerate(children):
 new_child = mutate_individual(child, prob_mutation)
 children[child_no] = new_child
return children

def mutate_individual(old_member, prob):
 """Takes a member of the population, applies mutation to each bit with
 probability prob, and returns the result
 """
 member = old_member[:] # make a copy of the original
 for i in range(len(member)):
 if random.random() > prob: # roll the die
 continue # don't mutate this bit
 if member[i] == 1:
 member[i] = 0
 else:
 member[i] = 1
 return member

So, for the finished program, we have listing-simple-ga-py

simple_ga.py - full program for a simple genetic algorithm

#! /usr/bin/env python3

import random
import math
import sys

prob_mutation = 0.05
n_bits = 10
n_members = 10
n_generations = 100

def main():
 global prob_mutation, n_bits, n_members, n_generations
 if len(sys.argv) != 1 and len(sys.argv) != 5:
 print('error: either run with no arguments or with 4 arguments')
 print('%s [n_bits prob_mutation n_members n_generations]')
 sys.exit(1)
 if len(sys.argv) > 1:
 prob_mutation = float(sys.argv[1])
 n_bits = int(sys.argv[2])
 n_members = int(sys.argv[3])
 n_generations = int(sys.argv[4])

 pop = make_pop(n_members)
 display_pop(pop, 0)
 evolve(pop, n_generations)

def make_pop(n):
 """create the initial population"""
 pop=[]
 for i in range(n):
 pop.append(make_individual())
 return pop

def make_individual():
 """Make a random individual"""
 bitlist=[]
 for i in range(n_bits):
 bit=random.randint(0,1)
 bitlist.append(bit)
 return bitlist

def display_pop(pop, gen_no):
 print('==== entire population (%d individuals) ====' % len(pop))
 for i, bitlist in enumerate(pop):
 fitness = calc_fitness(bitlist)
 print(' index: %d bitlist: %s fitness: %g'
 % (i, bitlist, fitness))
 avg_fit, top_fit = avg_and_top_fitness(pop)
 print("GEN_REPORT:", gen_no, avg_fit, top_fit)

def calc_fitness(member):
 """calculate the fitness of an individual, a list of bits where the
 fitness is the sum of the bits"""
 fitness=0
 for i in range(len(member)):
 fitness += member[i]
 return fitness

def avg_and_top_fitness(pop):
 top_fitness=-1
 avg_fitness=0
 sum_fitness=0
 for member in pop:
 fit=calc_fitness(member)
 sum_fitness+=fit
 if fit>top_fitness:
 top_fitness=fit
 return sum_fitness/len(pop),top_fitness

def evolve(pop, n_gen):
 """Evolve a population for n_gen generations"""
 for i in range(n_gen):
 parents=select_parents(pop)
 children=breed(parents,len(pop))
 pop=parents+children
 print('==== at generation %d ====' %i)
 display_pop(pop, i+1)

def breed(parents, n_offspring):
 """Breed the parents to get a collection of offspring; apply mutation
 as part of the breeding process"""
 children=parents+parents+parents+parents
 assert(len(parents) + len(children) == n_offspring) # sanity check
 children=mutate_pop(children)
 return children

def select_parents(pop):
 """Select a part of the population to be the parents. At this time we
 only use a top-20% approach; in the future it should be
 selectable

 """
 assert(len(pop)%5==0)
 parents=select_20_pct(pop)
 return parents

def select_20_pct(pop):
 """Select the top 20% of the population"""
 assert(len(pop)%5==0)
 fitnesses=[]
 for member in pop:
 fitness=calc_fitness(member)
 fitnesses.append((member, fitness))
 fitnesses.sort(key=lambda item: item[1])
 fitnesses[-len(pop)//5:]
 # print(fitnesses[-len(pop)//5:])
 result_top = []
 for (member, fitness) in fitnesses[-len(pop)//5:]:
 result_top.append(member)
 return result_top

def mutate_pop(children):
 """Mutate an entire population, returning the result"""
 for child_no, child in enumerate(children):
 new_child = mutate_individual(child, prob_mutation)
 # print("============= ", child, calc_fitness(child), "---------->", new_child, calc_fitness(new_child))
 children[child_no] = new_child
 return children

def mutate_individual(old_member, prob):
 """Takes a member of the population, applies mutation to each bit with
 probability prob, and returns the result

 """
 member = old_member[:] # make a copy of the original
 # print('OLD:', member, end="")
 for i in range(len(member)):
 if random.random() > prob: # roll the die
 continue # don't mutate this bit
 # print('{ROLL[%d], %d -> ' % (i, member[i]), end="")
 if member[i] == 1:
 member[i] = 0
 else:
 member[i] = 1
 # print(member[i], member, "}", end="")
 # print(' -> NEW:', member)
 return member

main()

Note: You can either copy and paste this code directly into a file,
save, and run, or download the code from the appendix section.

Plots and Analysis

In this section we will both plot the fitness function over time and
tweak the parameters in our genetic algorithm for the purpose of
gaining some intuition on how genetic algorithms function.

Plots

In gnuplot, we will first generate a simple plot of our
fitness as a function of the number of generations elapsed.

To begin we press control + alt + t to open up our linux terminal, in
which we navigate to the appropriate directory and type:

python3 simple_ga.py > ga-first-run.out

grep GEN_REPORT:ga-first-run.out
grep GEN_REPORT:ga-first-run.out > gen_report-first-run.out
gnuplot
gnuplot> set xlabel 'number of generations'
gnuplot> set ylabel 'average fitness'
gnuplot> set title 'first-run'
gnuplot> plot 'gen_report-first-run.out' using 2:3 with linespoints

So, our plot should look like this:

[image: ../_images/first-run.svg]
Generation report for the first run.

Important: If you do not understand any of these instructions, that is
ok, but you should probably go see section 2 to refresh yourself with
gnuplot.

In this next plot, we will have the following parameters:

mutation rate=25 percent
chromosome length=10
populaiton size=100
generations=100

Now, we must type:

python3 simple_ga.py 0.25 10 10 100 | grep GEN_REPORT: > high-mut.out
gnuplot
gnuplot> set xlabel 'number of generations'
gnuplot> set ylabel 'average fitness'
gnuplot> set title '25 percent mutation rate'
gnuplot> plot 'high-mut.out' using 2:3 with linespoints

So now our plot should like this:

Warning

This the high-mut.png figure is not present.

We can save our plot by selecting the ‘export to image’ in the upper
left hand corner of the plot

Our next task is to create the standard plot with a population size
increased to 100 members, and thus the parameters for this plot are:

mutation rate=0.05
chromosome length=10
population size=100
generations=100

Note: In order to execute the following commands from the command line
successfully, it is important to know the order of the arguments
below.

The arguments are, in order from left to right: prob_mutation, n_bits,
n_members,n_generations

Now type:

python3 simple_ga.py 0.05 10 100 100 | grep GEN_REPORT: > large-pop.out
gnuplot
gnuplot> set xlabel 'number of generations'
gnuplot> set ylabel 'average fitness'
gnuplot> set title 'large population'
gnuplot> plot 'large-pop.out' using 2:3 with linespoints

You will repeat these instructions with different parameters and
output files below, so make sure you are clear on the instructions
above before proceeding.

So our plot should look like this:

[image: ../_images/large-pop.svg]
Generation report for the large population.

The next factor we should alter for our next plot is the chromosome
lenght, more specifically, let’s change it from ten to 100.

so our parameters for this plot are:

mutation rate=0.05
chromosome length=100
population=10
generations=100

Now type:

python3 simple_ga.py 0.05 100 10 100 | grep GEN_REPORT: > long-chromo.out
gnuplot
gnuplot> set xlabel 'number of generations'
gnuplot> set ylabel 'average fitness'
gnuplot> set title 'long chromosome'
gnuplot> plot 'long-chromo.out' using 2:3 with linespoints

So our plot should look like this:

[image: ../_images/long-chromo.svg]
Generation report for the long chromosome.

As for our last plot, we will change the number of generations to 1000
from 100

so our parameters for this plot are:

mutation rate=0.05
chromosome length=10
population size=10
generations=1000

python3 simple_ga.py 0.05 10 10 1000 | grep GEN_REPORT: > gen1000.out
gnuplot
gnuplot> set xlabel 'number of generations'
gnuplot> set ylabel 'average fitness'
gnuplot> set title '1000 generations'
gnuplot> plot 'gen1000.out' using 2:3 with linespoints

So our plot should look like what you see in fig-gen1000:

[image: ../_images/gen1000.svg]
Generation report for 1000 generations.

We have finished our generating all of our plots for the parameter
variations of the standard ga generation/fitness plot and in the
following section will proceed to analyze and dissect each graph and
understand how the changes in parameters affected the components of
each graph.

Analysis

In this section we will analyze and dissect each plot created in the
previous section as each was created to demonstrate the alteration of
one parameter in the genetic algorithm, our purpose beign to see how
each parameter affected the GA as a whole.

Standard or Plot with Default Parameters

Analyzing the first plot is
important for gaining intuition for the standard behavior of our GA
for this fitness landscape, so we can compare it to other behavior
below.

With standard parameters, the GA we designed rises quickly in fitness
but then plateas with slight oscillation, with the fitnesses toward
the end of the program residing between 9.5 and 10.

Changing the Mutation Rate Parameter

In this section we will see how alteirng the mutation rate within our
genetic algorithm changes the behavior of the overall program.

With the high mutation rate, we see that the fitness does not converge
as nicely as it did with the standard plot, and our fitnessses towards
the end of the GA are lower, between 7.5 and 8.5.

Why? A higher mutation rate means more bits are being flipped, which
means even with the elitist selection, the population cannot converge
as well, and as we can imagine, were we to set the fitness to 1 or 100
percent, our GA would just be a random walk.

Changing the Population Parameter

In this section we will see how altering the population parameter
changes the overall behavior of the genetic algorithm.

The difference we see between this plot and the standard plot is that
the standatd plot similarly plateaus, but doesn’t converge as nicley
and oscillates more.

Why? Because a larger population means more diverse individuals, which
gives the GA a better chance of selceting very fit individuals earlier
on and thus converging more smoothly.

Changing the Chromosome Length Parameter

In the last section we saw what altering the population parameter did
to the overall fitness of a population, so in this portion of this
chapter we’re going to analyze what changing the chromosome length
parameter does to the overall fitness of the population.

The first thing we notice about this plot vs the standard plot is the more gradual increase in the fitness of the population.

Why?

Increased chromosome length means the same fitness in an individual
can contain a greater absolute value of zeroes, which means that a
convergence will not happen as quickly as there are more zeroes to get
rid of, and thus towards the end of the GA we can see the fitness is
slightly lower than that of the standard program , hovering between
8.5 and 90(adjusted to the scale of the standard plot of course).

Changing the Number of Generations Parameter

The final parameter we altered in our genetic algorithm was that of
the number of generations, and in this section we will dissect this
parameter’s role and contribution to the funcitonality of the genetic
algorithm.

This plot is essentially the standard plot run for ten times longer,
so nothing about the behavior has changed, and nothing interesting has
happened with the addition of 900 generations, as this GA has a simple
fitness landscape.

Then why would we bother to talk about a paramter that does nothing in our case?

Well, for optimal comprehension of this topic, one must be aware of
what afffects the GA as well as what does not to get a more compelte
picture of the algorithm’s functionality.

Fitness landscape of simple_ga.py

In this brief section we will examine the fitness landscape of simple_ga.py

(Source code, png, hires.png, pdf)

[image: ../_images/genetic-algorithms-1.png]

A more complex fitness landscape

Here we move beyond the simple fitness function of
simple_ga.py and explore a more interesting fitness function,
which presents some real challenges in finding the maximum point.

The fitness idea here is to think of our collection of bits as
representing a floating point number. If you take 32 bits, those
represent the various parts of a floating point number. The
particular way in which floats are represented as 32 bits is the IEEE
754 format. Examples are:

3.14159 01000000010010010000111111010000
1.41421 00111111101101010000010011010101
6.02e+23 01100110111111101111010011111001

Each bit has a different significance from the others, so randomly
flipping a bit can make a very small or very big difference.

Now that we have a real number corresponding to each bit string, we
can take a function of these real numbers, and call that the fitness.

Let us try this wavy function:

\[y = cos(x-40) + 10 \exp^{-(x - 40)^2/5000}\]

seen in this figure:

(Source code, png, hires.png, pdf)

[image: ../_images/genetic-algorithms-2.png]

The plot only shows a tiny central area of all the possible floating
point values, so our genetic algorithm search will need to search many
real numbers until it starts finding those peaks. And once it finds a
lower peak, it might get stuck there for a while before finding a
higher peak.

Note

You can see from the plot that the peaks seem to be at 6, 6 and a
bit, and 8 and a bit.

Now download the program ga_wavy_fitness.py and explore
this fitness landscape with it, similarly to how we did with
simple_ga.py

[image: ../_images/wavy-default.svg]
Generation report for the wavy fitness with default settings.

We got to see cool fitness steps, but we know that the global maximum
is bigger. Try running longer:

[image: ../_images/wavy-long.svg]
Generation report for the wavy fitness with a long run:
python3 ga_wavy_fitness.py 0.05 32 10 1000 | grep REPORT

Stil no luck. Try a larger population:

python3 ga_wavy_fitness.py 0.05 32 100 100 | grep REPORT
python3 ga_wavy_fitness.py 0.05 32 100 1000 | grep REPORT
python3 ga_wavy_fitness.py 0.05 32 100 10000 | grep REPORT

Play with mutation rate:

python3 ga_wavy_fitness.py 0.10 32 100 1000 | grep REPORT
python3 ga_wavy_fitness.py 0.10 32 100 10000 | grep REPORT
python3 ga_wavy_fitness.py 0.20 32 100 1000 | grep REPORT
python3 ga_wavy_fitness.py 0.20 32 100 10000 | grep REPORT

That last one seems good. Let’s plot it:

[image: ../_images/wavy-pop-mut.svg]
Generation report for the wavy fitness with a large population,
high mutation rate:
python3 ga_wavy_fitness.py 0.20 32 100 1000 | grep REPORT

Is this the global optimum?

Why did the average fitness go down like that?

Insights into the process of evolution? Punctuated equilibrium.

Now study what happens with lower mutation and longer run:

[image: ../_images/wavy-low-mut-very-long.svg]
Generation report for the wavy fitness with a low mutation rate but
a very long run:
python3 ga_wavy_fitness.py 0.10 32 100 10000 | grep REPORT

Excercises

Exploration and practice are what cement one’s knowledge and
proficiency with a topic or area of expertise, be it academic or not,
and genetic algorithms and computer science are no exceptions.

Thus, in this section we will provide ways for the reader to cement
their knowledge by doing such practice, and thus the following
excercises would be encouraged.

Note

These ‘excercises’ are meant to be exploratory, so don’t take them
as a homework assignment, and there will not be and answer key at
the end of the chapter, complete the one’s that you can, and if you
struggle with any, just play around with them until they make sense
and reach out for help, after all, coding is generally a team sport
in the real world.

Modify simple_ga.py to select the top 10 percent of the population
instead of the top twenty percent as parents.

Modify simple_ga.py so that fitness is defined by the number of 0s in
he bitlist, not the number of 1s.

Try switching the function for ga_wavy_fitness from
cos(x-40)+10e^(-(x-40)^2/5000) to sin(x-40) + 10e^(-(x-40)^2/5000)

In the function cos(x-40)+10e^(-(x-40)^2/5000), change every 40 to a
1000, and run the code for different amounts of generations and write
down your observations and interesting results/conclusions.

Applications

Research

Genetic Algorithms have real world applications which are very diverse
and intriguing, as we will see below.

Genetic algorithms are used in academic research in
mathematics, computer science, and physics.

Genetic algorithms are used in cryptography research as they can
search through large solution spaces and find decryptions.

Genetic algorithms are also used in machine learning research,
specifically in feature selection.

Genetic algorithms are also used in physics research for Feynman-Kac
formula models.

Industry

Genetic algorithms are also utilized in industries where optimiation is key.

Genetic algorithms are used in RSO(resource scheduling optimization)
to optimize sshceduling for government and large corporations.

Genetic Algorithms are used in Finance to optimize portfolios, that
is, for a certain amount invested, mninimize the risk and maximize
profit.

Genetic Algorithms are used in electronic circuit design.

Genetic Algorithms are used in quality control in product engineering.

Further Study and Resources

Complexity: A Guided Tour by Melanie Mitchell

An Introduction to Genetic Algorithms by Melanie Mitchell

Adaptation in Natural and Aritficial Systems by John Holland

https://towardsdatascience.com/introduction-to-optimization-with-genetic-algorithm-2f5001d9964b

https://en.wikipedia.org/wiki/Genetic_algorithm

https://pathmind.com/wiki/evolutionary-genetic-algorithm

Source Code for GA

simple_ga.py

Sources

Mitchell, M. (2011). Complexity: A Guided Tour (1st ed.). Oxford
University Press.

Mitchell, M. (1998). An Introduction to Genetic Algorithms (Complex
Adaptive Systems) (Reprint ed.). MIT Press.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. MIT Press.

Acknowledgements

A special thanks to Mark Galassi, Melanie Mitchell, Nina Bunker, and
Rhonda Crespo for suggesting edits and other improvements to this
chapter.

A special thanks to Melanie Mitchell for introducing me and mentoring
me on genetic algorihtms.

A special thanks to Mark Galassi for helping me build and edit this
book chapter and everything that accompanies it.

A special thanks to the Institute for Computing in Research for having
me as an intern for their 2020 summer program.

_images/walk-path.png
100 sfeps 71000 st6p3
2 sl
0
4
Iy]
8 174
-10
3 210 1 2 3 ~45403530252015105 0 5 10
80 250
o 0D steps % 500 | 100000 feps”
60 S 150
ig tes o 100
i LM
P 50
20 Bl ol B 0
10 (A S 50
ol&=T -100
-10 -15

0.
-10 0 102030405060708090 -300-200-100 0 100 200 300

_images/Oktava319vsshuresm58.png
Vagnituae (aB)

Vagnituae (aB)

Oktave

2319 —— |

LN\

\

N

-15
0.02

02 03

05 07 1
Frequency (KHz)

7 10

16 20

Sh

ure S

M58 —— |

0.02

0.05

0.1

02 03

05 07 1
Frequency (KHz)

1.5

2

7 10

16 20

_images/Onde_cisaillement_impulsion_1d_30_petit.gif

_images/Onde_compression_impulsion_1d_30_petit.gif

_images/Simple-harmonic-oscillator.png

nav.xhtml

 Table of Contents

 		
 Serious Programming - small courses

 		
 Motivation and plan

 		
 Notes for teachers

 		
 Acknowledgements

 		
 Status of the book

 		
 Footnotes

 		
 Starting out: data files and first plots

 		
 Motivation, prerequisites, plan

 		
 Very first data plots with gnuplot

 		
 Plotting functions with gnuplot

 		
 Reading and writing files, in brief

 		
 Generating our own data to plot

 		
 The broad landscape of plotting software

 		
 Data formats

 		
 Simple surface plots

 		
 Topics we have covered

 		
 Intermediate plotting

 		
 A worked example

 		
 Histograms

 		
 Matplotlib

 		
 A histogram snippet to conclude

 		
 A tour of functions

 		
 Motivation, Prerequisites, Plan

 		
 Linear Functions

 		
 Polynomials

 		
 Derivatives

 		
 Higher order polynomials

 		
 Inverse functions

 		
 Elementary transcendental functions

 		
 Exponentials

 		
 Trigonometric function

 		
 Gaussian distribution

 		
 Growth – checked and not

 		
 Motivation, prerequisites, plan

 		
 Motivation

 		
 Prerequisites

 		
 Plan

 		
 Pure exponential growth

 		
 Checked growth

 		
 Checked by lack of resources

 		
 Checked by competition with other species

 		
 Simple predator-prey interactions

 		
 The Lotka-Volterra equations

 		
 Advanced plotting

 		
 Our setup

 		
 A first line plot

 		
 Polishing line plots

 		
 Increasing the challenge: parametrized solutions

 		
 Adding a dimension: surface plots

 		
 Adding a dimension: color

 		
 Spetrograms

 		
 Spectrograms for standard acoustic files

 		
 Ideas for further exploration

 		
 Loops in gnuplot

 		
 Adding a dimension: animation

 		
 Animation in gnuplot

 		
 Animation in matplotlib

 		
 Further reading

 		
 Fitting functions to data

 		
 Motivation, Prerequisites, Plan

 		
 Examples to get started

 		
 Straight line fits

 		
 Our goal

 		
 Stepping back: just two points

 		
 Let’s plot that line with our data

 		
 Physical interpretation of the line fit

 		
 Proper line fitting

 		
 Using Python’s scientific libraries to fit lines

 		
 When to not try a linear fit

 		
 Fitting curves

 		
 Polynomial fits

 		
 Overfitting

 		
 Fitting arbitrary functions

 		
 Topics for further study

 		
 Interpolation and extrapolation

 		
 How high should the degree of the polynomial be?

 		
 Case studies in data

 		
 Population data from the web

 		
 Exercises

 		
 Special numbers: \pi

 		
 Motivation, prerequisites, plan

 		
 Motivation

 		
 Prerequisites

 		
 Plan

 		
 A collection of factoids

 		
 Calculating \pi: ancient history

 		
 Calculating \pi: monte carlo method

 		
 Calculating \pi: series that converge to \pi

 		
 Madhava-Leibniz series

 		
 “Efficient” infinite series

 		
 Formulae based on the Riemann zeta function

 		
 Relationships between special numbers

 		
 A workshop on programming by yourself (!)

 		
 Random number basics

 		
 Prerequisites

 		
 Motivation

 		
 Types of distributions

 		
 Further reading

 		
 Randomness and Disorder

 		
 Experiment: burn a match

 		
 Experiment: ink in water

 		
 Discussion on “ink in water” experiment

 		
 Flipping a single coin

 		
 Review: random numbers in Pythyon

 		
 Experiment: flipping a single virtual coin

 		
 Just the flips

 		
 Long-running average of single coin flips

 		
 Flipping multiple coins

 		
 Experiment: flipping virtual coins

 		
 Experiment: back to physical coins - disorder

 		
 The drunk fencer

 		
 The drunkard’s walk

 		
 Matplotlib animation of a random walk

 		
 Making a movie from walk frames

 		
 Reviewing graphics and animation

 		
 Making individual frames of the random walk

 		
 Discussion

 		
 Further reading and videos

 		
 Random Processes

 		
 Motivation, prerequisites, plan

 		
 Reviewing random number generation

 		
 Poisson processes

 		
 A pure poisson process

 		
 An angry lightning goddess

 		
 Vicious glow-worms

 		
 Brownian motion

 		
 Further reading

 		
 Progression of record peaks

 		
 The gambler’s fallacy

 		
 The gambler’s ruin

 		
 Link to other chapters

 		
 Power laws, Zipf, Benford, …

 		
 Motivation, prerequisites, plan

 		
 A brief refresher on log-log plots

 		
 Zipf’s law

 		
 What are “power laws”?

 		
 Deadly conflicts

 		
 Benford’s law

 		
 Pareto’s principle

 		
 Olber’s paradox

 		
 Pushing toward calculus

 		
 Motivation and plan

 		
 Prerequisites

 		
 Limits, the infinitely big, and the infinitesimally small

 		
 Continuous functions

 		
 Convergence and divergence

 		
 Weird mixes

 		
 Limits of some functions

 		
 The limit of a series

 		
 The most important application: derivatives

 		
 Visualizing derivatives with an animation

 		
 Numerical integration

 		
 The integral

 		
 Calculating the integral numerically

 		
 Improving the numerical approximation

 		
 Stepping back from numerical integration back to analytical work

 		
 Differential Equations

 		
 Motivation, Prerequisites, Plan

 		
 Derivatives

 		
 Why?

 		
 Definitions

 		
 An Example

 		
 Population Growth

 		
 But what does the derivative tell us?

 		
 Euler’s Method

 		
 Second Order Differential equations

 		
 Falling Body

 		
 Adding Air Resistance to Falling Body

 		
 The harmonic oscillator

 		
 The simple harmonic oscillator

 		
 The damped harmonic oscillator

 		
 The non-linear pendulum

 		
 Ecology

 		
 Motivation, Prerequisites, Plan

 		
 Factors that come up in modeling population ecology

 		
 Exponential growth

 		
 History of the human population on earth

 		
 The logistic function

 		
 The Lotka-Volterra differential equations

 		
 Further reading

 		
 Biology – phylogeny

 		
 Motivation, prerequisites, plan

 		
 Motivation

 		
 Prerequisites

 		
 Plan

 		
 Start with a video and then make a simple table

 		
 Terminology

 		
 NEW - Installing necessary packages

 		
 NEW - first steps with biopython

 		
 OLD - Installing necessary packages

 		
 Preparing a tree by hand

 		
 Inferring a tree

 		
 An example input file provided by ete3

 		
 Other sequence analysis resources

 		
 Linguistics datasets

 		
 lingpy.org

 		
 elinguistics.com

 		
 Others

 		
 Evolution of programming languages

 		
 Recursion

 		
 Motivation, prerequisites, plan

 		
 Visual examples

 		
 Word examples

 		
 Components of a recursive definition

 		
 Simple math

 		
 Programming simple math recursion

 		
 Recursion with data structures

 		
 Visualizing what the recursion is doing

 		
 Towers of Hanoi

 		
 Should we really use recursion in programming?

 		
 Programming topics: sorting

 		
 Motivation, prerequisites, plan

 		
 Experiment: a game of cards

 		
 Intuition to algorithm on card sorting

 		
 Writing up the algorithm in Python

 		
 Profiling the algorithm

 		
 Modify the program to print information

 		
 Run the program and make plots

 		
 How do we understand these plots?

 		
 Exercises

 		
 Computational complexity

 		
 Further reading

 		
 Birthday paradox

 		
 To get started

 		
 A practical demonstration

 		
 The theory

 		
 Take-home

 		
 Graphical user interfaces

 		
 A chat about sources of input in a GUI

 		
 Widgets and widget sets

 		
 The simplest programs

 		
 The programs

 		
 Packers: more than just one button

 		
 A tour of widgets

 		
 Following a tutorial

 		
 Cellular automata on a canvas

 		
 A simply drawing of the CA

 		
 Adding controls to the program

 		
 Conway’s game of life

 		
 Tic-tac-toe with buttons

 		
 A glance at PySimpleGUI

 		
 Other resources

 		
 Drawing on a canvas

 		
 Simplest canvas

 		
 Simplest animation

 		
 Exercises

 		
 The Traveling Salesman

 		
 Cities and path lengths

 		
 Solving the Traveling Salesman Problem

 		
 A digression on optimization

 		
 Generating and visualizing lists of cities

 		
 Animating the drawing of cities

 		
 Improvements to the route

 		
 Before you start

 		
 Impossibile to compute the optimal solution

 		
 Greedy algorithm

 		
 A digression on hill climbing

 		
 Hill climbing for the traveling salesman problem

 		
 Further study

 		
 Where do you go from search

 		
 Basic Agent-Based Modeling

 		
 Motivation, Prerequisites, and Plan

 		
 Conceptualizing the model

 		
 Agent-Based Modeling Concepts

 		
 Object-Oriented Programming Concepts

 		
 Classes and steps

 		
 Space and movement

 		
 Visualization

 		
 Interactions between agents

 		
 Data collection & plotting

 		
 Collecting data from the code

 		
 Plotting from the command line

 		
 Plotting as the live model runs

 		
 Source code

 		
 Making an SIR model

 		
 Further reading

 		
 Emergent behavior

 		
 Motivation, prerequisites, plan

 		
 Before you start

 		
 Write the simple_ca.py program which implements a cellular automaton

 		
 Conway’s game of life

 		
 Install and run the golly program

 		
 Further study

 		
 Play with the simple_ca.py program

 		
 Further reading

 		
 Web scraping

 		
 Motivation, prerequisites, plan

 		
 What does a web page look like underneath? (HTML)

 		
 Command line scraping with wget

 		
 Scraping from a Python program

 		
 Finding neat scientific data sets

 		
 Beautiful Soup

 		
 Getting to philosophy

 		
 Motivation, prerequisites, plan

 		
 Parsing simple web pages

 		
 Making vertex and edge graphs

 		
 A program to get to philosophy

 		
 When things go wrong

 		
 When we simply don’t “get to philosophy”

 		
 Music basics

 		
 Motivation, prerequisites, plan

 		
 What is sound?

 		
 How is sound generated?

 		
 Measuring and recording

 		
 What is music

 		
 Understanding what we plot in an amplitude plot

 		
 How does the GNU/Linux microphone work?

 		
 Generating your own musical tone

 		
 A single tone

 		
 From notes to frequencies

 		
 File formats

 		
 Converting our ascii music .dat files to other formats

 		
 Effects filters

 		
 Collecting mp3s

 		
 Purpose: turn audio from youtube into mp3s

 		
 preparation/prerequisites

 		
 Get the video

 		
 Verify that it’s a good video file

 		
 Extracting the audio portion

 		
 Tagging the mp3 file

 		
 A shortcut to the mp3

 		
 Computer art

 		
 Understanding photos and images

 		
 Discussion of graphics formats

 		
 Photo collection management

 		
 Image manipulation: command line and GUI

 		
 metapixel and photomosaics

 		
 ASCII art

 		
 Evolutionary art

 		
 Image manipulation from your own Python program

 		
 Geometric transformations

 		
 Filters and enhancement

 		
 Topics for further study

 		
 Image filtering

 		
 Motivation, prerequisites, plan

 		
 Motivation

 		
 Prerequisites

 		
 Plan

 		
 Manipulating images with command line programs

 		
 How computers store images, disk and memory

 		
 First example: blurring and other effects with PIL

 		
 The cycle of training and running an AI system

 		
 Miscellaneous examples in various areas

 		
 Astronomy example with scipy image kit

 		
 Extracting the portion of a scan which has text

 		
 Thresholding

 		
 Learning OpenCV

 		
 numpy and opencv

 		
 Image manipulation with OpenCV

 		
 Using tensorflow with ImageAI to find objects

 		
 ImageAI + tensorflow from Fritz AI article

 		
 ImageAI + tensorflow from towarddatascience

 		
 Using tensorflow from their own tutorials

 		
 The tutorial from tensorflow.org

 		
 For more on training the network

 		
 The most complete tutorial on preparing training sets and doing the training

 		
 Cryptography

 		
 Preliminary: ASCII values

 		
 Weak crypto

 		
 A simple Caesar encryptor

 		
 Substitution ciphers

 		
 A “literary” substitution cypher

 		
 Preparing to attack substitution cyphers: frequency analysis

 		
 Applying the frequency analysis to a message

 		
 Strong crypto

 		
 Binary numbers, XOR, hiding the byte

 		
 Manipulating bits in python

 		
 Revisiting random number generators

 		
 Implementing tougher encryption

 		
 Decrypting this tougher encryption

 		
 Further reading

 		
 Technical details

 		
 Historical

 		
 Videos

 		
 Other languages - Go

 		
 Hello World in Go

 		
 Writing a Go program with command line arguments

 		
 Goroutines and channels

 		
 More complicated Go program

 		
 Appendix: An itinerary for guest lectures

 		
 Motivation for linking computing and scholarship

 		
 A tour of topics

 		
 Appendix: How to build the book

 		
 Motivation, prerequisites, plan

 		
 The tools needed

 		
 Version control: cloning the repository (you only do this once)

 		
 Building the book

 		
 Making and committing changes (your day-to-day)

 		
 Appendix: How to add a chapter

 		
 Anatomy of the chapter

 		
 The chapter: Title

 		
 The chapter: frontmatter

 		
 The chapter: The problem

 		
 A basic equation

 		
 Some terminology

 		
 But wait! Two solutions??

 		
 The chapter: Plots

 		
 The chapter: The quadratic formula

 		
 The chapter: Numerical approximation

 		
 The chapter: Applications

 		
 Physics: falling bodies

 		
 Geometry: areas and the Dido problem

 		
 Exercises for the chapter

 		
 Further study

 		
 Appendix: Project proposals

 		
 Social sciences

 		
 Optimal stopping and life/business

 		
 Multi-armed bandits and exploration vs. exploitation

 		
 Deadly conflicts

 		
 Quantifying overfitting in personal decisions

 		
 Just about anything from Gwern Branwen

 		
 Sports

 		
 Time series for improvement on records

 		
 Optimal tournament structure

 		
 Soccer analytics

 		
 Physical sciences

 		
 Brownian motion

 		
 Life sciences

 		
 Datasets for phylogenetic analysis

 		
 Predator-prey ecology: equations and agents

 		
 Infectious disease modeling

 		
 Mathematics

 		
 puzzles

 		
 On the role of intuition in mathematics

 		
 Monty Hall’s door problem

 		
 Random walks

 		
 Runge-kutta method

 		
 Sync and the Kuramoto model

 		
 Analysis of chess

 		
 Computer science and information technology

 		
 Situational awareness of your network

 		
 Humanities and the arts

 		
 Music generation: tone beyond sin waves

 		
 Music generation: add stereo

 		
 Further explorations into Zipf’s law

 		
 Analyzing wordle

 		
 Can generative AI make art or music with a simple project?

 		
 Appendix: Proposed chapters

 		
 A tour of datasets

 		
 Molecules in three dimensions

 		
 Zeros of polynomials and other functions

 		
 Artificial life

 		
 Genetic algorithms

 		
 Fourier Analysis

 		
 Simpson’s paradox

 		
 Copying and legal matters

 		
 Copyright

 		
 License for the book

 		
 License for code samples

 		
 CC BY-SA 4.0 license

 		
 GNU General Public License

_images/derivative.png
tangent to
curve at point A

slope = Ay/Ax

_images/genetic-algorithms-1.png
10

simplest fitness function: sum of bits

i

_images/genetic-algorithms-2.png
10

wavy fitness function

Cos(x — 40) + 10exp~x - 40)7/5000

200 -150 -100 50

0 s 10 150 200

_images/graphviz-b5a37db5edc38dc833ed3841125751f5945df421.png
get model from some random person on the web

apply model to new data

_images/grid_many_infected.png
e
o 20

Current Step: 161

_images/graphviz-9c62cf8f900107813c2817d9888f3e20d76365f6.png
prepare training data
apply model to new data

_images/infection_graph.png
14
12
10

%

[nfectea

s

_images/grid_none_infected.png
o 20
Current Step: 0
L]
L]
L]
1]

_images/infection_graph_gnuplot.png
Infected

2

20

15

10

Agents infected over time.

infected ——

50

100

150

200
Time (steps)

250

300

350

400

_images/lovers_telephone